dmar.c 32.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28
 */

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */

31 32
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
33 34
#include <linux/iova.h>
#include <linux/intel-iommu.h>
35
#include <linux/timer.h>
36 37
#include <linux/irq.h>
#include <linux/interrupt.h>
38
#include <linux/tboot.h>
39
#include <linux/dmi.h>
40
#include <linux/slab.h>
41
#include <asm/irq_remapping.h>
42
#include <asm/iommu_table.h>
43

44 45
#include "irq_remapping.h"

46 47 48 49 50 51
/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

52
struct acpi_table_header * __initdata dmar_tbl;
53
static acpi_size dmar_tbl_size;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
88
			pr_warn("Device scope bus [%d] not found\n", scope->bus);
89 90 91 92
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
93
			/* warning will be printed below */
94 95 96 97 98 99 100
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
101
		pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
102
			segment, scope->bus, path->dev, path->fn);
103 104 105 106 107 108 109
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
110 111
		pr_warn("Device scope type does not match for %s\n",
			pci_name(pdev));
112 113 114 115 116 117
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

118 119
int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				struct pci_dev ***devices, u16 segment)
120 121 122 123 124 125 126 127 128 129 130 131
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
132 133
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
134
			pr_warn("Unsupported device scope\n");
135
		}
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

177
	drhd = (struct acpi_dmar_hardware_unit *)header;
178 179 180 181
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

182
	dmaru->hdr = header;
183
	dmaru->reg_base_addr = drhd->address;
184
	dmaru->segment = drhd->segment;
185 186
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

187 188 189 190 191 192 193 194 195
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

196
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
197 198
{
	struct acpi_dmar_hardware_unit *drhd;
199
	int ret = 0;
200 201 202

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

203 204 205 206
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
207
				((void *)drhd) + drhd->header.length,
208 209
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
210
	if (ret) {
211
		list_del(&dmaru->list);
212
		kfree(dmaru);
213
	}
214 215 216
	return ret;
}

217
#ifdef CONFIG_ACPI_NUMA
218 219 220 221 222 223 224
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
225
	for_each_drhd_unit(drhd) {
226 227 228 229 230 231
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
232 233
			return 0;
		}
234
	}
235 236 237 238 239 240 241 242
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
243

244
	return 0;
245
}
246
#endif
247

248 249 250 251 252
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
253
	struct acpi_dmar_atsr *atsr;
254
	struct acpi_dmar_rhsa *rhsa;
255 256 257

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
258 259
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
260
		pr_info("DRHD base: %#016Lx flags: %#x\n",
261
			(unsigned long long)drhd->address, drhd->flags);
262 263
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
264 265
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
266
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
267 268
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
269
		break;
270 271
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
272
		pr_info("ATSR flags: %#x\n", atsr->flags);
273
		break;
274 275
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
276
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
277 278 279
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
280 281 282
	}
}

283 284 285 286 287 288 289 290
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
291 292 293
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
294 295

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
296
		pr_warn("Unable to map DMAR\n");
297 298 299 300 301
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
302

303 304 305 306 307 308 309 310 311 312
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

313 314 315 316 317 318
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

319 320 321 322 323 324
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

325 326 327 328
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
329
	if (dmar->width < PAGE_SHIFT - 1) {
330
		pr_warn("Invalid DMAR haw\n");
331 332 333
		return -EINVAL;
	}

334
	pr_info("Host address width %d\n", dmar->width + 1);
335 336 337 338

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
339 340
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
341
			pr_warn("Invalid 0-length structure\n");
342 343 344 345
			ret = -EINVAL;
			break;
		}

346 347 348 349 350 351 352 353
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
			ret = dmar_parse_one_rmrr(entry_header);
354 355 356
			break;
		case ACPI_DMAR_TYPE_ATSR:
			ret = dmar_parse_one_atsr(entry_header);
357
			break;
358
		case ACPI_DMAR_HARDWARE_AFFINITY:
359
#ifdef CONFIG_ACPI_NUMA
360
			ret = dmar_parse_one_rhsa(entry_header);
361
#endif
362
			break;
363
		default:
364
			pr_warn("Unknown DMAR structure type %d\n",
365
				entry_header->type);
366 367 368 369 370 371 372 373 374 375 376
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

377
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
397 398 399
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

400 401
	dev = pci_physfn(dev);

402 403 404 405 406 407 408 409
	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
410

411 412 413
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
414 415 416 417 418
	}

	return NULL;
}

419 420
int __init dmar_dev_scope_init(void)
{
421
	static int dmar_dev_scope_initialized;
422
	struct dmar_drhd_unit *drhd, *drhd_n;
423 424
	int ret = -ENODEV;

425 426 427
	if (dmar_dev_scope_initialized)
		return dmar_dev_scope_initialized;

428 429 430
	if (list_empty(&dmar_drhd_units))
		goto fail;

431
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
432 433
		ret = dmar_parse_dev(drhd);
		if (ret)
434
			goto fail;
435 436
	}

437 438 439
	ret = dmar_parse_rmrr_atsr_dev();
	if (ret)
		goto fail;
440

441 442 443 444 445
	dmar_dev_scope_initialized = 1;
	return 0;

fail:
	dmar_dev_scope_initialized = ret;
446 447 448
	return ret;
}

449 450 451

int __init dmar_table_init(void)
{
452
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
453 454
	int ret;

455 456 457 458 459
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
460 461
	ret = parse_dmar_table();
	if (ret) {
462
		if (ret != -ENODEV)
463
			pr_info("parse DMAR table failure.\n");
F
Fenghua Yu 已提交
464 465 466
		return ret;
	}

467
	if (list_empty(&dmar_drhd_units)) {
468
		pr_info("No DMAR devices found\n");
469 470
		return -ENODEV;
	}
F
Fenghua Yu 已提交
471

472 473 474
	return 0;
}

475 476
static void warn_invalid_dmar(u64 addr, const char *message)
{
477 478 479 480 481 482 483 484
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
485
}
486

487 488 489 490 491 492 493 494 495 496 497 498 499
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
500
			pr_warn("Invalid 0-length structure\n");
501 502 503 504
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
505 506 507
			void __iomem *addr;
			u64 cap, ecap;

508 509
			drhd = (void *)entry_header;
			if (!drhd->address) {
510
				warn_invalid_dmar(0, "");
511 512 513 514 515 516 517 518 519 520 521 522
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
523 524
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
525
				goto failed;
526 527 528 529 530 531
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
532 533 534

failed:
	return 0;
535 536
}

537
int __init detect_intel_iommu(void)
538 539 540
{
	int ret;

541
	ret = dmar_table_detect();
542 543
	if (ret)
		ret = check_zero_address();
544
	{
545
		struct acpi_table_dmar *dmar;
546

547
		dmar = (struct acpi_table_dmar *) dmar_tbl;
548

549
		if (ret && irq_remapping_enabled && cpu_has_x2apic &&
550
		    dmar->flags & 0x1)
551
			pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
552

553
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
554
			iommu_detected = 1;
C
Chris Wright 已提交
555 556 557
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
558

559 560 561
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
562
#endif
563
	}
564
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
565
	dmar_tbl = NULL;
566

567
	return ret ? 1 : -ENODEV;
568 569 570
}


571 572 573 574 575 576 577 578 579 580
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
581
 *
582
 * Memory map the iommu's registers.  Start w/ a single page, and
583
 * possibly expand if that turns out to be insufficent.
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
		pr_err("IOMMU: can't reserve memory\n");
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
		pr_err("IOMMU: can't map the region\n");
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
			pr_err("IOMMU: can't reserve memory\n");
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
			pr_err("IOMMU: can't map the region\n");
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

646
int alloc_iommu(struct dmar_drhd_unit *drhd)
647
{
648
	struct intel_iommu *iommu;
649
	u32 ver;
650
	static int iommu_allocated = 0;
651
	int agaw = 0;
F
Fenghua Yu 已提交
652
	int msagaw = 0;
653
	int err;
654

655
	if (!drhd->reg_base_addr) {
656
		warn_invalid_dmar(0, "");
657 658 659
		return -EINVAL;
	}

660 661
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
662
		return -ENOMEM;
663 664

	iommu->seq_id = iommu_allocated++;
665
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
666

667 668 669
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
		pr_err("IOMMU: failed to map %s\n", iommu->name);
670 671
		goto error;
	}
672

673
	err = -EINVAL;
W
Weidong Han 已提交
674 675
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
676 677
		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			iommu->seq_id);
678
		goto err_unmap;
F
Fenghua Yu 已提交
679 680 681
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
682
		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
683
			iommu->seq_id);
684
		goto err_unmap;
W
Weidong Han 已提交
685 686
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
687
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
688

689 690
	iommu->node = -1;

691
	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
692 693
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
694 695 696 697
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
698

699
	raw_spin_lock_init(&iommu->register_lock);
700 701

	drhd->iommu = iommu;
702
	return 0;
703 704

 err_unmap:
705
	unmap_iommu(iommu);
706
 error:
707
	kfree(iommu);
708
	return err;
709 710 711 712 713 714 715 716 717 718
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

	free_dmar_iommu(iommu);

	if (iommu->reg)
719 720
		unmap_iommu(iommu);

721 722
	kfree(iommu);
}
723 724 725 726 727 728

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
729 730
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
731 732 733 734 735 736
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

737 738 739
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
740
	int head, tail;
741 742 743
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

744 745 746
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

747 748 749 750 751 752 753 754 755
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
756
		if ((head >> DMAR_IQ_SHIFT) == index) {
757
			pr_err("VT-d detected invalid descriptor: "
758 759 760
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
761 762 763 764 765 766 767 768 769
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

796 797 798
	return 0;
}

799 800 801 802
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
803
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
804
{
805
	int rc;
806 807 808 809 810 811
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
812
		return 0;
813 814 815

	hw = qi->desc;

816 817 818
restart:
	rc = 0;

819
	raw_spin_lock_irqsave(&qi->q_lock, flags);
820
	while (qi->free_cnt < 3) {
821
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
822
		cpu_relax();
823
		raw_spin_lock_irqsave(&qi->q_lock, flags);
824 825 826 827 828 829 830 831 832
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

833 834
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
835 836 837 838 839 840 841 842 843 844 845 846 847 848
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
849
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
850 851

	while (qi->desc_status[wait_index] != QI_DONE) {
852 853 854 855 856 857 858
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
859 860
		rc = qi_check_fault(iommu, index);
		if (rc)
861
			break;
862

863
		raw_spin_unlock(&qi->q_lock);
864
		cpu_relax();
865
		raw_spin_lock(&qi->q_lock);
866
	}
867 868

	qi->desc_status[index] = QI_DONE;
869 870

	reclaim_free_desc(qi);
871
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
872

873 874 875
	if (rc == -EAGAIN)
		goto restart;

876
	return rc;
877 878 879 880 881 882 883 884 885 886 887 888
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

889
	/* should never fail */
890 891 892
	qi_submit_sync(&desc, iommu);
}

893 894
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
895 896 897 898 899 900 901
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

902
	qi_submit_sync(&desc, iommu);
903 904
}

905 906
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

924
	qi_submit_sync(&desc, iommu);
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

948 949 950 951 952 953 954 955 956 957 958 959
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

960
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
980
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
981 982
}

983 984 985 986 987
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
988
	u32 sts;
989 990 991 992 993 994
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

995
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
996 997 998 999 1000 1001 1002

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1003
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1004 1005 1006 1007

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1008
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1009 1010
}

1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1019
	struct page *desc_page;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1030
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1031 1032 1033 1034 1035
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1036 1037 1038

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1039 1040 1041 1042 1043
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1044 1045
	qi->desc = page_address(desc_page);

1046
	qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1057
	raw_spin_lock_init(&qi->q_lock);
1058

1059
	__dmar_enable_qi(iommu);
1060 1061 1062

	return 0;
}
1063 1064 1065

/* iommu interrupt handling. Most stuff are MSI-like. */

1066 1067 1068 1069 1070 1071 1072
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1087
	"PCE for translation request specifies blocking",
1088
};
1089

1090
static const char *irq_remap_fault_reasons[] =
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1101 1102
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1103
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1104
{
1105 1106
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1107
		*fault_type = INTR_REMAP;
1108
		return irq_remap_fault_reasons[fault_reason - 0x20];
1109 1110 1111 1112 1113
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1114
		return "Unknown";
1115
	}
1116 1117
}

1118
void dmar_msi_unmask(struct irq_data *data)
1119
{
1120
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1121 1122 1123
	unsigned long flag;

	/* unmask it */
1124
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1125 1126 1127
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1128
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1129 1130
}

1131
void dmar_msi_mask(struct irq_data *data)
1132 1133
{
	unsigned long flag;
1134
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1135 1136

	/* mask it */
1137
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1138 1139 1140
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1141
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1142 1143 1144 1145
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1146
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1147 1148
	unsigned long flag;

1149
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1150 1151 1152
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1153
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1154 1155 1156 1157
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1158
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1159 1160
	unsigned long flag;

1161
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1162 1163 1164
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1165
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1166 1167 1168 1169 1170 1171
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1172
	int fault_type;
1173

1174
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1175

1176
	if (fault_type == INTR_REMAP)
1177
		pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1178 1179 1180 1181 1182 1183
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1184
		pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1185 1186 1187 1188 1189
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1190 1191 1192 1193
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1194
irqreturn_t dmar_fault(int irq, void *dev_id)
1195 1196 1197 1198 1199 1200
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1201
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1202
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1203
	if (fault_status)
1204
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1205 1206 1207

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1208
		goto clear_rest;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1239
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1240 1241 1242 1243 1244

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1245
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1246
			fault_index = 0;
1247
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1248
	}
1249 1250
clear_rest:
	/* clear all the other faults */
1251
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1252
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1253

1254
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1255 1256 1257 1258 1259 1260 1261
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1262 1263 1264 1265 1266 1267
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1268 1269
	irq = create_irq();
	if (!irq) {
1270
		pr_err("IOMMU: no free vectors\n");
1271 1272 1273
		return -EINVAL;
	}

1274
	irq_set_handler_data(irq, iommu);
1275 1276 1277 1278
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1279
		irq_set_handler_data(irq, NULL);
1280 1281
		iommu->irq = 0;
		destroy_irq(irq);
1282
		return ret;
1283 1284
	}

1285
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1286
	if (ret)
1287
		pr_err("IOMMU: can't request irq\n");
1288 1289
	return ret;
}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
1304
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1305 1306 1307
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1308 1309 1310 1311 1312

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1313 1314 1315 1316
	}

	return 0;
}
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1342 1343 1344 1345

/*
 * Check interrupt remapping support in DMAR table description.
 */
1346
int __init dmar_ir_support(void)
1347 1348 1349
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1350 1351
	if (!dmar)
		return 0;
1352 1353
	return dmar->flags & 0x1;
}
1354
IOMMU_INIT_POST(detect_intel_iommu);