migrate.c 49.1 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 * Memory Migration functionality - linux/mm/migration.c
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/memcontrol.h>
34
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/hugetlb_cgroup.h>
37
#include <linux/gfp.h>
38
#include <linux/balloon_compaction.h>
39
#include <linux/mmu_notifier.h>
C
Christoph Lameter 已提交
40

41 42
#include <asm/tlbflush.h>

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
46 47 48
#include "internal.h"

/*
49
 * migrate_prep() needs to be called before we start compiling a list of pages
50 51
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

66 67 68 69 70 71 72 73
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

74 75 76 77
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
78 79 80
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
81 82 83 84 85 86
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
87
	list_for_each_entry_safe(page, page2, l, lru) {
88 89 90 91
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
92
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
93
		dec_zone_page_state(page, NR_ISOLATED_ANON +
94
				page_is_file_cache(page));
95
		if (unlikely(isolated_balloon_page(page)))
96 97 98
			balloon_page_putback(page);
		else
			putback_lru_page(page);
C
Christoph Lameter 已提交
99 100 101
	}
}

102 103 104
/*
 * Restore a potential migration pte to a working pte entry
 */
105 106
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
				 unsigned long addr, void *old)
107 108 109 110 111 112 113
{
	struct mm_struct *mm = vma->vm_mm;
	swp_entry_t entry;
 	pmd_t *pmd;
	pte_t *ptep, pte;
 	spinlock_t *ptl;

N
Naoya Horiguchi 已提交
114 115 116 117
	if (unlikely(PageHuge(new))) {
		ptep = huge_pte_offset(mm, addr);
		if (!ptep)
			goto out;
118
		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
N
Naoya Horiguchi 已提交
119
	} else {
B
Bob Liu 已提交
120 121
		pmd = mm_find_pmd(mm, addr);
		if (!pmd)
N
Naoya Horiguchi 已提交
122
			goto out;
123 124
		if (pmd_trans_huge(*pmd))
			goto out;
125

N
Naoya Horiguchi 已提交
126
		ptep = pte_offset_map(pmd, addr);
127

128 129 130 131
		/*
		 * Peek to check is_swap_pte() before taking ptlock?  No, we
		 * can race mremap's move_ptes(), which skips anon_vma lock.
		 */
N
Naoya Horiguchi 已提交
132 133 134

		ptl = pte_lockptr(mm, pmd);
	}
135 136 137 138

 	spin_lock(ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
139
		goto unlock;
140 141 142

	entry = pte_to_swp_entry(pte);

143 144 145
	if (!is_migration_entry(entry) ||
	    migration_entry_to_page(entry) != old)
		goto unlock;
146 147 148

	get_page(new);
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 150
	if (pte_swp_soft_dirty(*ptep))
		pte = pte_mksoft_dirty(pte);
151 152
	if (is_write_migration_entry(entry))
		pte = pte_mkwrite(pte);
A
Andi Kleen 已提交
153
#ifdef CONFIG_HUGETLB_PAGE
154
	if (PageHuge(new)) {
N
Naoya Horiguchi 已提交
155
		pte = pte_mkhuge(pte);
156 157
		pte = arch_make_huge_pte(pte, vma, new, 0);
	}
A
Andi Kleen 已提交
158
#endif
159
	flush_dcache_page(new);
160
	set_pte_at(mm, addr, ptep, pte);
161

N
Naoya Horiguchi 已提交
162 163 164 165 166 167
	if (PageHuge(new)) {
		if (PageAnon(new))
			hugepage_add_anon_rmap(new, vma, addr);
		else
			page_dup_rmap(new);
	} else if (PageAnon(new))
168 169 170 171 172
		page_add_anon_rmap(new, vma, addr);
	else
		page_add_file_rmap(new);

	/* No need to invalidate - it was non-present before */
173
	update_mmu_cache(vma, addr, ptep);
174
unlock:
175
	pte_unmap_unlock(ptep, ptl);
176 177
out:
	return SWAP_AGAIN;
178 179
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Congratulations to trinity for discovering this bug.
 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 * replace the specified range by file ptes throughout (maybe populated after).
 * If page migration finds a page within that range, while it's still located
 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 * But if the migrating page is in a part of the vma outside the range to be
 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 * deal with it.  Fortunately, this part of the vma is of course still linear,
 * so we just need to use linear location on the nonlinear list.
 */
static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
		struct address_space *mapping, void *arg)
{
	struct vm_area_struct *vma;
	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	unsigned long addr;

	list_for_each_entry(vma,
		&mapping->i_mmap_nonlinear, shared.nonlinear) {

		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr >= vma->vm_start && addr < vma->vm_end)
			remove_migration_pte(page, vma, addr, arg);
	}
	return SWAP_AGAIN;
}

211 212 213 214 215 216
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
static void remove_migration_ptes(struct page *old, struct page *new)
{
217 218 219
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
220
		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
221 222 223
	};

	rmap_walk(new, &rwc);
224 225
}

226 227 228 229 230
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
231 232
static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
				spinlock_t *ptl)
233
{
234
	pte_t pte;
235 236 237
	swp_entry_t entry;
	struct page *page;

238
	spin_lock(ptl);
239 240 241 242 243 244 245 246 247 248
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
249 250 251 252 253 254 255 256 257
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
258 259 260 261 262 263 264 265
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

266 267 268 269 270 271 272 273
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

274 275
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
276
{
277
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
278 279 280
	__migration_entry_wait(mm, pte, ptl);
}

281 282
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
283 284
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
285 286 287 288
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
289
	if (mode != MIGRATE_ASYNC) {
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
325
							enum migrate_mode mode)
326 327 328 329 330
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
331
/*
332
 * Replace the page in the mapping.
333 334 335 336
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
337
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
338
 */
339
int migrate_page_move_mapping(struct address_space *mapping,
340
		struct page *newpage, struct page *page,
341 342
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
343
{
344
	int expected_count = 1 + extra_count;
345
	void **pslot;
C
Christoph Lameter 已提交
346

347
	if (!mapping) {
348
		/* Anonymous page without mapping */
349
		if (page_count(page) != expected_count)
350
			return -EAGAIN;
351
		return MIGRATEPAGE_SUCCESS;
352 353
	}

N
Nick Piggin 已提交
354
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
355

356 357
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
358

359
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
360
	if (page_count(page) != expected_count ||
361
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
362
		spin_unlock_irq(&mapping->tree_lock);
363
		return -EAGAIN;
C
Christoph Lameter 已提交
364 365
	}

N
Nick Piggin 已提交
366
	if (!page_freeze_refs(page, expected_count)) {
N
Nick Piggin 已提交
367
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
368 369 370
		return -EAGAIN;
	}

371 372 373 374 375 376 377
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
378 379
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
380 381 382 383 384
		page_unfreeze_refs(page, expected_count);
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
385 386 387
	/*
	 * Now we know that no one else is looking at the page.
	 */
388
	get_page(newpage);	/* add cache reference */
C
Christoph Lameter 已提交
389 390 391 392 393
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

394 395 396
	radix_tree_replace_slot(pslot, newpage);

	/*
397 398
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
399 400
	 * We know this isn't the last reference.
	 */
401
	page_unfreeze_refs(page, expected_count - 1);
402

403 404 405 406 407 408 409 410 411 412 413 414
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
	 * are mapped to swap space.
	 */
	__dec_zone_page_state(page, NR_FILE_PAGES);
	__inc_zone_page_state(newpage, NR_FILE_PAGES);
415
	if (!PageSwapCache(page) && PageSwapBacked(page)) {
416 417 418
		__dec_zone_page_state(page, NR_SHMEM);
		__inc_zone_page_state(newpage, NR_SHMEM);
	}
N
Nick Piggin 已提交
419
	spin_unlock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
420

421
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
422 423
}

N
Naoya Horiguchi 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	if (!mapping) {
		if (page_count(page) != 1)
			return -EAGAIN;
437
		return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
438 439 440 441 442 443 444 445 446
	}

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
447
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	if (!page_freeze_refs(page, expected_count)) {
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	get_page(newpage);

	radix_tree_replace_slot(pslot, newpage);

461
	page_unfreeze_refs(page, expected_count - 1);
N
Naoya Horiguchi 已提交
462 463

	spin_unlock_irq(&mapping->tree_lock);
464
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
515 516 517
/*
 * Copy the page to its new location
 */
N
Naoya Horiguchi 已提交
518
void migrate_page_copy(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
519
{
520 521
	int cpupid;

522
	if (PageHuge(page) || PageTransHuge(page))
N
Naoya Horiguchi 已提交
523 524 525
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
C
Christoph Lameter 已提交
526 527 528 529 530 531 532

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
533
	if (TestClearPageActive(page)) {
534
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
535
		SetPageActive(newpage);
536 537
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
538 539 540 541 542 543 544
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
N
Nick Piggin 已提交
545 546 547 548 549
		/*
		 * Want to mark the page and the radix tree as dirty, and
		 * redo the accounting that clear_page_dirty_for_io undid,
		 * but we can't use set_page_dirty because that function
		 * is actually a signal that all of the page has become dirty.
L
Lucas De Marchi 已提交
550
		 * Whereas only part of our page may be dirty.
N
Nick Piggin 已提交
551
		 */
552 553 554 555
		if (PageSwapBacked(page))
			SetPageDirty(newpage);
		else
			__set_page_dirty_nobuffers(newpage);
C
Christoph Lameter 已提交
556 557
 	}

558 559 560 561 562 563 564
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

N
Nick Piggin 已提交
565
	mlock_migrate_page(newpage, page);
566
	ksm_migrate_page(newpage, page);
567 568 569 570
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
C
Christoph Lameter 已提交
571 572 573 574 575 576 577 578 579 580 581 582
	ClearPageSwapCache(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}

583 584 585 586
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
587 588
/*
 * Common logic to directly migrate a single page suitable for
589
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
590 591 592
 *
 * Pages are locked upon entry and exit.
 */
593
int migrate_page(struct address_space *mapping,
594 595
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
596 597 598 599 600
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

601
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
602

603
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
604 605 606
		return rc;

	migrate_page_copy(newpage, page);
607
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
608 609 610
}
EXPORT_SYMBOL(migrate_page);

611
#ifdef CONFIG_BLOCK
612 613 614 615 616
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
617
int buffer_migrate_page(struct address_space *mapping,
618
		struct page *newpage, struct page *page, enum migrate_mode mode)
619 620 621 622 623
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
624
		return migrate_page(mapping, newpage, page, mode);
625 626 627

	head = page_buffers(page);

628
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
629

630
	if (rc != MIGRATEPAGE_SUCCESS)
631 632
		return rc;

633 634 635 636 637
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
638 639
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

666
	return MIGRATEPAGE_SUCCESS;
667 668
}
EXPORT_SYMBOL(buffer_migrate_page);
669
#endif
670

671 672 673 674
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
675
{
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

693
	/*
694 695 696 697 698 699
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
700
	 */
701
	remove_migration_ptes(page, page);
702

703
	rc = mapping->a_ops->writepage(page, &wbc);
704

705 706 707 708
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
709
	return (rc < 0) ? -EIO : -EAGAIN;
710 711 712 713 714 715
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
716
	struct page *newpage, struct page *page, enum migrate_mode mode)
717
{
718
	if (PageDirty(page)) {
719 720
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
721
			return -EBUSY;
722
		return writeout(mapping, page);
723
	}
724 725 726 727 728

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
729
	if (page_has_private(page) &&
730 731 732
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

733
	return migrate_page(mapping, newpage, page, mode);
734 735
}

736 737 738 739 740 741
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
742 743 744
 *
 * Return value:
 *   < 0 - error code
745
 *  MIGRATEPAGE_SUCCESS - success
746
 */
747
static int move_to_new_page(struct page *newpage, struct page *page,
748
				int remap_swapcache, enum migrate_mode mode)
749 750 751 752 753 754 755 756 757
{
	struct address_space *mapping;
	int rc;

	/*
	 * Block others from accessing the page when we get around to
	 * establishing additional references. We are the only one
	 * holding a reference to the new page at this point.
	 */
N
Nick Piggin 已提交
758
	if (!trylock_page(newpage))
759 760 761 762 763
		BUG();

	/* Prepare mapping for the new page.*/
	newpage->index = page->index;
	newpage->mapping = page->mapping;
R
Rik van Riel 已提交
764 765
	if (PageSwapBacked(page))
		SetPageSwapBacked(newpage);
766 767 768

	mapping = page_mapping(page);
	if (!mapping)
769
		rc = migrate_page(mapping, newpage, page, mode);
770
	else if (mapping->a_ops->migratepage)
771
		/*
772 773 774 775
		 * Most pages have a mapping and most filesystems provide a
		 * migratepage callback. Anonymous pages are part of swap
		 * space which also has its own migratepage callback. This
		 * is the most common path for page migration.
776
		 */
777
		rc = mapping->a_ops->migratepage(mapping,
778
						newpage, page, mode);
779
	else
780
		rc = fallback_migrate_page(mapping, newpage, page, mode);
781

782
	if (rc != MIGRATEPAGE_SUCCESS) {
783
		newpage->mapping = NULL;
784 785 786
	} else {
		if (remap_swapcache)
			remove_migration_ptes(page, newpage);
787
		page->mapping = NULL;
788
	}
789 790 791 792 793 794

	unlock_page(newpage);

	return rc;
}

795
static int __unmap_and_move(struct page *page, struct page *newpage,
796
				int force, enum migrate_mode mode)
797
{
798
	int rc = -EAGAIN;
799
	int remap_swapcache = 1;
800
	struct mem_cgroup *mem;
801
	struct anon_vma *anon_vma = NULL;
802

N
Nick Piggin 已提交
803
	if (!trylock_page(page)) {
804
		if (!force || mode == MIGRATE_ASYNC)
805
			goto out;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
821
			goto out;
822

823 824 825
		lock_page(page);
	}

826
	/* charge against new page */
827
	mem_cgroup_prepare_migration(page, newpage, &mem);
828

829
	if (PageWriteback(page)) {
830
		/*
831
		 * Only in the case of a full synchronous migration is it
832 833 834
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
835
		 */
836
		if (mode != MIGRATE_SYNC) {
837 838 839 840
			rc = -EBUSY;
			goto uncharge;
		}
		if (!force)
841
			goto uncharge;
842 843 844
		wait_on_page_writeback(page);
	}
	/*
845 846
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
847
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
848
	 * of migration. File cache pages are no problem because of page_lock()
849 850
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
851
	 */
H
Hugh Dickins 已提交
852
	if (PageAnon(page) && !PageKsm(page)) {
853
		/*
854
		 * Only page_lock_anon_vma_read() understands the subtleties of
855 856
		 * getting a hold on an anon_vma from outside one of its mms.
		 */
857
		anon_vma = page_get_anon_vma(page);
858 859
		if (anon_vma) {
			/*
860
			 * Anon page
861 862
			 */
		} else if (PageSwapCache(page)) {
863 864 865 866 867 868 869 870 871 872 873 874 875 876
			/*
			 * We cannot be sure that the anon_vma of an unmapped
			 * swapcache page is safe to use because we don't
			 * know in advance if the VMA that this page belonged
			 * to still exists. If the VMA and others sharing the
			 * data have been freed, then the anon_vma could
			 * already be invalid.
			 *
			 * To avoid this possibility, swapcache pages get
			 * migrated but are not remapped when migration
			 * completes
			 */
			remap_swapcache = 0;
		} else {
877
			goto uncharge;
878
		}
879
	}
880

881 882 883 884 885 886 887 888 889 890 891 892
	if (unlikely(balloon_page_movable(page))) {
		/*
		 * A ballooned page does not need any special attention from
		 * physical to virtual reverse mapping procedures.
		 * Skip any attempt to unmap PTEs or to remap swap cache,
		 * in order to avoid burning cycles at rmap level, and perform
		 * the page migration right away (proteced by page lock).
		 */
		rc = balloon_page_migrate(newpage, page, mode);
		goto uncharge;
	}

893
	/*
894 895 896 897 898 899 900 901 902 903
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
904
	 */
905
	if (!page->mapping) {
906
		VM_BUG_ON_PAGE(PageAnon(page), page);
907
		if (page_has_private(page)) {
908
			try_to_free_buffers(page);
909
			goto uncharge;
910
		}
911
		goto skip_unmap;
912 913
	}

914
	/* Establish migration ptes or remove ptes */
915
	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
916

917
skip_unmap:
918
	if (!page_mapped(page))
919
		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
920

921
	if (rc && remap_swapcache)
922
		remove_migration_ptes(page, page);
923 924

	/* Drop an anon_vma reference if we took one */
925
	if (anon_vma)
926
		put_anon_vma(anon_vma);
927

928
uncharge:
929 930 931
	mem_cgroup_end_migration(mem, page, newpage,
				 (rc == MIGRATEPAGE_SUCCESS ||
				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
932
	unlock_page(page);
933 934 935
out:
	return rc;
}
936

937 938 939 940 941
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
942
			struct page *page, int force, enum migrate_mode mode)
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
{
	int rc = 0;
	int *result = NULL;
	struct page *newpage = get_new_page(page, private, &result);

	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
		goto out;
	}

	if (unlikely(PageTransHuge(page)))
		if (unlikely(split_huge_page(page)))
			goto out;

960
	rc = __unmap_and_move(page, newpage, force, mode);
961 962 963 964 965 966 967 968 969 970 971 972

	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
		/*
		 * A ballooned page has been migrated already.
		 * Now, it's the time to wrap-up counters,
		 * handle the page back to Buddy and return.
		 */
		dec_zone_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_cache(page));
		balloon_page_free(page);
		return MIGRATEPAGE_SUCCESS;
	}
973
out:
974
	if (rc != -EAGAIN) {
975 976 977 978 979 980 981
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
982
		dec_zone_page_state(page, NR_ISOLATED_ANON +
983
				page_is_file_cache(page));
L
Lee Schermerhorn 已提交
984
		putback_lru_page(page);
985
	}
986 987 988 989
	/*
	 * Move the new page to the LRU. If migration was not successful
	 * then this will free the page.
	 */
L
Lee Schermerhorn 已提交
990
	putback_lru_page(newpage);
991 992 993 994 995 996
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
997 998 999
	return rc;
}

N
Naoya Horiguchi 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
				unsigned long private, struct page *hpage,
1020
				int force, enum migrate_mode mode)
N
Naoya Horiguchi 已提交
1021 1022 1023
{
	int rc = 0;
	int *result = NULL;
1024
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1025 1026
	struct anon_vma *anon_vma = NULL;

1027 1028 1029 1030 1031 1032 1033
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1034 1035
	if (!hugepage_migration_support(page_hstate(hpage))) {
		putback_active_hugepage(hpage);
1036
		return -ENOSYS;
1037
	}
1038

1039
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1040 1041 1042 1043 1044 1045
	if (!new_hpage)
		return -ENOMEM;

	rc = -EAGAIN;

	if (!trylock_page(hpage)) {
1046
		if (!force || mode != MIGRATE_SYNC)
N
Naoya Horiguchi 已提交
1047 1048 1049 1050
			goto out;
		lock_page(hpage);
	}

1051 1052
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1053 1054 1055 1056

	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);

	if (!page_mapped(hpage))
1057
		rc = move_to_new_page(new_hpage, hpage, 1, mode);
N
Naoya Horiguchi 已提交
1058 1059 1060 1061

	if (rc)
		remove_migration_ptes(hpage, hpage);

H
Hugh Dickins 已提交
1062
	if (anon_vma)
1063
		put_anon_vma(anon_vma);
1064 1065 1066 1067

	if (!rc)
		hugetlb_cgroup_migrate(hpage, new_hpage);

N
Naoya Horiguchi 已提交
1068
	unlock_page(hpage);
1069
out:
1070 1071
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
N
Naoya Horiguchi 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	put_page(new_hpage);
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1082
/*
1083 1084
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1085
 *
1086 1087 1088 1089 1090 1091 1092
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1093
 *
1094 1095 1096
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
 * The caller should call putback_lru_pages() to return pages to the LRU
1097
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1098
 *
1099
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1100
 */
1101 1102
int migrate_pages(struct list_head *from, new_page_t get_new_page,
		unsigned long private, enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1103
{
1104
	int retry = 1;
C
Christoph Lameter 已提交
1105
	int nr_failed = 0;
1106
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1116 1117
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1118

1119 1120
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1121

1122 1123 1124 1125 1126
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
						private, page, pass > 2, mode);
			else
				rc = unmap_and_move(get_new_page, private,
1127
						page, pass > 2, mode);
1128

1129
			switch(rc) {
1130 1131
			case -ENOMEM:
				goto out;
1132
			case -EAGAIN:
1133
				retry++;
1134
				break;
1135
			case MIGRATEPAGE_SUCCESS:
1136
				nr_succeeded++;
1137 1138
				break;
			default:
1139 1140 1141 1142 1143 1144
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1145
				nr_failed++;
1146
				break;
1147
			}
C
Christoph Lameter 已提交
1148 1149
		}
	}
1150
	rc = nr_failed + retry;
1151
out:
1152 1153 1154 1155
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1156 1157
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1158 1159 1160
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1161
	return rc;
C
Christoph Lameter 已提交
1162
}
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1188 1189 1190 1191 1192
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
		return alloc_pages_exact_node(pm->node,
1193
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1194 1195 1196 1197 1198 1199
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1200
 * The pm array ends with node = MAX_NUMNODES.
1201
 */
1202 1203 1204
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1221
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1222 1223
			goto set_status;

1224
		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1225 1226 1227 1228 1229

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1230 1231 1232 1233
		err = -ENOENT;
		if (!page)
			goto set_status;

1234
		/* Use PageReserved to check for zero page */
H
Hugh Dickins 已提交
1235
		if (PageReserved(page))
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
			goto put_and_set;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1252 1253 1254 1255 1256
		if (PageHuge(page)) {
			isolate_huge_page(page, &pagelist);
			goto put_and_set;
		}

1257
		err = isolate_lru_page(page);
1258
		if (!err) {
1259
			list_add_tail(&page->lru, &pagelist);
1260 1261 1262
			inc_zone_page_state(page, NR_ISOLATED_ANON +
					    page_is_file_cache(page));
		}
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1274
	err = 0;
1275
	if (!list_empty(&pagelist)) {
1276
		err = migrate_pages(&pagelist, new_page_node,
1277
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1278
		if (err)
1279
			putback_movable_pages(&pagelist);
1280
	}
1281 1282 1283 1284 1285

	up_read(&mm->mmap_sem);
	return err;
}

1286 1287 1288 1289
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1290
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1291 1292 1293 1294 1295
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1296 1297 1298 1299
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1300

1301 1302 1303
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1304
		goto out;
1305 1306 1307

	migrate_prep();

1308
	/*
1309 1310
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1311
	 */
1312
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1313

1314 1315 1316 1317
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1318

1319 1320 1321 1322 1323 1324
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1325 1326
			int node;

1327 1328 1329 1330 1331 1332
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1333 1334 1335
				goto out_pm;

			err = -ENODEV;
1336 1337 1338
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1339
			if (!node_state(node, N_MEMORY))
1340 1341 1342 1343 1344 1345
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1357 1358

		/* Return status information */
1359 1360
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1361
				err = -EFAULT;
1362 1363 1364 1365
				goto out_pm;
			}
	}
	err = 0;
1366 1367

out_pm:
1368
	free_page((unsigned long)pm);
1369 1370 1371 1372
out:
	return err;
}

1373
/*
1374
 * Determine the nodes of an array of pages and store it in an array of status.
1375
 */
1376 1377
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1378
{
1379 1380
	unsigned long i;

1381 1382
	down_read(&mm->mmap_sem);

1383
	for (i = 0; i < nr_pages; i++) {
1384
		unsigned long addr = (unsigned long)(*pages);
1385 1386
		struct vm_area_struct *vma;
		struct page *page;
1387
		int err = -EFAULT;
1388 1389

		vma = find_vma(mm, addr);
1390
		if (!vma || addr < vma->vm_start)
1391 1392
			goto set_status;

1393
		page = follow_page(vma, addr, 0);
1394 1395 1396 1397 1398

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1399 1400
		err = -ENOENT;
		/* Use PageReserved to check for zero page */
H
Hugh Dickins 已提交
1401
		if (!page || PageReserved(page))
1402 1403 1404 1405
			goto set_status;

		err = page_to_nid(page);
set_status:
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1427 1428
	while (nr_pages) {
		unsigned long chunk_nr;
1429

1430 1431 1432 1433 1434 1435
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1436 1437 1438

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1439 1440
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1441

1442 1443 1444 1445 1446
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1447 1448 1449 1450 1451 1452
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1453 1454 1455 1456
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1457
{
1458
	const struct cred *cred = current_cred(), *tcred;
1459 1460
	struct task_struct *task;
	struct mm_struct *mm;
1461
	int err;
1462
	nodemask_t task_nodes;
1463 1464 1465 1466 1467 1468 1469 1470 1471

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1472
	rcu_read_lock();
1473
	task = pid ? find_task_by_vpid(pid) : current;
1474
	if (!task) {
1475
		rcu_read_unlock();
1476 1477
		return -ESRCH;
	}
1478
	get_task_struct(task);
1479 1480 1481 1482 1483 1484 1485

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1486
	tcred = __task_cred(task);
1487 1488
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1489
	    !capable(CAP_SYS_NICE)) {
1490
		rcu_read_unlock();
1491
		err = -EPERM;
1492
		goto out;
1493
	}
1494
	rcu_read_unlock();
1495

1496 1497
 	err = security_task_movememory(task);
 	if (err)
1498
		goto out;
1499

1500 1501 1502 1503
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1504 1505 1506 1507 1508 1509 1510 1511
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1512 1513 1514

	mmput(mm);
	return err;
1515 1516 1517 1518

out:
	put_task_struct(task);
	return err;
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/*
 * Call migration functions in the vma_ops that may prepare
 * memory in a vm for migration. migration functions may perform
 * the migration for vmas that do not have an underlying page struct.
 */
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
	const nodemask_t *from, unsigned long flags)
{
 	struct vm_area_struct *vma;
 	int err = 0;

1532
	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1533 1534 1535 1536 1537 1538 1539 1540
 		if (vma->vm_ops && vma->vm_ops->migrate) {
 			err = vma->vm_ops->migrate(vma, to, from, flags);
 			if (err)
 				break;
 		}
 	}
 	return err;
}
1541 1542 1543 1544 1545 1546 1547

#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1548
				   unsigned long nr_migrate_pages)
1549 1550 1551 1552 1553 1554 1555 1556
{
	int z;
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

1557
		if (!zone_reclaimable(zone))
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

	newpage = alloc_pages_exact_node(nid,
1579 1580 1581
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1582
					 ~GFP_IOFS, 0);
1583

1584 1585 1586
	return newpage;
}

1587 1588 1589 1590
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
1591 1592 1593 1594
 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
 * as it is faults that reset the window, pte updates will happen unconditionally
 * if there has not been a fault since @pteupdate_interval_millisecs after the
 * throttle window closed.
1595 1596
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
1597
static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1598 1599
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/* Returns true if NUMA migration is currently rate limited */
bool migrate_ratelimited(int node)
{
	pg_data_t *pgdat = NODE_DATA(node);

	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
				msecs_to_jiffies(pteupdate_interval_millisecs)))
		return false;

	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
		return false;

	return true;
}

1615
/* Returns true if the node is migrate rate-limited after the update */
1616 1617
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1618
{
1619 1620 1621 1622 1623 1624
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1625
		spin_lock(&pgdat->numabalancing_migrate_lock);
1626 1627 1628
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1629
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1630
	}
1631 1632 1633
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1634
		return true;
1635
	}
1636 1637 1638 1639 1640 1641 1642 1643 1644

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1645 1646
}

1647
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1648
{
1649
	int page_lru;
1650

1651
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1652

1653
	/* Avoid migrating to a node that is nearly full */
1654 1655
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1656

1657 1658
	if (isolate_lru_page(page))
		return 0;
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1670 1671
	}

1672 1673 1674 1675
	page_lru = page_is_file_cache(page);
	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
				hpage_nr_pages(page));

1676
	/*
1677 1678 1679
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1680 1681
	 */
	put_page(page);
1682
	return 1;
1683 1684
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
{
	struct page *page = pmd_page(*pmd);
	wait_on_page_locked(page);
}

1697 1698 1699 1700 1701
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1702 1703
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1704 1705
{
	pg_data_t *pgdat = NODE_DATA(node);
1706
	int isolated;
1707 1708 1709 1710
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1711 1712
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1713
	 */
1714 1715
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1716 1717 1718 1719 1720 1721 1722
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1723
	if (numamigrate_update_ratelimit(pgdat, 1))
1724 1725 1726 1727 1728 1729 1730
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1731 1732
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1733
	if (nr_remaining) {
1734 1735 1736 1737 1738 1739
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
			dec_zone_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1740 1741 1742
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1743 1744
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1745 1746 1747 1748

out:
	put_page(page);
	return 0;
1749
}
1750
#endif /* CONFIG_NUMA_BALANCING */
1751

1752
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1753 1754 1755 1756
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1757 1758 1759 1760 1761 1762
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1763
	spinlock_t *ptl;
1764 1765 1766 1767 1768
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	struct mem_cgroup *memcg = NULL;
	int page_lru = page_is_file_cache(page);
1769 1770
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1771
	pmd_t orig_entry;
1772 1773 1774 1775 1776 1777

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1778
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1779 1780 1781
		goto out_dropref;

	new_page = alloc_pages_node(node,
1782 1783
		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
		HPAGE_PMD_ORDER);
1784 1785 1786
	if (!new_page)
		goto out_fail;

1787
	isolated = numamigrate_isolate_page(pgdat, page);
1788
	if (!isolated) {
1789
		put_page(new_page);
1790
		goto out_fail;
1791 1792
	}

1793 1794 1795
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	/* Prepare a page as a migration target */
	__set_page_locked(new_page);
	SetPageSwapBacked(new_page);

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1807
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1808
	ptl = pmd_lock(mm, pmd);
1809 1810
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1811
		spin_unlock(ptl);
1812
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);
		mlock_migrate_page(page, new_page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1824 1825
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1826
		putback_lru_page(page);
1827 1828
		mod_zone_page_state(page_zone(page),
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1829 1830

		goto out_unlock;
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	}

	/*
	 * Traditional migration needs to prepare the memcg charge
	 * transaction early to prevent the old page from being
	 * uncharged when installing migration entries.  Here we can
	 * save the potential rollback and start the charge transfer
	 * only when migration is already known to end successfully.
	 */
	mem_cgroup_prepare_migration(page, new_page, &memcg);

1842
	orig_entry = *pmd;
1843 1844
	entry = mk_pmd(new_page, vma->vm_page_prot);
	entry = pmd_mkhuge(entry);
1845
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1846

1847 1848 1849 1850 1851 1852 1853
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
1854
	flush_cache_range(vma, mmun_start, mmun_end);
1855
	page_add_anon_rmap(new_page, vma, mmun_start);
1856 1857 1858
	pmdp_clear_flush(vma, mmun_start, pmd);
	set_pmd_at(mm, mmun_start, pmd, entry);
	flush_tlb_range(vma, mmun_start, mmun_end);
1859
	update_mmu_cache_pmd(vma, address, &entry);
1860 1861

	if (page_count(page) != 2) {
1862 1863
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
		flush_tlb_range(vma, mmun_start, mmun_end);
1864 1865 1866 1867 1868
		update_mmu_cache_pmd(vma, address, &entry);
		page_remove_rmap(new_page);
		goto fail_putback;
	}

1869
	page_remove_rmap(page);
1870

1871 1872 1873 1874 1875 1876
	/*
	 * Finish the charge transaction under the page table lock to
	 * prevent split_huge_page() from dividing up the charge
	 * before it's fully transferred to the new page.
	 */
	mem_cgroup_end_migration(memcg, page, new_page, true);
1877
	spin_unlock(ptl);
1878
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1879

1880 1881 1882 1883
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

	mod_zone_page_state(page_zone(page),
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

1897 1898
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1899
out_dropref:
1900 1901 1902
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
		entry = pmd_mknonnuma(entry);
1903
		set_pmd_at(mm, mmun_start, pmd, entry);
1904 1905 1906
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
1907

1908
out_unlock:
1909
	unlock_page(page);
1910 1911 1912
	put_page(page);
	return 0;
}
1913 1914 1915
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */