migrate.c 47.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Memory Migration functionality - linux/mm/migration.c
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/memcontrol.h>
34
#include <linux/syscalls.h>
35
#include <linux/hugetlb.h>
36
#include <linux/hugetlb_cgroup.h>
37
#include <linux/gfp.h>
38
#include <linux/balloon_compaction.h>
39
#include <linux/mmu_notifier.h>
40

41 42
#include <asm/tlbflush.h>

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

46 47 48
#include "internal.h"

/*
49
 * migrate_prep() needs to be called before we start compiling a list of pages
50 51
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
52 53 54 55 56 57 58 59 60 61 62 63 64 65
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

66 67 68 69 70 71 72 73
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

74 75 76 77
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
78 79 80
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
81 82 83 84 85 86
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

87
	list_for_each_entry_safe(page, page2, l, lru) {
88 89 90 91
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
92
		list_del(&page->lru);
93
		dec_zone_page_state(page, NR_ISOLATED_ANON +
94
				page_is_file_cache(page));
95
		if (unlikely(isolated_balloon_page(page)))
96 97 98
			balloon_page_putback(page);
		else
			putback_lru_page(page);
99 100 101
	}
}

102 103 104
/*
 * Restore a potential migration pte to a working pte entry
 */
105 106
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
				 unsigned long addr, void *old)
107 108 109 110 111 112 113
{
	struct mm_struct *mm = vma->vm_mm;
	swp_entry_t entry;
 	pmd_t *pmd;
	pte_t *ptep, pte;
 	spinlock_t *ptl;

114 115 116 117
	if (unlikely(PageHuge(new))) {
		ptep = huge_pte_offset(mm, addr);
		if (!ptep)
			goto out;
118
		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119
	} else {
B
Bob Liu 已提交
120 121
		pmd = mm_find_pmd(mm, addr);
		if (!pmd)
122
			goto out;
123 124
		if (pmd_trans_huge(*pmd))
			goto out;
125

126
		ptep = pte_offset_map(pmd, addr);
127

128 129 130 131
		/*
		 * Peek to check is_swap_pte() before taking ptlock?  No, we
		 * can race mremap's move_ptes(), which skips anon_vma lock.
		 */
132 133 134

		ptl = pte_lockptr(mm, pmd);
	}
135 136 137 138

 	spin_lock(ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
139
		goto unlock;
140 141 142

	entry = pte_to_swp_entry(pte);

143 144 145
	if (!is_migration_entry(entry) ||
	    migration_entry_to_page(entry) != old)
		goto unlock;
146 147 148

	get_page(new);
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 150
	if (pte_swp_soft_dirty(*ptep))
		pte = pte_mksoft_dirty(pte);
151 152
	if (is_write_migration_entry(entry))
		pte = pte_mkwrite(pte);
153
#ifdef CONFIG_HUGETLB_PAGE
154
	if (PageHuge(new)) {
155
		pte = pte_mkhuge(pte);
156 157
		pte = arch_make_huge_pte(pte, vma, new, 0);
	}
158
#endif
159
	flush_dcache_page(new);
160
	set_pte_at(mm, addr, ptep, pte);
161

162 163 164 165 166 167
	if (PageHuge(new)) {
		if (PageAnon(new))
			hugepage_add_anon_rmap(new, vma, addr);
		else
			page_dup_rmap(new);
	} else if (PageAnon(new))
168 169 170 171 172
		page_add_anon_rmap(new, vma, addr);
	else
		page_add_file_rmap(new);

	/* No need to invalidate - it was non-present before */
173
	update_mmu_cache(vma, addr, ptep);
174
unlock:
175
	pte_unmap_unlock(ptep, ptl);
176 177
out:
	return SWAP_AGAIN;
178 179
}

180 181 182 183 184 185
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
static void remove_migration_ptes(struct page *old, struct page *new)
{
186 187 188 189 190 191
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

	rmap_walk(new, &rwc);
192 193
}

194 195 196 197 198
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
199 200
static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
				spinlock_t *ptl)
201
{
202
	pte_t pte;
203 204 205
	swp_entry_t entry;
	struct page *page;

206
	spin_lock(ptl);
207 208 209 210 211 212 213 214 215 216
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

217 218 219 220 221 222 223 224 225
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
226 227 228 229 230 231 232 233
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

234 235 236 237 238 239 240 241
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

242 243
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
244
{
245
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
246 247 248
	__migration_entry_wait(mm, pte, ptl);
}

249 250
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
251 252
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
253 254 255 256
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
257
	if (mode != MIGRATE_ASYNC) {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
293
							enum migrate_mode mode)
294 295 296 297 298
{
	return true;
}
#endif /* CONFIG_BLOCK */

299
/*
300
 * Replace the page in the mapping.
301 302 303 304
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
305
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
306
 */
307
int migrate_page_move_mapping(struct address_space *mapping,
308
		struct page *newpage, struct page *page,
309 310
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
311
{
312
	int expected_count = 1 + extra_count;
313
	void **pslot;
314

315
	if (!mapping) {
316
		/* Anonymous page without mapping */
317
		if (page_count(page) != expected_count)
318
			return -EAGAIN;
319
		return MIGRATEPAGE_SUCCESS;
320 321
	}

N
Nick Piggin 已提交
322
	spin_lock_irq(&mapping->tree_lock);
323

324 325
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
326

327
	expected_count += 1 + page_has_private(page);
328
	if (page_count(page) != expected_count ||
329
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
330
		spin_unlock_irq(&mapping->tree_lock);
331
		return -EAGAIN;
332 333
	}

334
	if (!page_freeze_refs(page, expected_count)) {
N
Nick Piggin 已提交
335
		spin_unlock_irq(&mapping->tree_lock);
336 337 338
		return -EAGAIN;
	}

339 340 341 342 343 344 345
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
346 347
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
348 349 350 351 352
		page_unfreeze_refs(page, expected_count);
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

353 354 355
	/*
	 * Now we know that no one else is looking at the page.
	 */
356
	get_page(newpage);	/* add cache reference */
357 358 359 360 361
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

362 363 364
	radix_tree_replace_slot(pslot, newpage);

	/*
365 366
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
367 368
	 * We know this isn't the last reference.
	 */
369
	page_unfreeze_refs(page, expected_count - 1);
370

371 372 373 374 375 376 377 378 379 380 381 382
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
	 * are mapped to swap space.
	 */
	__dec_zone_page_state(page, NR_FILE_PAGES);
	__inc_zone_page_state(newpage, NR_FILE_PAGES);
383
	if (!PageSwapCache(page) && PageSwapBacked(page)) {
384 385 386
		__dec_zone_page_state(page, NR_SHMEM);
		__inc_zone_page_state(newpage, NR_SHMEM);
	}
N
Nick Piggin 已提交
387
	spin_unlock_irq(&mapping->tree_lock);
388

389
	return MIGRATEPAGE_SUCCESS;
390 391
}

392 393 394 395 396 397 398 399 400 401 402 403 404
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	if (!mapping) {
		if (page_count(page) != 1)
			return -EAGAIN;
405
		return MIGRATEPAGE_SUCCESS;
406 407 408 409 410 411 412 413 414
	}

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
415
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
416 417 418 419 420 421 422 423 424 425 426 427 428
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	if (!page_freeze_refs(page, expected_count)) {
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	get_page(newpage);

	radix_tree_replace_slot(pslot, newpage);

429
	page_unfreeze_refs(page, expected_count - 1);
430 431

	spin_unlock_irq(&mapping->tree_lock);
432
	return MIGRATEPAGE_SUCCESS;
433 434
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

483 484 485
/*
 * Copy the page to its new location
 */
486
void migrate_page_copy(struct page *newpage, struct page *page)
487
{
488 489
	int cpupid;

490
	if (PageHuge(page) || PageTransHuge(page))
491 492 493
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
494 495 496 497 498 499 500

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
501
	if (TestClearPageActive(page)) {
502
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
503
		SetPageActive(newpage);
504 505
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
506 507 508 509 510 511 512
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
513 514 515 516 517
		/*
		 * Want to mark the page and the radix tree as dirty, and
		 * redo the accounting that clear_page_dirty_for_io undid,
		 * but we can't use set_page_dirty because that function
		 * is actually a signal that all of the page has become dirty.
L
Lucas De Marchi 已提交
518
		 * Whereas only part of our page may be dirty.
519
		 */
520 521 522 523
		if (PageSwapBacked(page))
			SetPageDirty(newpage);
		else
			__set_page_dirty_nobuffers(newpage);
524 525
 	}

526 527 528 529 530 531 532
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

533
	mlock_migrate_page(newpage, page);
534
	ksm_migrate_page(newpage, page);
535 536 537 538
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
539 540 541 542 543 544 545 546 547 548 549 550
	ClearPageSwapCache(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}

551 552 553 554
/************************************************************
 *                    Migration functions
 ***********************************************************/

555 556
/*
 * Common logic to directly migrate a single page suitable for
557
 * pages that do not use PagePrivate/PagePrivate2.
558 559 560
 *
 * Pages are locked upon entry and exit.
 */
561
int migrate_page(struct address_space *mapping,
562 563
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
564 565 566 567 568
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

569
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
570

571
	if (rc != MIGRATEPAGE_SUCCESS)
572 573 574
		return rc;

	migrate_page_copy(newpage, page);
575
	return MIGRATEPAGE_SUCCESS;
576 577 578
}
EXPORT_SYMBOL(migrate_page);

579
#ifdef CONFIG_BLOCK
580 581 582 583 584
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
585
int buffer_migrate_page(struct address_space *mapping,
586
		struct page *newpage, struct page *page, enum migrate_mode mode)
587 588 589 590 591
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
592
		return migrate_page(mapping, newpage, page, mode);
593 594 595

	head = page_buffers(page);

596
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
597

598
	if (rc != MIGRATEPAGE_SUCCESS)
599 600
		return rc;

601 602 603 604 605
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
606 607
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

634
	return MIGRATEPAGE_SUCCESS;
635 636
}
EXPORT_SYMBOL(buffer_migrate_page);
637
#endif
638

639 640 641 642
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
643
{
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

661
	/*
662 663 664 665 666 667
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
668
	 */
669
	remove_migration_ptes(page, page);
670

671
	rc = mapping->a_ops->writepage(page, &wbc);
672

673 674 675 676
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

677
	return (rc < 0) ? -EIO : -EAGAIN;
678 679 680 681 682 683
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
684
	struct page *newpage, struct page *page, enum migrate_mode mode)
685
{
686
	if (PageDirty(page)) {
687 688
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
689
			return -EBUSY;
690
		return writeout(mapping, page);
691
	}
692 693 694 695 696

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
697
	if (page_has_private(page) &&
698 699 700
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

701
	return migrate_page(mapping, newpage, page, mode);
702 703
}

704 705 706 707 708 709
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
710 711 712
 *
 * Return value:
 *   < 0 - error code
713
 *  MIGRATEPAGE_SUCCESS - success
714
 */
715
static int move_to_new_page(struct page *newpage, struct page *page,
716
				int remap_swapcache, enum migrate_mode mode)
717 718 719 720 721 722 723 724 725
{
	struct address_space *mapping;
	int rc;

	/*
	 * Block others from accessing the page when we get around to
	 * establishing additional references. We are the only one
	 * holding a reference to the new page at this point.
	 */
N
Nick Piggin 已提交
726
	if (!trylock_page(newpage))
727 728 729 730 731
		BUG();

	/* Prepare mapping for the new page.*/
	newpage->index = page->index;
	newpage->mapping = page->mapping;
732 733
	if (PageSwapBacked(page))
		SetPageSwapBacked(newpage);
734 735 736

	mapping = page_mapping(page);
	if (!mapping)
737
		rc = migrate_page(mapping, newpage, page, mode);
738
	else if (mapping->a_ops->migratepage)
739
		/*
740 741 742 743
		 * Most pages have a mapping and most filesystems provide a
		 * migratepage callback. Anonymous pages are part of swap
		 * space which also has its own migratepage callback. This
		 * is the most common path for page migration.
744
		 */
745
		rc = mapping->a_ops->migratepage(mapping,
746
						newpage, page, mode);
747
	else
748
		rc = fallback_migrate_page(mapping, newpage, page, mode);
749

750
	if (rc != MIGRATEPAGE_SUCCESS) {
751
		newpage->mapping = NULL;
752 753 754
	} else {
		if (remap_swapcache)
			remove_migration_ptes(page, newpage);
755
		page->mapping = NULL;
756
	}
757 758 759 760 761 762

	unlock_page(newpage);

	return rc;
}

763
static int __unmap_and_move(struct page *page, struct page *newpage,
764
				int force, enum migrate_mode mode)
765
{
766
	int rc = -EAGAIN;
767
	int remap_swapcache = 1;
768
	struct mem_cgroup *mem;
769
	struct anon_vma *anon_vma = NULL;
770

N
Nick Piggin 已提交
771
	if (!trylock_page(page)) {
772
		if (!force || mode == MIGRATE_ASYNC)
773
			goto out;
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
789
			goto out;
790

791 792 793
		lock_page(page);
	}

794
	/* charge against new page */
795
	mem_cgroup_prepare_migration(page, newpage, &mem);
796

797
	if (PageWriteback(page)) {
798
		/*
799
		 * Only in the case of a full synchronous migration is it
800 801 802
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
803
		 */
804
		if (mode != MIGRATE_SYNC) {
805 806 807 808
			rc = -EBUSY;
			goto uncharge;
		}
		if (!force)
809
			goto uncharge;
810 811 812
		wait_on_page_writeback(page);
	}
	/*
813 814
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
815
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
816
	 * of migration. File cache pages are no problem because of page_lock()
817 818
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
819
	 */
820
	if (PageAnon(page) && !PageKsm(page)) {
821
		/*
822
		 * Only page_lock_anon_vma_read() understands the subtleties of
823 824
		 * getting a hold on an anon_vma from outside one of its mms.
		 */
825
		anon_vma = page_get_anon_vma(page);
826 827
		if (anon_vma) {
			/*
828
			 * Anon page
829 830
			 */
		} else if (PageSwapCache(page)) {
831 832 833 834 835 836 837 838 839 840 841 842 843 844
			/*
			 * We cannot be sure that the anon_vma of an unmapped
			 * swapcache page is safe to use because we don't
			 * know in advance if the VMA that this page belonged
			 * to still exists. If the VMA and others sharing the
			 * data have been freed, then the anon_vma could
			 * already be invalid.
			 *
			 * To avoid this possibility, swapcache pages get
			 * migrated but are not remapped when migration
			 * completes
			 */
			remap_swapcache = 0;
		} else {
845
			goto uncharge;
846
		}
847
	}
848

849 850 851 852 853 854 855 856 857 858 859 860
	if (unlikely(balloon_page_movable(page))) {
		/*
		 * A ballooned page does not need any special attention from
		 * physical to virtual reverse mapping procedures.
		 * Skip any attempt to unmap PTEs or to remap swap cache,
		 * in order to avoid burning cycles at rmap level, and perform
		 * the page migration right away (proteced by page lock).
		 */
		rc = balloon_page_migrate(newpage, page, mode);
		goto uncharge;
	}

861
	/*
862 863 864 865 866 867 868 869 870 871
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
872
	 */
873
	if (!page->mapping) {
874
		VM_BUG_ON_PAGE(PageAnon(page), page);
875
		if (page_has_private(page)) {
876
			try_to_free_buffers(page);
877
			goto uncharge;
878
		}
879
		goto skip_unmap;
880 881
	}

882
	/* Establish migration ptes or remove ptes */
883
	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
884

885
skip_unmap:
886
	if (!page_mapped(page))
887
		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
888

889
	if (rc && remap_swapcache)
890
		remove_migration_ptes(page, page);
891 892

	/* Drop an anon_vma reference if we took one */
893
	if (anon_vma)
894
		put_anon_vma(anon_vma);
895

896
uncharge:
897 898 899
	mem_cgroup_end_migration(mem, page, newpage,
				 (rc == MIGRATEPAGE_SUCCESS ||
				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
900
	unlock_page(page);
901 902 903
out:
	return rc;
}
904

905 906 907 908 909
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
910
			struct page *page, int force, enum migrate_mode mode)
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
{
	int rc = 0;
	int *result = NULL;
	struct page *newpage = get_new_page(page, private, &result);

	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
		goto out;
	}

	if (unlikely(PageTransHuge(page)))
		if (unlikely(split_huge_page(page)))
			goto out;

928
	rc = __unmap_and_move(page, newpage, force, mode);
929 930 931 932 933 934 935 936 937 938 939 940

	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
		/*
		 * A ballooned page has been migrated already.
		 * Now, it's the time to wrap-up counters,
		 * handle the page back to Buddy and return.
		 */
		dec_zone_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_cache(page));
		balloon_page_free(page);
		return MIGRATEPAGE_SUCCESS;
	}
941
out:
942
	if (rc != -EAGAIN) {
943 944 945 946 947 948 949
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
950
		dec_zone_page_state(page, NR_ISOLATED_ANON +
951
				page_is_file_cache(page));
952
		putback_lru_page(page);
953
	}
954 955 956 957
	/*
	 * Move the new page to the LRU. If migration was not successful
	 * then this will free the page.
	 */
958
	putback_lru_page(newpage);
959 960 961 962 963 964
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
965 966 967
	return rc;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
				unsigned long private, struct page *hpage,
988
				int force, enum migrate_mode mode)
989 990 991
{
	int rc = 0;
	int *result = NULL;
992
	struct page *new_hpage;
993 994
	struct anon_vma *anon_vma = NULL;

995 996 997 998 999 1000 1001
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1002 1003
	if (!hugepage_migration_support(page_hstate(hpage))) {
		putback_active_hugepage(hpage);
1004
		return -ENOSYS;
1005
	}
1006

1007
	new_hpage = get_new_page(hpage, private, &result);
1008 1009 1010 1011 1012 1013
	if (!new_hpage)
		return -ENOMEM;

	rc = -EAGAIN;

	if (!trylock_page(hpage)) {
1014
		if (!force || mode != MIGRATE_SYNC)
1015 1016 1017 1018
			goto out;
		lock_page(hpage);
	}

1019 1020
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
1021 1022 1023 1024

	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);

	if (!page_mapped(hpage))
1025
		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1026 1027 1028 1029

	if (rc)
		remove_migration_ptes(hpage, hpage);

H
Hugh Dickins 已提交
1030
	if (anon_vma)
1031
		put_anon_vma(anon_vma);
1032 1033 1034 1035

	if (!rc)
		hugetlb_cgroup_migrate(hpage, new_hpage);

1036
	unlock_page(hpage);
1037
out:
1038 1039
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	put_page(new_hpage);
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

1050
/*
1051 1052
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
1053
 *
1054 1055 1056 1057 1058 1059 1060
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
1061
 *
1062 1063 1064
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
 * The caller should call putback_lru_pages() to return pages to the LRU
1065
 * or free list only if ret != 0.
1066
 *
1067
 * Returns the number of pages that were not migrated, or an error code.
1068
 */
1069 1070
int migrate_pages(struct list_head *from, new_page_t get_new_page,
		unsigned long private, enum migrate_mode mode, int reason)
1071
{
1072
	int retry = 1;
1073
	int nr_failed = 0;
1074
	int nr_succeeded = 0;
1075 1076 1077 1078 1079 1080 1081 1082 1083
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1084 1085
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
1086

1087 1088
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1089

1090 1091 1092 1093 1094
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
						private, page, pass > 2, mode);
			else
				rc = unmap_and_move(get_new_page, private,
1095
						page, pass > 2, mode);
1096

1097
			switch(rc) {
1098 1099
			case -ENOMEM:
				goto out;
1100
			case -EAGAIN:
1101
				retry++;
1102
				break;
1103
			case MIGRATEPAGE_SUCCESS:
1104
				nr_succeeded++;
1105 1106
				break;
			default:
1107 1108 1109 1110 1111 1112
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1113
				nr_failed++;
1114
				break;
1115
			}
1116 1117
		}
	}
1118
	rc = nr_failed + retry;
1119
out:
1120 1121 1122 1123
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1124 1125
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

1126 1127 1128
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1129
	return rc;
1130
}
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1156 1157 1158 1159 1160
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
		return alloc_pages_exact_node(pm->node,
1161
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1162 1163 1164 1165 1166 1167
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1168
 * The pm array ends with node = MAX_NUMNODES.
1169
 */
1170 1171 1172
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1189
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1190 1191
			goto set_status;

1192
		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1193 1194 1195 1196 1197

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1198 1199 1200 1201
		err = -ENOENT;
		if (!page)
			goto set_status;

1202
		/* Use PageReserved to check for zero page */
1203
		if (PageReserved(page))
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
			goto put_and_set;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1220 1221 1222 1223 1224
		if (PageHuge(page)) {
			isolate_huge_page(page, &pagelist);
			goto put_and_set;
		}

1225
		err = isolate_lru_page(page);
1226
		if (!err) {
1227
			list_add_tail(&page->lru, &pagelist);
1228 1229 1230
			inc_zone_page_state(page, NR_ISOLATED_ANON +
					    page_is_file_cache(page));
		}
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1242
	err = 0;
1243
	if (!list_empty(&pagelist)) {
1244
		err = migrate_pages(&pagelist, new_page_node,
1245
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1246
		if (err)
1247
			putback_movable_pages(&pagelist);
1248
	}
1249 1250 1251 1252 1253

	up_read(&mm->mmap_sem);
	return err;
}

1254 1255 1256 1257
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1258
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1259 1260 1261 1262 1263
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1264 1265 1266 1267
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1268

1269 1270 1271
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1272
		goto out;
1273 1274 1275

	migrate_prep();

1276
	/*
1277 1278
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1279
	 */
1280
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1281

1282 1283 1284 1285
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1286

1287 1288 1289 1290 1291 1292
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1293 1294
			int node;

1295 1296 1297 1298 1299 1300
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1301 1302 1303
				goto out_pm;

			err = -ENODEV;
1304 1305 1306
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1307
			if (!node_state(node, N_MEMORY))
1308 1309 1310 1311 1312 1313
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1325 1326

		/* Return status information */
1327 1328
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1329
				err = -EFAULT;
1330 1331 1332 1333
				goto out_pm;
			}
	}
	err = 0;
1334 1335

out_pm:
1336
	free_page((unsigned long)pm);
1337 1338 1339 1340
out:
	return err;
}

1341
/*
1342
 * Determine the nodes of an array of pages and store it in an array of status.
1343
 */
1344 1345
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1346
{
1347 1348
	unsigned long i;

1349 1350
	down_read(&mm->mmap_sem);

1351
	for (i = 0; i < nr_pages; i++) {
1352
		unsigned long addr = (unsigned long)(*pages);
1353 1354
		struct vm_area_struct *vma;
		struct page *page;
1355
		int err = -EFAULT;
1356 1357

		vma = find_vma(mm, addr);
1358
		if (!vma || addr < vma->vm_start)
1359 1360
			goto set_status;

1361
		page = follow_page(vma, addr, 0);
1362 1363 1364 1365 1366

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1367 1368
		err = -ENOENT;
		/* Use PageReserved to check for zero page */
1369
		if (!page || PageReserved(page))
1370 1371 1372 1373
			goto set_status;

		err = page_to_nid(page);
set_status:
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1395 1396
	while (nr_pages) {
		unsigned long chunk_nr;
1397

1398 1399 1400 1401 1402 1403
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1404 1405 1406

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1407 1408
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1409

1410 1411 1412 1413 1414
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1415 1416 1417 1418 1419 1420
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1421 1422 1423 1424
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1425
{
1426
	const struct cred *cred = current_cred(), *tcred;
1427 1428
	struct task_struct *task;
	struct mm_struct *mm;
1429
	int err;
1430
	nodemask_t task_nodes;
1431 1432 1433 1434 1435 1436 1437 1438 1439

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1440
	rcu_read_lock();
1441
	task = pid ? find_task_by_vpid(pid) : current;
1442
	if (!task) {
1443
		rcu_read_unlock();
1444 1445
		return -ESRCH;
	}
1446
	get_task_struct(task);
1447 1448 1449 1450 1451 1452 1453

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1454
	tcred = __task_cred(task);
1455 1456
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1457
	    !capable(CAP_SYS_NICE)) {
1458
		rcu_read_unlock();
1459
		err = -EPERM;
1460
		goto out;
1461
	}
1462
	rcu_read_unlock();
1463

1464 1465
 	err = security_task_movememory(task);
 	if (err)
1466
		goto out;
1467

1468 1469 1470 1471
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1472 1473 1474 1475 1476 1477 1478 1479
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1480 1481 1482

	mmput(mm);
	return err;
1483 1484 1485 1486

out:
	put_task_struct(task);
	return err;
1487 1488
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
/*
 * Call migration functions in the vma_ops that may prepare
 * memory in a vm for migration. migration functions may perform
 * the migration for vmas that do not have an underlying page struct.
 */
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
	const nodemask_t *from, unsigned long flags)
{
 	struct vm_area_struct *vma;
 	int err = 0;

1500
	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1501 1502 1503 1504 1505 1506 1507 1508
 		if (vma->vm_ops && vma->vm_ops->migrate) {
 			err = vma->vm_ops->migrate(vma, to, from, flags);
 			if (err)
 				break;
 		}
 	}
 	return err;
}
1509 1510 1511 1512 1513 1514 1515

#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1516
				   unsigned long nr_migrate_pages)
1517 1518 1519 1520 1521 1522 1523 1524
{
	int z;
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

1525
		if (!zone_reclaimable(zone))
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

	newpage = alloc_pages_exact_node(nid,
1547 1548 1549
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1550
					 ~GFP_IOFS, 0);
1551

1552 1553 1554
	return newpage;
}

1555 1556 1557 1558
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
1559 1560 1561 1562
 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
 * as it is faults that reset the window, pte updates will happen unconditionally
 * if there has not been a fault since @pteupdate_interval_millisecs after the
 * throttle window closed.
1563 1564
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
1565
static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1566 1567
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/* Returns true if NUMA migration is currently rate limited */
bool migrate_ratelimited(int node)
{
	pg_data_t *pgdat = NODE_DATA(node);

	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
				msecs_to_jiffies(pteupdate_interval_millisecs)))
		return false;

	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
		return false;

	return true;
}

1583
/* Returns true if the node is migrate rate-limited after the update */
1584 1585
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1586
{
1587 1588 1589 1590 1591 1592
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1593
		spin_lock(&pgdat->numabalancing_migrate_lock);
1594 1595 1596
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1597
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1598
	}
1599 1600 1601
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1602
		return true;
1603
	}
1604 1605 1606 1607 1608 1609 1610 1611 1612

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1613 1614
}

1615
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1616
{
1617
	int page_lru;
1618

1619
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1620

1621
	/* Avoid migrating to a node that is nearly full */
1622 1623
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1624

1625 1626
	if (isolate_lru_page(page))
		return 0;
1627

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1638 1639
	}

1640 1641 1642 1643
	page_lru = page_is_file_cache(page);
	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
				hpage_nr_pages(page));

1644
	/*
1645 1646 1647
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1648 1649
	 */
	put_page(page);
1650
	return 1;
1651 1652
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
{
	struct page *page = pmd_page(*pmd);
	wait_on_page_locked(page);
}

1665 1666 1667 1668 1669
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1670 1671
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1672 1673
{
	pg_data_t *pgdat = NODE_DATA(node);
1674
	int isolated;
1675 1676 1677 1678
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1679 1680
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1681
	 */
1682 1683
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1684 1685 1686 1687 1688 1689 1690
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1691
	if (numamigrate_update_ratelimit(pgdat, 1))
1692 1693 1694 1695 1696 1697 1698
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1699 1700
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1701
	if (nr_remaining) {
1702 1703 1704 1705 1706 1707
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
			dec_zone_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1708 1709 1710
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1711 1712
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1713 1714 1715 1716

out:
	put_page(page);
	return 0;
1717
}
1718
#endif /* CONFIG_NUMA_BALANCING */
1719

1720
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1721 1722 1723 1724
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1725 1726 1727 1728 1729 1730
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1731
	spinlock_t *ptl;
1732 1733 1734 1735 1736
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	struct mem_cgroup *memcg = NULL;
	int page_lru = page_is_file_cache(page);
1737 1738
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1739
	pmd_t orig_entry;
1740 1741 1742 1743 1744 1745

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1746
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1747 1748 1749
		goto out_dropref;

	new_page = alloc_pages_node(node,
1750 1751
		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
		HPAGE_PMD_ORDER);
1752 1753 1754
	if (!new_page)
		goto out_fail;

1755
	isolated = numamigrate_isolate_page(pgdat, page);
1756
	if (!isolated) {
1757
		put_page(new_page);
1758
		goto out_fail;
1759 1760
	}

1761 1762 1763
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	/* Prepare a page as a migration target */
	__set_page_locked(new_page);
	SetPageSwapBacked(new_page);

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1775
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1776
	ptl = pmd_lock(mm, pmd);
1777 1778
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1779
		spin_unlock(ptl);
1780
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);
		mlock_migrate_page(page, new_page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1792 1793
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1794
		putback_lru_page(page);
1795 1796
		mod_zone_page_state(page_zone(page),
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1797 1798

		goto out_unlock;
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	}

	/*
	 * Traditional migration needs to prepare the memcg charge
	 * transaction early to prevent the old page from being
	 * uncharged when installing migration entries.  Here we can
	 * save the potential rollback and start the charge transfer
	 * only when migration is already known to end successfully.
	 */
	mem_cgroup_prepare_migration(page, new_page, &memcg);

1810
	orig_entry = *pmd;
1811 1812
	entry = mk_pmd(new_page, vma->vm_page_prot);
	entry = pmd_mkhuge(entry);
1813
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1814

1815 1816 1817 1818 1819 1820 1821
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
1822 1823 1824 1825 1826
	flush_cache_range(vma, mmun_start, mmun_end);
	page_add_new_anon_rmap(new_page, vma, mmun_start);
	pmdp_clear_flush(vma, mmun_start, pmd);
	set_pmd_at(mm, mmun_start, pmd, entry);
	flush_tlb_range(vma, mmun_start, mmun_end);
1827
	update_mmu_cache_pmd(vma, address, &entry);
1828 1829

	if (page_count(page) != 2) {
1830 1831
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
		flush_tlb_range(vma, mmun_start, mmun_end);
1832 1833 1834 1835 1836
		update_mmu_cache_pmd(vma, address, &entry);
		page_remove_rmap(new_page);
		goto fail_putback;
	}

1837
	page_remove_rmap(page);
1838

1839 1840 1841 1842 1843 1844
	/*
	 * Finish the charge transaction under the page table lock to
	 * prevent split_huge_page() from dividing up the charge
	 * before it's fully transferred to the new page.
	 */
	mem_cgroup_end_migration(memcg, page, new_page, true);
1845
	spin_unlock(ptl);
1846
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

	mod_zone_page_state(page_zone(page),
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

1861 1862
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1863
out_dropref:
1864 1865 1866
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
		entry = pmd_mknonnuma(entry);
1867
		set_pmd_at(mm, mmun_start, pmd, entry);
1868 1869 1870
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
1871

1872
out_unlock:
1873
	unlock_page(page);
1874 1875 1876
	put_page(page);
	return 0;
}
1877 1878 1879
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
新手
引导
客服 返回
顶部