blk-core.c 36.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6
/*
 * Copyright (C) 1991, 1992 Linus Torvalds
 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 8
 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
 *	-  July2000
L
Linus Torvalds 已提交
9 10 11 12 13 14 15 16 17 18
 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
 */

/*
 * This handles all read/write requests to block devices
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
19
#include <linux/blk-pm.h>
20
#include <linux/blk-integrity.h>
L
Linus Torvalds 已提交
21 22
#include <linux/highmem.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
31
#include <linux/task_io_accounting_ops.h>
32
#include <linux/fault-inject.h>
33
#include <linux/list_sort.h>
T
Tejun Heo 已提交
34
#include <linux/delay.h>
35
#include <linux/ratelimit.h>
L
Lin Ming 已提交
36
#include <linux/pm_runtime.h>
37
#include <linux/blk-cgroup.h>
38
#include <linux/t10-pi.h>
39
#include <linux/debugfs.h>
40
#include <linux/bpf.h>
41
#include <linux/psi.h>
42
#include <linux/part_stat.h>
43
#include <linux/sched/sysctl.h>
44
#include <linux/blk-crypto.h>
45 46 47

#define CREATE_TRACE_POINTS
#include <trace/events/block.h>
L
Linus Torvalds 已提交
48

49
#include "blk.h"
50
#include "blk-mq-sched.h"
51
#include "blk-pm.h"
52
#include "blk-throttle.h"
53

54 55
struct dentry *blk_debugfs_root;

56
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
K
Keith Busch 已提交
59
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
N
NeilBrown 已提交
60
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62

63 64
DEFINE_IDA(blk_queue_ida);

L
Linus Torvalds 已提交
65 66 67
/*
 * For queue allocation
 */
68
struct kmem_cache *blk_requestq_cachep;
69
struct kmem_cache *blk_requestq_srcu_cachep;
L
Linus Torvalds 已提交
70 71 72 73

/*
 * Controlling structure to kblockd
 */
74
static struct workqueue_struct *kblockd_workqueue;
L
Linus Torvalds 已提交
75

76 77 78 79 80 81 82
/**
 * blk_queue_flag_set - atomically set a queue flag
 * @flag: flag to be set
 * @q: request queue
 */
void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
{
83
	set_bit(flag, &q->queue_flags);
84 85 86 87 88 89 90 91 92 93
}
EXPORT_SYMBOL(blk_queue_flag_set);

/**
 * blk_queue_flag_clear - atomically clear a queue flag
 * @flag: flag to be cleared
 * @q: request queue
 */
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
{
94
	clear_bit(flag, &q->queue_flags);
95 96 97 98 99 100 101 102 103 104 105 106 107
}
EXPORT_SYMBOL(blk_queue_flag_clear);

/**
 * blk_queue_flag_test_and_set - atomically test and set a queue flag
 * @flag: flag to be set
 * @q: request queue
 *
 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 * the flag was already set.
 */
bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
{
108
	return test_and_set_bit(flag, &q->queue_flags);
109 110 111
}
EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);

112 113 114 115 116 117 118 119
#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
static const char *const blk_op_name[] = {
	REQ_OP_NAME(READ),
	REQ_OP_NAME(WRITE),
	REQ_OP_NAME(FLUSH),
	REQ_OP_NAME(DISCARD),
	REQ_OP_NAME(SECURE_ERASE),
	REQ_OP_NAME(ZONE_RESET),
120
	REQ_OP_NAME(ZONE_RESET_ALL),
121 122 123
	REQ_OP_NAME(ZONE_OPEN),
	REQ_OP_NAME(ZONE_CLOSE),
	REQ_OP_NAME(ZONE_FINISH),
124
	REQ_OP_NAME(ZONE_APPEND),
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	REQ_OP_NAME(WRITE_SAME),
	REQ_OP_NAME(WRITE_ZEROES),
	REQ_OP_NAME(DRV_IN),
	REQ_OP_NAME(DRV_OUT),
};
#undef REQ_OP_NAME

/**
 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 * @op: REQ_OP_XXX.
 *
 * Description: Centralize block layer function to convert REQ_OP_XXX into
 * string format. Useful in the debugging and tracing bio or request. For
 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 */
inline const char *blk_op_str(unsigned int op)
{
	const char *op_str = "UNKNOWN";

	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
		op_str = blk_op_name[op];

	return op_str;
}
EXPORT_SYMBOL_GPL(blk_op_str);

151 152 153 154 155 156 157 158 159 160 161 162 163 164
static const struct {
	int		errno;
	const char	*name;
} blk_errors[] = {
	[BLK_STS_OK]		= { 0,		"" },
	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
165
	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
166
	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
167

168 169 170
	/* device mapper special case, should not leak out: */
	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },

171 172 173 174
	/* zone device specific errors */
	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	/* everything else not covered above: */
	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
};

blk_status_t errno_to_blk_status(int errno)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
		if (blk_errors[i].errno == errno)
			return (__force blk_status_t)i;
	}

	return BLK_STS_IOERR;
}
EXPORT_SYMBOL_GPL(errno_to_blk_status);

int blk_status_to_errno(blk_status_t status)
{
	int idx = (__force int)status;

196
	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197 198 199 200 201
		return -EIO;
	return blk_errors[idx].errno;
}
EXPORT_SYMBOL_GPL(blk_status_to_errno);

202
const char *blk_status_to_str(blk_status_t status)
203 204 205
{
	int idx = (__force int)status;

206
	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
207 208
		return "<null>";
	return blk_errors[idx].name;
209 210
}

L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219
/**
 * blk_sync_queue - cancel any pending callbacks on a queue
 * @q: the queue
 *
 * Description:
 *     The block layer may perform asynchronous callback activity
 *     on a queue, such as calling the unplug function after a timeout.
 *     A block device may call blk_sync_queue to ensure that any
 *     such activity is cancelled, thus allowing it to release resources
220
 *     that the callbacks might use. The caller must already have made sure
221
 *     that its ->submit_bio will not re-add plugging prior to calling
L
Linus Torvalds 已提交
222 223
 *     this function.
 *
224
 *     This function does not cancel any asynchronous activity arising
225
 *     out of elevator or throttling code. That would require elevator_exit()
226
 *     and blkcg_exit_queue() to be called with queue lock initialized.
227
 *
L
Linus Torvalds 已提交
228 229 230
 */
void blk_sync_queue(struct request_queue *q)
{
231
	del_timer_sync(&q->timeout);
232
	cancel_work_sync(&q->timeout_work);
L
Linus Torvalds 已提交
233 234 235
}
EXPORT_SYMBOL(blk_sync_queue);

236
/**
237
 * blk_set_pm_only - increment pm_only counter
238 239
 * @q: request queue pointer
 */
240
void blk_set_pm_only(struct request_queue *q)
241
{
242
	atomic_inc(&q->pm_only);
243
}
244
EXPORT_SYMBOL_GPL(blk_set_pm_only);
245

246
void blk_clear_pm_only(struct request_queue *q)
247
{
248 249 250 251 252 253
	int pm_only;

	pm_only = atomic_dec_return(&q->pm_only);
	WARN_ON_ONCE(pm_only < 0);
	if (pm_only == 0)
		wake_up_all(&q->mq_freeze_wq);
254
}
255
EXPORT_SYMBOL_GPL(blk_clear_pm_only);
256

257 258 259 260 261 262
/**
 * blk_put_queue - decrement the request_queue refcount
 * @q: the request_queue structure to decrement the refcount for
 *
 * Decrements the refcount of the request_queue kobject. When this reaches 0
 * we'll have blk_release_queue() called.
263 264 265
 *
 * Context: Any context, but the last reference must not be dropped from
 *          atomic context.
266
 */
267
void blk_put_queue(struct request_queue *q)
268 269 270
{
	kobject_put(&q->kobj);
}
J
Jens Axboe 已提交
271
EXPORT_SYMBOL(blk_put_queue);
272

273
void blk_queue_start_drain(struct request_queue *q)
274
{
275 276 277 278 279 280
	/*
	 * When queue DYING flag is set, we need to block new req
	 * entering queue, so we call blk_freeze_queue_start() to
	 * prevent I/O from crossing blk_queue_enter().
	 */
	blk_freeze_queue_start(q);
J
Jens Axboe 已提交
281
	if (queue_is_mq(q))
282
		blk_mq_wake_waiters(q);
283 284
	/* Make blk_queue_enter() reexamine the DYING flag. */
	wake_up_all(&q->mq_freeze_wq);
285
}
286 287 288 289 290 291

void blk_set_queue_dying(struct request_queue *q)
{
	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
	blk_queue_start_drain(q);
}
292 293
EXPORT_SYMBOL_GPL(blk_set_queue_dying);

294 295 296 297
/**
 * blk_cleanup_queue - shutdown a request queue
 * @q: request queue to shutdown
 *
298 299
 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 * put it.  All future requests will be failed immediately with -ENODEV.
300 301
 *
 * Context: can sleep
302
 */
303
void blk_cleanup_queue(struct request_queue *q)
304
{
305 306 307
	/* cannot be called from atomic context */
	might_sleep();

308 309
	WARN_ON_ONCE(blk_queue_registered(q));

B
Bart Van Assche 已提交
310
	/* mark @q DYING, no new request or merges will be allowed afterwards */
311
	blk_set_queue_dying(q);
312

313 314
	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
315

316 317
	/*
	 * Drain all requests queued before DYING marking. Set DEAD flag to
318 319
	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
	 * after draining finished.
320
	 */
321
	blk_freeze_queue(q);
322

323
	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
324 325

	blk_sync_queue(q);
326 327
	if (queue_is_mq(q)) {
		blk_mq_cancel_work_sync(q);
328
		blk_mq_exit_queue(q);
329
	}
J
Jens Axboe 已提交
330

331 332 333 334 335 336 337 338 339 340
	/*
	 * In theory, request pool of sched_tags belongs to request queue.
	 * However, the current implementation requires tag_set for freeing
	 * requests, so free the pool now.
	 *
	 * Queue has become frozen, there can't be any in-queue requests, so
	 * it is safe to free requests now.
	 */
	mutex_lock(&q->sysfs_lock);
	if (q->elevator)
341
		blk_mq_sched_free_rqs(q);
342 343
	mutex_unlock(&q->sysfs_lock);

344
	percpu_ref_exit(&q->q_usage_counter);
B
Bart Van Assche 已提交
345

346
	/* @q is and will stay empty, shutdown and put */
347 348
	blk_put_queue(q);
}
L
Linus Torvalds 已提交
349 350
EXPORT_SYMBOL(blk_cleanup_queue);

351 352 353
/**
 * blk_queue_enter() - try to increase q->q_usage_counter
 * @q: request queue pointer
354
 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
355
 */
356
int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
357
{
358
	const bool pm = flags & BLK_MQ_REQ_PM;
359

360
	while (!blk_try_enter_queue(q, pm)) {
361
		if (flags & BLK_MQ_REQ_NOWAIT)
362 363
			return -EBUSY;

364
		/*
365 366 367 368 369
		 * read pair of barrier in blk_freeze_queue_start(), we need to
		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
		 * reading .mq_freeze_depth or queue dying flag, otherwise the
		 * following wait may never return if the two reads are
		 * reordered.
370 371
		 */
		smp_rmb();
372
		wait_event(q->mq_freeze_wq,
373
			   (!q->mq_freeze_depth &&
374
			    blk_pm_resume_queue(pm, q)) ||
375
			   blk_queue_dying(q));
376 377 378
		if (blk_queue_dying(q))
			return -ENODEV;
	}
379 380

	return 0;
381 382
}

383
int __bio_queue_enter(struct request_queue *q, struct bio *bio)
384
{
385
	while (!blk_try_enter_queue(q, false)) {
386 387
		struct gendisk *disk = bio->bi_bdev->bd_disk;

388
		if (bio->bi_opf & REQ_NOWAIT) {
389
			if (test_bit(GD_DEAD, &disk->state))
390
				goto dead;
391
			bio_wouldblock_error(bio);
392 393 394 395 396 397 398 399 400 401 402 403 404 405
			return -EBUSY;
		}

		/*
		 * read pair of barrier in blk_freeze_queue_start(), we need to
		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
		 * reading .mq_freeze_depth or queue dying flag, otherwise the
		 * following wait may never return if the two reads are
		 * reordered.
		 */
		smp_rmb();
		wait_event(q->mq_freeze_wq,
			   (!q->mq_freeze_depth &&
			    blk_pm_resume_queue(false, q)) ||
406 407
			   test_bit(GD_DEAD, &disk->state));
		if (test_bit(GD_DEAD, &disk->state))
408
			goto dead;
409 410
	}

411 412 413 414
	return 0;
dead:
	bio_io_error(bio);
	return -ENODEV;
415 416
}

417 418 419 420 421 422 423 424 425 426 427 428 429
void blk_queue_exit(struct request_queue *q)
{
	percpu_ref_put(&q->q_usage_counter);
}

static void blk_queue_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, q_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
}

430
static void blk_rq_timed_out_timer(struct timer_list *t)
431
{
432
	struct request_queue *q = from_timer(q, t, timeout);
433 434 435 436

	kblockd_schedule_work(&q->timeout_work);
}

437 438 439 440
static void blk_timeout_work(struct work_struct *work)
{
}

441
struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
442
{
443
	struct request_queue *q;
444
	int ret;
445

446 447
	q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
			GFP_KERNEL | __GFP_ZERO, node_id);
L
Linus Torvalds 已提交
448 449 450
	if (!q)
		return NULL;

451 452 453 454 455 456
	if (alloc_srcu) {
		blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
		if (init_srcu_struct(q->srcu) != 0)
			goto fail_q;
	}

457 458
	q->last_merge = NULL;

459
	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
460
	if (q->id < 0)
461
		goto fail_srcu;
462

463
	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
464
	if (ret)
465 466
		goto fail_id;

467 468
	q->stats = blk_alloc_queue_stats();
	if (!q->stats)
469
		goto fail_split;
470

471
	q->node = node_id;
472

473
	atomic_set(&q->nr_active_requests_shared_tags, 0);
474

475
	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
476
	INIT_WORK(&q->timeout_work, blk_timeout_work);
477
	INIT_LIST_HEAD(&q->icq_list);
478
#ifdef CONFIG_BLK_CGROUP
479
	INIT_LIST_HEAD(&q->blkg_list);
480
#endif
481

482
	kobject_init(&q->kobj, &blk_queue_ktype);
L
Linus Torvalds 已提交
483

484
	mutex_init(&q->debugfs_mutex);
485
	mutex_init(&q->sysfs_lock);
486
	mutex_init(&q->sysfs_dir_lock);
487
	spin_lock_init(&q->queue_lock);
488

489
	init_waitqueue_head(&q->mq_freeze_wq);
490
	mutex_init(&q->mq_freeze_lock);
491

492 493 494 495 496 497 498
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
	if (percpu_ref_init(&q->q_usage_counter,
				blk_queue_usage_counter_release,
				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
499
		goto fail_stats;
500

501 502 503
	if (blkcg_init_queue(q))
		goto fail_ref;

504 505
	blk_queue_dma_alignment(q, 511);
	blk_set_default_limits(&q->limits);
506
	q->nr_requests = BLKDEV_DEFAULT_RQ;
507

L
Linus Torvalds 已提交
508
	return q;
509

510 511
fail_ref:
	percpu_ref_exit(&q->q_usage_counter);
512
fail_stats:
513
	blk_free_queue_stats(q->stats);
514
fail_split:
515
	bioset_exit(&q->bio_split);
516 517
fail_id:
	ida_simple_remove(&blk_queue_ida, q->id);
518 519 520
fail_srcu:
	if (alloc_srcu)
		cleanup_srcu_struct(q->srcu);
521
fail_q:
522
	kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
523
	return NULL;
L
Linus Torvalds 已提交
524 525
}

526 527 528 529 530
/**
 * blk_get_queue - increment the request_queue refcount
 * @q: the request_queue structure to increment the refcount for
 *
 * Increment the refcount of the request_queue kobject.
531 532
 *
 * Context: Any context.
533
 */
T
Tejun Heo 已提交
534
bool blk_get_queue(struct request_queue *q)
L
Linus Torvalds 已提交
535
{
B
Bart Van Assche 已提交
536
	if (likely(!blk_queue_dying(q))) {
T
Tejun Heo 已提交
537 538
		__blk_get_queue(q);
		return true;
L
Linus Torvalds 已提交
539 540
	}

T
Tejun Heo 已提交
541
	return false;
L
Linus Torvalds 已提交
542
}
J
Jens Axboe 已提交
543
EXPORT_SYMBOL(blk_get_queue);
L
Linus Torvalds 已提交
544

545
static void handle_bad_sector(struct bio *bio, sector_t maxsector)
L
Linus Torvalds 已提交
546 547 548
{
	char b[BDEVNAME_SIZE];

549
	pr_info_ratelimited("%s: attempt to access beyond end of device\n"
550
			    "%s: rw=%d, want=%llu, limit=%llu\n",
551
			    current->comm,
552 553
			    bio_devname(bio, b), bio->bi_opf,
			    bio_end_sector(bio), maxsector);
L
Linus Torvalds 已提交
554 555
}

556 557 558 559 560 561 562 563 564 565
#ifdef CONFIG_FAIL_MAKE_REQUEST

static DECLARE_FAULT_ATTR(fail_make_request);

static int __init setup_fail_make_request(char *str)
{
	return setup_fault_attr(&fail_make_request, str);
}
__setup("fail_make_request=", setup_fail_make_request);

566
bool should_fail_request(struct block_device *part, unsigned int bytes)
567
{
568
	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
569 570 571 572
}

static int __init fail_make_request_debugfs(void)
{
573 574 575
	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
						NULL, &fail_make_request);

576
	return PTR_ERR_OR_ZERO(dir);
577 578 579 580 581
}

late_initcall(fail_make_request_debugfs);
#endif /* CONFIG_FAIL_MAKE_REQUEST */

582
static inline bool bio_check_ro(struct bio *bio)
583
{
584
	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
585 586
		char b[BDEVNAME_SIZE];

587 588 589
		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
			return false;

590
		WARN_ONCE(1,
591
		       "Trying to write to read-only block-device %s (partno %d)\n",
592
			bio_devname(bio, b), bio->bi_bdev->bd_partno);
593 594
		/* Older lvm-tools actually trigger this */
		return false;
595 596 597 598 599
	}

	return false;
}

600 601
static noinline int should_fail_bio(struct bio *bio)
{
602
	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
603 604 605 606 607
		return -EIO;
	return 0;
}
ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);

608 609 610 611 612
/*
 * Check whether this bio extends beyond the end of the device or partition.
 * This may well happen - the kernel calls bread() without checking the size of
 * the device, e.g., when mounting a file system.
 */
613
static inline int bio_check_eod(struct bio *bio)
614
{
615
	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
616 617 618 619 620 621 622 623 624 625 626
	unsigned int nr_sectors = bio_sectors(bio);

	if (nr_sectors && maxsector &&
	    (nr_sectors > maxsector ||
	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
		handle_bad_sector(bio, maxsector);
		return -EIO;
	}
	return 0;
}

627 628 629
/*
 * Remap block n of partition p to block n+start(p) of the disk.
 */
630
static int blk_partition_remap(struct bio *bio)
631
{
632
	struct block_device *p = bio->bi_bdev;
633

634
	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
635
		return -EIO;
636
	if (bio_sectors(bio)) {
637
		bio->bi_iter.bi_sector += p->bd_start_sect;
638
		trace_block_bio_remap(bio, p->bd_dev,
639
				      bio->bi_iter.bi_sector -
640
				      p->bd_start_sect);
641
	}
642
	bio_set_flag(bio, BIO_REMAPPED);
643
	return 0;
644 645
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/*
 * Check write append to a zoned block device.
 */
static inline blk_status_t blk_check_zone_append(struct request_queue *q,
						 struct bio *bio)
{
	sector_t pos = bio->bi_iter.bi_sector;
	int nr_sectors = bio_sectors(bio);

	/* Only applicable to zoned block devices */
	if (!blk_queue_is_zoned(q))
		return BLK_STS_NOTSUPP;

	/* The bio sector must point to the start of a sequential zone */
	if (pos & (blk_queue_zone_sectors(q) - 1) ||
	    !blk_queue_zone_is_seq(q, pos))
		return BLK_STS_IOERR;

	/*
	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
	 * split and could result in non-contiguous sectors being written in
	 * different zones.
	 */
	if (nr_sectors > q->limits.chunk_sectors)
		return BLK_STS_IOERR;

	/* Make sure the BIO is small enough and will not get split */
	if (nr_sectors > q->limits.max_zone_append_sectors)
		return BLK_STS_IOERR;

	bio->bi_opf |= REQ_NOMERGE;

	return BLK_STS_OK;
}

681
noinline_for_stack bool submit_bio_checks(struct bio *bio)
L
Linus Torvalds 已提交
682
{
683
	struct block_device *bdev = bio->bi_bdev;
684
	struct request_queue *q = bdev_get_queue(bdev);
685
	blk_status_t status = BLK_STS_IOERR;
686
	struct blk_plug *plug;
L
Linus Torvalds 已提交
687 688 689

	might_sleep();

690 691 692 693
	plug = blk_mq_plug(q, bio);
	if (plug && plug->nowait)
		bio->bi_opf |= REQ_NOWAIT;

694
	/*
695
	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
M
Mike Snitzer 已提交
696
	 * if queue does not support NOWAIT.
697
	 */
M
Mike Snitzer 已提交
698
	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
699
		goto not_supported;
700

701
	if (should_fail_bio(bio))
702
		goto end_io;
703 704
	if (unlikely(bio_check_ro(bio)))
		goto end_io;
705 706 707 708 709 710
	if (!bio_flagged(bio, BIO_REMAPPED)) {
		if (unlikely(bio_check_eod(bio)))
			goto end_io;
		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
			goto end_io;
	}
711

712
	/*
713 714
	 * Filter flush bio's early so that bio based drivers without flush
	 * support don't have to worry about them.
715
	 */
716
	if (op_is_flush(bio->bi_opf) &&
J
Jens Axboe 已提交
717
	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
J
Jens Axboe 已提交
718
		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
719
		if (!bio_sectors(bio)) {
720
			status = BLK_STS_OK;
721 722
			goto end_io;
		}
723
	}
724

725
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
726
		bio_clear_polled(bio);
727

728 729 730 731 732 733 734 735 736 737
	switch (bio_op(bio)) {
	case REQ_OP_DISCARD:
		if (!blk_queue_discard(q))
			goto not_supported;
		break;
	case REQ_OP_SECURE_ERASE:
		if (!blk_queue_secure_erase(q))
			goto not_supported;
		break;
	case REQ_OP_WRITE_SAME:
738
		if (!q->limits.max_write_same_sectors)
739
			goto not_supported;
740
		break;
741 742 743 744 745
	case REQ_OP_ZONE_APPEND:
		status = blk_check_zone_append(q, bio);
		if (status != BLK_STS_OK)
			goto end_io;
		break;
746
	case REQ_OP_ZONE_RESET:
747 748 749
	case REQ_OP_ZONE_OPEN:
	case REQ_OP_ZONE_CLOSE:
	case REQ_OP_ZONE_FINISH:
750
		if (!blk_queue_is_zoned(q))
751
			goto not_supported;
752
		break;
753 754 755 756
	case REQ_OP_ZONE_RESET_ALL:
		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
			goto not_supported;
		break;
757
	case REQ_OP_WRITE_ZEROES:
758
		if (!q->limits.max_write_zeroes_sectors)
759 760
			goto not_supported;
		break;
761 762
	default:
		break;
763
	}
764

765
	if (blk_throtl_bio(bio))
766
		return false;
767 768 769

	blk_cgroup_bio_start(bio);
	blkcg_bio_issue_init(bio);
770

N
NeilBrown 已提交
771
	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
772
		trace_block_bio_queue(bio);
N
NeilBrown 已提交
773 774 775 776 777
		/* Now that enqueuing has been traced, we need to trace
		 * completion as well.
		 */
		bio_set_flag(bio, BIO_TRACE_COMPLETION);
	}
778
	return true;
779

780
not_supported:
781
	status = BLK_STS_NOTSUPP;
782
end_io:
783
	bio->bi_status = status;
784
	bio_endio(bio);
785
	return false;
L
Linus Torvalds 已提交
786 787
}

788
static void __submit_bio_fops(struct gendisk *disk, struct bio *bio)
789
{
790 791 792 793 794 795
	if (blk_crypto_bio_prep(&bio)) {
		if (likely(bio_queue_enter(bio) == 0)) {
			disk->fops->submit_bio(bio);
			blk_queue_exit(disk->queue);
		}
	}
796
}
797

798 799 800
static void __submit_bio(struct bio *bio)
{
	struct gendisk *disk = bio->bi_bdev->bd_disk;
801

802 803 804
	if (unlikely(!submit_bio_checks(bio)))
		return;

805
	if (!disk->fops->submit_bio)
806
		blk_mq_submit_bio(bio);
807 808
	else
		__submit_bio_fops(disk, bio);
809 810
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
/*
 * The loop in this function may be a bit non-obvious, and so deserves some
 * explanation:
 *
 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 *    that), so we have a list with a single bio.
 *  - We pretend that we have just taken it off a longer list, so we assign
 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 *    non-NULL value in bio_list and re-enter the loop from the top.
 *  - In this case we really did just take the bio of the top of the list (no
 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 *    again.
 *
 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 * bio_list_on_stack[1] contains bios that were submitted before the current
 *	->submit_bio_bio, but that haven't been processed yet.
 */
830
static void __submit_bio_noacct(struct bio *bio)
831 832 833 834 835 836 837 838 839
{
	struct bio_list bio_list_on_stack[2];

	BUG_ON(bio->bi_next);

	bio_list_init(&bio_list_on_stack[0]);
	current->bio_list = bio_list_on_stack;

	do {
840
		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
841 842 843 844 845 846 847 848
		struct bio_list lower, same;

		/*
		 * Create a fresh bio_list for all subordinate requests.
		 */
		bio_list_on_stack[1] = bio_list_on_stack[0];
		bio_list_init(&bio_list_on_stack[0]);

849
		__submit_bio(bio);
850 851 852 853 854 855 856 857

		/*
		 * Sort new bios into those for a lower level and those for the
		 * same level.
		 */
		bio_list_init(&lower);
		bio_list_init(&same);
		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
858
			if (q == bdev_get_queue(bio->bi_bdev))
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
				bio_list_add(&same, bio);
			else
				bio_list_add(&lower, bio);

		/*
		 * Now assemble so we handle the lowest level first.
		 */
		bio_list_merge(&bio_list_on_stack[0], &lower);
		bio_list_merge(&bio_list_on_stack[0], &same);
		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));

	current->bio_list = NULL;
}

874
static void __submit_bio_noacct_mq(struct bio *bio)
875
{
876
	struct bio_list bio_list[2] = { };
877

878
	current->bio_list = bio_list;
879 880

	do {
881
		__submit_bio(bio);
882
	} while ((bio = bio_list_pop(&bio_list[0])));
883 884 885 886

	current->bio_list = NULL;
}

887
/**
888
 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
889 890
 * @bio:  The bio describing the location in memory and on the device.
 *
891 892 893 894
 * This is a version of submit_bio() that shall only be used for I/O that is
 * resubmitted to lower level drivers by stacking block drivers.  All file
 * systems and other upper level users of the block layer should use
 * submit_bio() instead.
895
 */
896
void submit_bio_noacct(struct bio *bio)
897
{
898
	/*
899 900 901 902
	 * We only want one ->submit_bio to be active at a time, else stack
	 * usage with stacked devices could be a problem.  Use current->bio_list
	 * to collect a list of requests submited by a ->submit_bio method while
	 * it is active, and then process them after it returned.
903
	 */
904
	if (current->bio_list)
905
		bio_list_add(&current->bio_list[0], bio);
906 907 908 909
	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
		__submit_bio_noacct_mq(bio);
	else
		__submit_bio_noacct(bio);
910
}
911
EXPORT_SYMBOL(submit_bio_noacct);
L
Linus Torvalds 已提交
912 913

/**
914
 * submit_bio - submit a bio to the block device layer for I/O
L
Linus Torvalds 已提交
915 916
 * @bio: The &struct bio which describes the I/O
 *
917 918
 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 * fully set up &struct bio that describes the I/O that needs to be done.  The
919
 * bio will be send to the device described by the bi_bdev field.
L
Linus Torvalds 已提交
920
 *
921 922 923 924
 * The success/failure status of the request, along with notification of
 * completion, is delivered asynchronously through the ->bi_end_io() callback
 * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
 * been called.
L
Linus Torvalds 已提交
925
 */
926
void submit_bio(struct bio *bio)
L
Linus Torvalds 已提交
927
{
T
Tejun Heo 已提交
928
	if (blkcg_punt_bio_submit(bio))
929
		return;
T
Tejun Heo 已提交
930

931 932 933 934
	/*
	 * If it's a regular read/write or a barrier with data attached,
	 * go through the normal accounting stuff before submission.
	 */
935
	if (bio_has_data(bio)) {
936 937
		unsigned int count;

938
		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
939
			count = queue_logical_block_size(
940
					bdev_get_queue(bio->bi_bdev)) >> 9;
941 942 943
		else
			count = bio_sectors(bio);

944
		if (op_is_write(bio_op(bio))) {
945 946
			count_vm_events(PGPGOUT, count);
		} else {
947
			task_io_account_read(bio->bi_iter.bi_size);
948 949
			count_vm_events(PGPGIN, count);
		}
L
Linus Torvalds 已提交
950 951
	}

952
	/*
953 954 955 956
	 * If we're reading data that is part of the userspace workingset, count
	 * submission time as memory stall.  When the device is congested, or
	 * the submitting cgroup IO-throttled, submission can be a significant
	 * part of overall IO time.
957
	 */
958 959 960
	if (unlikely(bio_op(bio) == REQ_OP_READ &&
	    bio_flagged(bio, BIO_WORKINGSET))) {
		unsigned long pflags;
961

962
		psi_memstall_enter(&pflags);
963
		submit_bio_noacct(bio);
964
		psi_memstall_leave(&pflags);
965
		return;
966 967
	}

968
	submit_bio_noacct(bio);
L
Linus Torvalds 已提交
969 970 971
}
EXPORT_SYMBOL(submit_bio);

972 973 974
/**
 * bio_poll - poll for BIO completions
 * @bio: bio to poll for
975
 * @iob: batches of IO
976 977 978 979 980 981 982 983
 * @flags: BLK_POLL_* flags that control the behavior
 *
 * Poll for completions on queue associated with the bio. Returns number of
 * completed entries found.
 *
 * Note: the caller must either be the context that submitted @bio, or
 * be in a RCU critical section to prevent freeing of @bio.
 */
984
int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
985
{
986
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
987 988 989 990 991 992 993 994
	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
	int ret;

	if (cookie == BLK_QC_T_NONE ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return 0;

	if (current->plug)
995
		blk_flush_plug(current->plug, false);
996 997 998 999 1000 1001

	if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
		return 0;
	if (WARN_ON_ONCE(!queue_is_mq(q)))
		ret = 0;	/* not yet implemented, should not happen */
	else
1002
		ret = blk_mq_poll(q, cookie, iob, flags);
1003 1004 1005 1006 1007 1008 1009 1010 1011
	blk_queue_exit(q);
	return ret;
}
EXPORT_SYMBOL_GPL(bio_poll);

/*
 * Helper to implement file_operations.iopoll.  Requires the bio to be stored
 * in iocb->private, and cleared before freeing the bio.
 */
1012 1013
int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
		    unsigned int flags)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	struct bio *bio;
	int ret = 0;

	/*
	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
	 * point to a freshly allocated bio at this point.  If that happens
	 * we have a few cases to consider:
	 *
	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
	 *     simply nothing in this case
	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
	 *     this and return 0
	 *  3) the bio points to a poll capable device, including but not
	 *     limited to the one that the original bio pointed to.  In this
	 *     case we will call into the actual poll method and poll for I/O,
	 *     even if we don't need to, but it won't cause harm either.
	 *
	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
	 * is still allocated. Because partitions hold a reference to the whole
	 * device bdev and thus disk, the disk is also still valid.  Grabbing
	 * a reference to the queue in bio_poll() ensures the hctxs and requests
	 * are still valid as well.
	 */
	rcu_read_lock();
	bio = READ_ONCE(kiocb->private);
	if (bio && bio->bi_bdev)
1041
		ret = bio_poll(bio, iob, flags);
1042 1043 1044 1045 1046 1047
	rcu_read_unlock();

	return ret;
}
EXPORT_SYMBOL_GPL(iocb_bio_iopoll);

1048
void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1049 1050 1051
{
	unsigned long stamp;
again:
1052
	stamp = READ_ONCE(part->bd_stamp);
1053
	if (unlikely(time_after(now, stamp))) {
1054
		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1055 1056
			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
	}
1057 1058
	if (part->bd_partno) {
		part = bdev_whole(part);
1059 1060 1061 1062
		goto again;
	}
}

1063
static unsigned long __part_start_io_acct(struct block_device *part,
1064
					  unsigned int sectors, unsigned int op)
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
{
	const int sgrp = op_stat_group(op);
	unsigned long now = READ_ONCE(jiffies);

	part_stat_lock();
	update_io_ticks(part, now, false);
	part_stat_inc(part, ios[sgrp]);
	part_stat_add(part, sectors[sgrp], sectors);
	part_stat_local_inc(part, in_flight[op_is_write(op)]);
	part_stat_unlock();
1075

1076 1077
	return now;
}
1078

1079 1080 1081 1082 1083 1084 1085
/**
 * bio_start_io_acct - start I/O accounting for bio based drivers
 * @bio:	bio to start account for
 *
 * Returns the start time that should be passed back to bio_end_io_acct().
 */
unsigned long bio_start_io_acct(struct bio *bio)
1086
{
1087
	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1088
}
1089
EXPORT_SYMBOL_GPL(bio_start_io_acct);
1090 1091 1092 1093

unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
				 unsigned int op)
{
1094
	return __part_start_io_acct(disk->part0, sectors, op);
1095
}
1096 1097
EXPORT_SYMBOL(disk_start_io_acct);

1098
static void __part_end_io_acct(struct block_device *part, unsigned int op,
1099
			       unsigned long start_time)
1100 1101 1102 1103
{
	const int sgrp = op_stat_group(op);
	unsigned long now = READ_ONCE(jiffies);
	unsigned long duration = now - start_time;
1104

1105 1106 1107 1108
	part_stat_lock();
	update_io_ticks(part, now, true);
	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1109 1110
	part_stat_unlock();
}
1111

1112 1113
void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
		struct block_device *orig_bdev)
1114
{
1115
	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1116
}
1117
EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1118 1119 1120 1121

void disk_end_io_acct(struct gendisk *disk, unsigned int op,
		      unsigned long start_time)
{
1122
	__part_end_io_acct(disk->part0, op, start_time);
1123
}
1124
EXPORT_SYMBOL(disk_end_io_acct);
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/**
 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
 * @q : the queue of the device being checked
 *
 * Description:
 *    Check if underlying low-level drivers of a device are busy.
 *    If the drivers want to export their busy state, they must set own
 *    exporting function using blk_queue_lld_busy() first.
 *
 *    Basically, this function is used only by request stacking drivers
 *    to stop dispatching requests to underlying devices when underlying
 *    devices are busy.  This behavior helps more I/O merging on the queue
 *    of the request stacking driver and prevents I/O throughput regression
 *    on burst I/O load.
 *
 * Return:
 *    0 - Not busy (The request stacking driver should dispatch request)
 *    1 - Busy (The request stacking driver should stop dispatching request)
 */
int blk_lld_busy(struct request_queue *q)
{
J
Jens Axboe 已提交
1147
	if (queue_is_mq(q) && q->mq_ops->busy)
J
Jens Axboe 已提交
1148
		return q->mq_ops->busy(q);
1149 1150 1151 1152 1153

	return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);

1154
int kblockd_schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159
{
	return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);

1160 1161 1162 1163 1164 1165 1166
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
				unsigned long delay)
{
	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
}
EXPORT_SYMBOL(kblockd_mod_delayed_work_on);

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
{
	struct task_struct *tsk = current;

	/*
	 * If this is a nested plug, don't actually assign it.
	 */
	if (tsk->plug)
		return;

1177
	plug->mq_list = NULL;
1178 1179 1180 1181
	plug->cached_rq = NULL;
	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
	plug->rq_count = 0;
	plug->multiple_queues = false;
1182
	plug->has_elevator = false;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	plug->nowait = false;
	INIT_LIST_HEAD(&plug->cb_list);

	/*
	 * Store ordering should not be needed here, since a potential
	 * preempt will imply a full memory barrier
	 */
	tsk->plug = plug;
}

S
Suresh Jayaraman 已提交
1193 1194 1195 1196 1197
/**
 * blk_start_plug - initialize blk_plug and track it inside the task_struct
 * @plug:	The &struct blk_plug that needs to be initialized
 *
 * Description:
1198 1199 1200 1201 1202 1203 1204 1205 1206
 *   blk_start_plug() indicates to the block layer an intent by the caller
 *   to submit multiple I/O requests in a batch.  The block layer may use
 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
 *   is called.  However, the block layer may choose to submit requests
 *   before a call to blk_finish_plug() if the number of queued I/Os
 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
 *   the task schedules (see below).
 *
S
Suresh Jayaraman 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215
 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
 *   pending I/O should the task end up blocking between blk_start_plug() and
 *   blk_finish_plug(). This is important from a performance perspective, but
 *   also ensures that we don't deadlock. For instance, if the task is blocking
 *   for a memory allocation, memory reclaim could end up wanting to free a
 *   page belonging to that request that is currently residing in our private
 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
 *   this kind of deadlock.
 */
1216 1217
void blk_start_plug(struct blk_plug *plug)
{
1218
	blk_start_plug_nr_ios(plug, 1);
1219 1220 1221
}
EXPORT_SYMBOL(blk_start_plug);

1222
static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1223 1224 1225
{
	LIST_HEAD(callbacks);

S
Shaohua Li 已提交
1226 1227
	while (!list_empty(&plug->cb_list)) {
		list_splice_init(&plug->cb_list, &callbacks);
1228

S
Shaohua Li 已提交
1229 1230
		while (!list_empty(&callbacks)) {
			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1231 1232
							  struct blk_plug_cb,
							  list);
S
Shaohua Li 已提交
1233
			list_del(&cb->list);
1234
			cb->callback(cb, from_schedule);
S
Shaohua Li 已提交
1235
		}
1236 1237 1238
	}
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
				      int size)
{
	struct blk_plug *plug = current->plug;
	struct blk_plug_cb *cb;

	if (!plug)
		return NULL;

	list_for_each_entry(cb, &plug->cb_list, list)
		if (cb->callback == unplug && cb->data == data)
			return cb;

	/* Not currently on the callback list */
	BUG_ON(size < sizeof(*cb));
	cb = kzalloc(size, GFP_ATOMIC);
	if (cb) {
		cb->data = data;
		cb->callback = unplug;
		list_add(&cb->list, &plug->cb_list);
	}
	return cb;
}
EXPORT_SYMBOL(blk_check_plugged);

1264
void blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1265
{
1266 1267
	if (!list_empty(&plug->cb_list))
		flush_plug_callbacks(plug, from_schedule);
1268
	if (!rq_list_empty(plug->mq_list))
1269
		blk_mq_flush_plug_list(plug, from_schedule);
1270 1271 1272 1273 1274 1275 1276
	/*
	 * Unconditionally flush out cached requests, even if the unplug
	 * event came from schedule. Since we know hold references to the
	 * queue for cached requests, we don't want a blocked task holding
	 * up a queue freeze/quiesce event.
	 */
	if (unlikely(!rq_list_empty(plug->cached_rq)))
1277
		blk_mq_free_plug_rqs(plug);
1278 1279
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
/**
 * blk_finish_plug - mark the end of a batch of submitted I/O
 * @plug:	The &struct blk_plug passed to blk_start_plug()
 *
 * Description:
 * Indicate that a batch of I/O submissions is complete.  This function
 * must be paired with an initial call to blk_start_plug().  The intent
 * is to allow the block layer to optimize I/O submission.  See the
 * documentation for blk_start_plug() for more information.
 */
1290 1291
void blk_finish_plug(struct blk_plug *plug)
{
1292 1293 1294 1295
	if (plug == current->plug) {
		blk_flush_plug(plug, false);
		current->plug = NULL;
	}
1296
}
1297
EXPORT_SYMBOL(blk_finish_plug);
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
void blk_io_schedule(void)
{
	/* Prevent hang_check timer from firing at us during very long I/O */
	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;

	if (timeout)
		io_schedule_timeout(timeout);
	else
		io_schedule();
}
EXPORT_SYMBOL_GPL(blk_io_schedule);

L
Linus Torvalds 已提交
1311 1312
int __init blk_dev_init(void)
{
1313 1314
	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1315
			sizeof_field(struct request, cmd_flags));
1316
	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1317
			sizeof_field(struct bio, bi_opf));
1318 1319 1320
	BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
			   __alignof__(struct request_queue)) !=
		     sizeof(struct request_queue));
1321

1322 1323
	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
	kblockd_workqueue = alloc_workqueue("kblockd",
1324
					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
L
Linus Torvalds 已提交
1325 1326 1327
	if (!kblockd_workqueue)
		panic("Failed to create kblockd\n");

1328
	blk_requestq_cachep = kmem_cache_create("request_queue",
1329
			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1330

1331 1332 1333 1334
	blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
			sizeof(struct request_queue) +
			sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);

1335 1336
	blk_debugfs_root = debugfs_create_dir("block", NULL);

1337
	return 0;
L
Linus Torvalds 已提交
1338
}