bcm_sf2.c 36.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Broadcom Starfighter 2 DSA switch driver
 *
 * Copyright (C) 2014, Broadcom Corporation
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
15
#include <linux/phylink.h>
16
#include <linux/mii.h>
17
#include <linux/clk.h>
18 19 20
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
21
#include <linux/of_net.h>
22
#include <linux/of_mdio.h>
23
#include <net/dsa.h>
24
#include <linux/ethtool.h>
25
#include <linux/if_bridge.h>
26
#include <linux/brcmphy.h>
27
#include <linux/etherdevice.h>
28
#include <linux/platform_data/b53.h>
29 30 31

#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"
32 33
#include "b53/b53_priv.h"
#include "b53/b53_regs.h"
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* Return the number of active ports, not counting the IMP (CPU) port */
static unsigned int bcm_sf2_num_active_ports(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	unsigned int port, count = 0;

	for (port = 0; port < ARRAY_SIZE(priv->port_sts); port++) {
		if (dsa_is_cpu_port(ds, port))
			continue;
		if (priv->port_sts[port].enabled)
			count++;
	}

	return count;
}

static void bcm_sf2_recalc_clock(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	unsigned long new_rate;
	unsigned int ports_active;
	/* Frequenty in Mhz */
	const unsigned long rate_table[] = {
		59220000,
		60820000,
		62500000,
		62500000,
	};

	ports_active = bcm_sf2_num_active_ports(ds);
	if (ports_active == 0 || !priv->clk_mdiv)
		return;

	/* If we overflow our table, just use the recommended operational
	 * frequency
	 */
	if (ports_active > ARRAY_SIZE(rate_table))
		new_rate = 90000000;
	else
		new_rate = rate_table[ports_active - 1];
	clk_set_rate(priv->clk_mdiv, new_rate);
}

78 79 80
static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
81
	unsigned int i;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	u32 reg, offset;

	/* Enable the port memories */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

	/* Enable forwarding */
	core_writel(priv, SW_FWDG_EN, CORE_SWMODE);

	/* Enable IMP port in dumb mode */
	reg = core_readl(priv, CORE_SWITCH_CTRL);
	reg |= MII_DUMB_FWDG_EN;
	core_writel(priv, reg, CORE_SWITCH_CTRL);

97 98 99 100 101 102 103 104
	/* Configure Traffic Class to QoS mapping, allow each priority to map
	 * to a different queue number
	 */
	reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
	for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++)
		reg |= i << (PRT_TO_QID_SHIFT * i);
	core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));

105
	b53_brcm_hdr_setup(ds, port);
106

107 108 109 110 111 112 113 114
	if (port == 8) {
		if (priv->type == BCM7445_DEVICE_ID)
			offset = CORE_STS_OVERRIDE_IMP;
		else
			offset = CORE_STS_OVERRIDE_IMP2;

		/* Force link status for IMP port */
		reg = core_readl(priv, offset);
115
		reg |= (MII_SW_OR | LINK_STS);
116
		reg &= ~GMII_SPEED_UP_2G;
117 118 119 120 121 122 123 124 125 126 127 128
		core_writel(priv, reg, offset);

		/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
		reg = core_readl(priv, CORE_IMP_CTL);
		reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
		reg &= ~(RX_DIS | TX_DIS);
		core_writel(priv, reg, CORE_IMP_CTL);
	} else {
		reg = core_readl(priv, CORE_G_PCTL_PORT(port));
		reg &= ~(RX_DIS | TX_DIS);
		core_writel(priv, reg, CORE_G_PCTL_PORT(port));
	}
129 130

	priv->port_sts[port].enabled = true;
131 132
}

133 134
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
{
135
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
136 137 138
	u32 reg;

	reg = reg_readl(priv, REG_SPHY_CNTRL);
139 140
	if (enable) {
		reg |= PHY_RESET;
141
		reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | IDDQ_GLOBAL_PWR | CK25_DIS);
142 143 144 145 146 147 148 149 150 151
		reg_writel(priv, reg, REG_SPHY_CNTRL);
		udelay(21);
		reg = reg_readl(priv, REG_SPHY_CNTRL);
		reg &= ~PHY_RESET;
	} else {
		reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
		reg_writel(priv, reg, REG_SPHY_CNTRL);
		mdelay(1);
		reg |= CK25_DIS;
	}
152
	reg_writel(priv, reg, REG_SPHY_CNTRL);
153 154 155 156 157 158 159

	/* Use PHY-driven LED signaling */
	if (!enable) {
		reg = reg_readl(priv, REG_LED_CNTRL(0));
		reg |= SPDLNK_SRC_SEL;
		reg_writel(priv, reg, REG_LED_CNTRL(0));
	}
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
					    int port)
{
	unsigned int off;

	switch (port) {
	case 7:
		off = P7_IRQ_OFF;
		break;
	case 0:
		/* Port 0 interrupts are located on the first bank */
		intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
		return;
	default:
		off = P_IRQ_OFF(port);
		break;
	}

	intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
}

static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
					     int port)
{
	unsigned int off;

	switch (port) {
	case 7:
		off = P7_IRQ_OFF;
		break;
	case 0:
		/* Port 0 interrupts are located on the first bank */
		intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
		intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
		return;
	default:
		off = P_IRQ_OFF(port);
		break;
	}

	intrl2_1_mask_set(priv, P_IRQ_MASK(off));
	intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
}

206 207
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
			      struct phy_device *phy)
208
{
209
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
210
	unsigned int i;
211 212
	u32 reg;

213 214 215
	if (!dsa_is_user_port(ds, port))
		return 0;

216 217 218 219
	priv->port_sts[port].enabled = true;

	bcm_sf2_recalc_clock(ds);

220 221 222 223 224
	/* Clear the memory power down */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

225 226 227 228 229
	/* Enable learning */
	reg = core_readl(priv, CORE_DIS_LEARN);
	reg &= ~BIT(port);
	core_writel(priv, reg, CORE_DIS_LEARN);

230
	/* Enable Broadcom tags for that port if requested */
231
	if (priv->brcm_tag_mask & BIT(port)) {
232
		b53_brcm_hdr_setup(ds, port);
233

234 235 236 237 238 239 240 241
		/* Disable learning on ASP port */
		if (port == 7) {
			reg = core_readl(priv, CORE_DIS_LEARN);
			reg |= BIT(port);
			core_writel(priv, reg, CORE_DIS_LEARN);
		}
	}

242 243 244 245
	/* Configure Traffic Class to QoS mapping, allow each priority to map
	 * to a different queue number
	 */
	reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
246
	for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++)
247 248 249
		reg |= i << (PRT_TO_QID_SHIFT * i);
	core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));

250
	/* Re-enable the GPHY and re-apply workarounds */
251
	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		bcm_sf2_gphy_enable_set(ds, true);
		if (phy) {
			/* if phy_stop() has been called before, phy
			 * will be in halted state, and phy_start()
			 * will call resume.
			 *
			 * the resume path does not configure back
			 * autoneg settings, and since we hard reset
			 * the phy manually here, we need to reset the
			 * state machine also.
			 */
			phy->state = PHY_READY;
			phy_init_hw(phy);
		}
	}

268 269 270
	/* Enable MoCA port interrupts to get notified */
	if (port == priv->moca_port)
		bcm_sf2_port_intr_enable(priv, port);
271

272 273 274 275 276 277 278 279 280 281 282 283 284
	/* Set per-queue pause threshold to 32 */
	core_writel(priv, 32, CORE_TXQ_THD_PAUSE_QN_PORT(port));

	/* Set ACB threshold to 24 */
	for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) {
		reg = acb_readl(priv, ACB_QUEUE_CFG(port *
						    SF2_NUM_EGRESS_QUEUES + i));
		reg &= ~XOFF_THRESHOLD_MASK;
		reg |= 24;
		acb_writel(priv, reg, ACB_QUEUE_CFG(port *
						    SF2_NUM_EGRESS_QUEUES + i));
	}

285
	return b53_enable_port(ds, port, phy);
286 287
}

288
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port)
289
{
290
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
291
	u32 reg;
292

293 294 295 296 297
	/* Disable learning while in WoL mode */
	if (priv->wol_ports_mask & (1 << port)) {
		reg = core_readl(priv, CORE_DIS_LEARN);
		reg |= BIT(port);
		core_writel(priv, reg, CORE_DIS_LEARN);
298
		return;
299
	}
300

301 302
	if (port == priv->moca_port)
		bcm_sf2_port_intr_disable(priv, port);
303

304
	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
305 306
		bcm_sf2_gphy_enable_set(ds, false);

307
	b53_disable_port(ds, port);
308 309 310 311 312

	/* Power down the port memory */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg |= P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
313 314 315 316

	priv->port_sts[port].enabled = false;

	bcm_sf2_recalc_clock(ds);
317 318
}

319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr,
			       int regnum, u16 val)
{
	int ret = 0;
	u32 reg;

	reg = reg_readl(priv, REG_SWITCH_CNTRL);
	reg |= MDIO_MASTER_SEL;
	reg_writel(priv, reg, REG_SWITCH_CNTRL);

	/* Page << 8 | offset */
	reg = 0x70;
	reg <<= 2;
	core_writel(priv, addr, reg);

	/* Page << 8 | offset */
	reg = 0x80 << 8 | regnum << 1;
	reg <<= 2;

	if (op)
		ret = core_readl(priv, reg);
	else
		core_writel(priv, val, reg);

	reg = reg_readl(priv, REG_SWITCH_CNTRL);
	reg &= ~MDIO_MASTER_SEL;
	reg_writel(priv, reg, REG_SWITCH_CNTRL);

	return ret & 0xffff;
}

static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
	struct bcm_sf2_priv *priv = bus->priv;

	/* Intercept reads from Broadcom pseudo-PHY address, else, send
	 * them to our master MDIO bus controller
	 */
	if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
		return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0);
	else
361
		return mdiobus_read_nested(priv->master_mii_bus, addr, regnum);
362 363 364 365 366 367 368 369 370 371 372
}

static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
				 u16 val)
{
	struct bcm_sf2_priv *priv = bus->priv;

	/* Intercept writes to the Broadcom pseudo-PHY address, else,
	 * send them to our master MDIO bus controller
	 */
	if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
373
		return bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val);
374
	else
375 376
		return mdiobus_write_nested(priv->master_mii_bus, addr,
				regnum, val);
377 378
}

379 380
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
{
381 382
	struct dsa_switch *ds = dev_id;
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
383 384 385 386 387 388 389 390 391 392

	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
				~priv->irq0_mask;
	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);

	return IRQ_HANDLED;
}

static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
{
393 394
	struct dsa_switch *ds = dev_id;
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
395 396 397 398 399

	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
				~priv->irq1_mask;
	intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);

400 401 402 403 404 405 406 407
	if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF)) {
		priv->port_sts[7].link = true;
		dsa_port_phylink_mac_change(ds, 7, true);
	}
	if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF)) {
		priv->port_sts[7].link = false;
		dsa_port_phylink_mac_change(ds, 7, false);
	}
408 409 410 411

	return IRQ_HANDLED;
}

412 413 414 415
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 1000;
	u32 reg;
416 417 418 419 420 421 422 423 424 425 426 427
	int ret;

	/* The watchdog reset does not work on 7278, we need to hit the
	 * "external" reset line through the reset controller.
	 */
	if (priv->type == BCM7278_DEVICE_ID && !IS_ERR(priv->rcdev)) {
		ret = reset_control_assert(priv->rcdev);
		if (ret)
			return ret;

		return reset_control_deassert(priv->rcdev);
	}
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

	reg = core_readl(priv, CORE_WATCHDOG_CTRL);
	reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
	core_writel(priv, reg, CORE_WATCHDOG_CTRL);

	do {
		reg = core_readl(priv, CORE_WATCHDOG_CTRL);
		if (!(reg & SOFTWARE_RESET))
			break;

		usleep_range(1000, 2000);
	} while (timeout-- > 0);

	if (timeout == 0)
		return -ETIMEDOUT;

	return 0;
}

447 448
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
{
449
	intrl2_0_mask_set(priv, 0xffffffff);
450
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
451
	intrl2_1_mask_set(priv, 0xffffffff);
452 453 454
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
}

455 456 457 458 459
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
				   struct device_node *dn)
{
	struct device_node *port;
	unsigned int port_num;
460 461
	phy_interface_t mode;
	int err;
462 463 464 465 466 467 468 469 470 471 472 473

	priv->moca_port = -1;

	for_each_available_child_of_node(dn, port) {
		if (of_property_read_u32(port, "reg", &port_num))
			continue;

		/* Internal PHYs get assigned a specific 'phy-mode' property
		 * value: "internal" to help flag them before MDIO probing
		 * has completed, since they might be turned off at that
		 * time
		 */
474 475
		err = of_get_phy_mode(port, &mode);
		if (err)
476 477 478 479
			continue;

		if (mode == PHY_INTERFACE_MODE_INTERNAL)
			priv->int_phy_mask |= 1 << port_num;
480 481 482

		if (mode == PHY_INTERFACE_MODE_MOCA)
			priv->moca_port = port_num;
483 484 485

		if (of_property_read_bool(port, "brcm,use-bcm-hdr"))
			priv->brcm_tag_mask |= 1 << port_num;
486 487 488
	}
}

489 490
static int bcm_sf2_mdio_register(struct dsa_switch *ds)
{
491
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	struct device_node *dn;
	static int index;
	int err;

	/* Find our integrated MDIO bus node */
	dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio");
	priv->master_mii_bus = of_mdio_find_bus(dn);
	if (!priv->master_mii_bus)
		return -EPROBE_DEFER;

	get_device(&priv->master_mii_bus->dev);
	priv->master_mii_dn = dn;

	priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
	if (!priv->slave_mii_bus)
		return -ENOMEM;

	priv->slave_mii_bus->priv = priv;
	priv->slave_mii_bus->name = "sf2 slave mii";
	priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read;
	priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write;
	snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d",
		 index++);
	priv->slave_mii_bus->dev.of_node = dn;

	/* Include the pseudo-PHY address to divert reads towards our
	 * workaround. This is only required for 7445D0, since 7445E0
	 * disconnects the internal switch pseudo-PHY such that we can use the
	 * regular SWITCH_MDIO master controller instead.
	 *
	 * Here we flag the pseudo PHY as needing special treatment and would
	 * otherwise make all other PHY read/writes go to the master MDIO bus
	 * controller that comes with this switch backed by the "mdio-unimac"
	 * driver.
	 */
	if (of_machine_is_compatible("brcm,bcm7445d0"))
		priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR);
	else
		priv->indir_phy_mask = 0;

	ds->phys_mii_mask = priv->indir_phy_mask;
	ds->slave_mii_bus = priv->slave_mii_bus;
	priv->slave_mii_bus->parent = ds->dev->parent;
	priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask;

537
	err = mdiobus_register(priv->slave_mii_bus);
538
	if (err && dn)
539 540 541 542 543 544 545 546
		of_node_put(dn);

	return err;
}

static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv)
{
	mdiobus_unregister(priv->slave_mii_bus);
547
	of_node_put(priv->master_mii_dn);
548 549
}

550 551
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
{
552
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
553 554 555 556 557 558 559 560 561

	/* The BCM7xxx PHY driver expects to find the integrated PHY revision
	 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
	 * the REG_PHY_REVISION register layout is.
	 */

	return priv->hw_params.gphy_rev;
}

562 563 564 565
static void bcm_sf2_sw_validate(struct dsa_switch *ds, int port,
				unsigned long *supported,
				struct phylink_link_state *state)
{
566
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
567 568 569 570 571 572 573 574 575
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };

	if (!phy_interface_mode_is_rgmii(state->interface) &&
	    state->interface != PHY_INTERFACE_MODE_MII &&
	    state->interface != PHY_INTERFACE_MODE_REVMII &&
	    state->interface != PHY_INTERFACE_MODE_GMII &&
	    state->interface != PHY_INTERFACE_MODE_INTERNAL &&
	    state->interface != PHY_INTERFACE_MODE_MOCA) {
		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
576 577 578 579
		if (port != core_readl(priv, CORE_IMP0_PRT_ID))
			dev_err(ds->dev,
				"Unsupported interface: %d for port %d\n",
				state->interface, port);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
		return;
	}

	/* Allow all the expected bits */
	phylink_set(mask, Autoneg);
	phylink_set_port_modes(mask);
	phylink_set(mask, Pause);
	phylink_set(mask, Asym_Pause);

	/* With the exclusion of MII and Reverse MII, we support Gigabit,
	 * including Half duplex
	 */
	if (state->interface != PHY_INTERFACE_MODE_MII &&
	    state->interface != PHY_INTERFACE_MODE_REVMII) {
		phylink_set(mask, 1000baseT_Full);
		phylink_set(mask, 1000baseT_Half);
	}

	phylink_set(mask, 10baseT_Half);
	phylink_set(mask, 10baseT_Full);
	phylink_set(mask, 100baseT_Half);
	phylink_set(mask, 100baseT_Full);

	bitmap_and(supported, supported, mask,
		   __ETHTOOL_LINK_MODE_MASK_NBITS);
	bitmap_and(state->advertising, state->advertising, mask,
		   __ETHTOOL_LINK_MODE_MASK_NBITS);
}

static void bcm_sf2_sw_mac_config(struct dsa_switch *ds, int port,
				  unsigned int mode,
				  const struct phylink_link_state *state)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	u32 id_mode_dis = 0, port_mode;
615
	u32 reg;
616

617 618 619
	if (port == core_readl(priv, CORE_IMP0_PRT_ID))
		return;

620 621 622
	switch (state->interface) {
	case PHY_INTERFACE_MODE_RGMII:
		id_mode_dis = 1;
623
		fallthrough;
624 625 626 627 628 629 630 631 632 633
	case PHY_INTERFACE_MODE_RGMII_TXID:
		port_mode = EXT_GPHY;
		break;
	case PHY_INTERFACE_MODE_MII:
		port_mode = EXT_EPHY;
		break;
	case PHY_INTERFACE_MODE_REVMII:
		port_mode = EXT_REVMII;
		break;
	default:
634 635
		/* Nothing required for all other PHYs: internal and MoCA */
		return;
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	}

	/* Clear id_mode_dis bit, and the existing port mode, let
	 * RGMII_MODE_EN bet set by mac_link_{up,down}
	 */
	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
	reg &= ~ID_MODE_DIS;
	reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);

	reg |= port_mode;
	if (id_mode_dis)
		reg |= ID_MODE_DIS;

	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
}

static void bcm_sf2_sw_mac_link_set(struct dsa_switch *ds, int port,
				    phy_interface_t interface, bool link)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	u32 reg;

	if (!phy_interface_mode_is_rgmii(interface) &&
	    interface != PHY_INTERFACE_MODE_MII &&
	    interface != PHY_INTERFACE_MODE_REVMII)
		return;

	/* If the link is down, just disable the interface to conserve power */
	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
	if (link)
		reg |= RGMII_MODE_EN;
	else
		reg &= ~RGMII_MODE_EN;
	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
}

static void bcm_sf2_sw_mac_link_down(struct dsa_switch *ds, int port,
				     unsigned int mode,
				     phy_interface_t interface)
{
676 677 678 679 680 681 682 683 684 685 686 687 688 689
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	u32 reg, offset;

	if (port != core_readl(priv, CORE_IMP0_PRT_ID)) {
		if (priv->type == BCM7445_DEVICE_ID)
			offset = CORE_STS_OVERRIDE_GMIIP_PORT(port);
		else
			offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port);

		reg = core_readl(priv, offset);
		reg &= ~LINK_STS;
		core_writel(priv, reg, offset);
	}

690 691 692 693 694 695
	bcm_sf2_sw_mac_link_set(ds, port, interface, false);
}

static void bcm_sf2_sw_mac_link_up(struct dsa_switch *ds, int port,
				   unsigned int mode,
				   phy_interface_t interface,
696 697 698
				   struct phy_device *phydev,
				   int speed, int duplex,
				   bool tx_pause, bool rx_pause)
699 700 701
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	struct ethtool_eee *p = &priv->dev->ports[port].eee;
702
	u32 reg, offset;
703 704 705

	bcm_sf2_sw_mac_link_set(ds, port, interface, true);

706 707 708 709 710 711
	if (port != core_readl(priv, CORE_IMP0_PRT_ID)) {
		if (priv->type == BCM7445_DEVICE_ID)
			offset = CORE_STS_OVERRIDE_GMIIP_PORT(port);
		else
			offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port);

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
		if (interface == PHY_INTERFACE_MODE_RGMII ||
		    interface == PHY_INTERFACE_MODE_RGMII_TXID ||
		    interface == PHY_INTERFACE_MODE_MII ||
		    interface == PHY_INTERFACE_MODE_REVMII) {
			reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
			reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);

			if (tx_pause)
				reg |= TX_PAUSE_EN;
			if (rx_pause)
				reg |= RX_PAUSE_EN;

			reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
		}

727 728 729 730 731 732 733 734 735 736 737 738 739
		reg = SW_OVERRIDE | LINK_STS;
		switch (speed) {
		case SPEED_1000:
			reg |= SPDSTS_1000 << SPEED_SHIFT;
			break;
		case SPEED_100:
			reg |= SPDSTS_100 << SPEED_SHIFT;
			break;
		}

		if (duplex == DUPLEX_FULL)
			reg |= DUPLX_MODE;

740 741 742
		core_writel(priv, reg, offset);
	}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	if (mode == MLO_AN_PHY && phydev)
		p->eee_enabled = b53_eee_init(ds, port, phydev);
}

static void bcm_sf2_sw_fixed_state(struct dsa_switch *ds, int port,
				   struct phylink_link_state *status)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);

	status->link = false;

	/* MoCA port is special as we do not get link status from CORE_LNKSTS,
	 * which means that we need to force the link at the port override
	 * level to get the data to flow. We do use what the interrupt handler
	 * did determine before.
	 *
	 * For the other ports, we just force the link status, since this is
	 * a fixed PHY device.
	 */
	if (port == priv->moca_port) {
		status->link = priv->port_sts[port].link;
		/* For MoCA interfaces, also force a link down notification
		 * since some version of the user-space daemon (mocad) use
		 * cmd->autoneg to force the link, which messes up the PHY
		 * state machine and make it go in PHY_FORCING state instead.
		 */
		if (!status->link)
770
			netif_carrier_off(dsa_to_port(ds, port)->slave);
771 772 773 774 775 776
		status->duplex = DUPLEX_FULL;
	} else {
		status->link = true;
	}
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790
static void bcm_sf2_enable_acb(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	u32 reg;

	/* Enable ACB globally */
	reg = acb_readl(priv, ACB_CONTROL);
	reg |= (ACB_FLUSH_MASK << ACB_FLUSH_SHIFT);
	acb_writel(priv, reg, ACB_CONTROL);
	reg &= ~(ACB_FLUSH_MASK << ACB_FLUSH_SHIFT);
	reg |= ACB_EN | ACB_ALGORITHM;
	acb_writel(priv, reg, ACB_CONTROL);
}

791 792
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
{
793
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
794 795
	unsigned int port;

796
	bcm_sf2_intr_disable(priv);
797 798 799 800 801

	/* Disable all ports physically present including the IMP
	 * port, the other ones have already been disabled during
	 * bcm_sf2_sw_setup
	 */
802
	for (port = 0; port < ds->num_ports; port++) {
803
		if (dsa_is_user_port(ds, port) || dsa_is_cpu_port(ds, port))
804
			bcm_sf2_port_disable(ds, port);
805 806
	}

807 808 809
	if (!priv->wol_ports_mask)
		clk_disable_unprepare(priv->clk);

810 811 812 813 814
	return 0;
}

static int bcm_sf2_sw_resume(struct dsa_switch *ds)
{
815
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
816 817
	int ret;

818 819 820
	if (!priv->wol_ports_mask)
		clk_prepare_enable(priv->clk);

821 822 823 824 825 826
	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("%s: failed to software reset switch\n", __func__);
		return ret;
	}

827 828 829 830
	ret = bcm_sf2_cfp_resume(ds);
	if (ret)
		return ret;

831 832
	if (priv->hw_params.num_gphy == 1)
		bcm_sf2_gphy_enable_set(ds, true);
833

834
	ds->ops->setup(ds);
835

836 837 838
	return 0;
}

839 840 841
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
			       struct ethtool_wolinfo *wol)
{
842
	struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
843
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
844
	struct ethtool_wolinfo pwol = { };
845 846

	/* Get the parent device WoL settings */
847 848
	if (p->ethtool_ops->get_wol)
		p->ethtool_ops->get_wol(p, &pwol);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

	/* Advertise the parent device supported settings */
	wol->supported = pwol.supported;
	memset(&wol->sopass, 0, sizeof(wol->sopass));

	if (pwol.wolopts & WAKE_MAGICSECURE)
		memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));

	if (priv->wol_ports_mask & (1 << port))
		wol->wolopts = pwol.wolopts;
	else
		wol->wolopts = 0;
}

static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
			      struct ethtool_wolinfo *wol)
{
866
	struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
867
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
868
	s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
869
	struct ethtool_wolinfo pwol =  { };
870

871 872
	if (p->ethtool_ops->get_wol)
		p->ethtool_ops->get_wol(p, &pwol);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	if (wol->wolopts & ~pwol.supported)
		return -EINVAL;

	if (wol->wolopts)
		priv->wol_ports_mask |= (1 << port);
	else
		priv->wol_ports_mask &= ~(1 << port);

	/* If we have at least one port enabled, make sure the CPU port
	 * is also enabled. If the CPU port is the last one enabled, we disable
	 * it since this configuration does not make sense.
	 */
	if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
		priv->wol_ports_mask |= (1 << cpu_port);
	else
		priv->wol_ports_mask &= ~(1 << cpu_port);

	return p->ethtool_ops->set_wol(p, wol);
}

893 894
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
895
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
896
	unsigned int port;
897

898
	/* Enable all valid ports and disable those unused */
899
	for (port = 0; port < priv->hw_params.num_ports; port++) {
900
		/* IMP port receives special treatment */
901
		if (dsa_is_user_port(ds, port))
902 903
			bcm_sf2_port_setup(ds, port, NULL);
		else if (dsa_is_cpu_port(ds, port))
904
			bcm_sf2_imp_setup(ds, port);
905
		else
906
			bcm_sf2_port_disable(ds, port);
907 908
	}

909
	b53_configure_vlan(ds);
910
	bcm_sf2_enable_acb(ds);
911 912 913 914

	return 0;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/* The SWITCH_CORE register space is managed by b53 but operates on a page +
 * register basis so we need to translate that into an address that the
 * bus-glue understands.
 */
#define SF2_PAGE_REG_MKADDR(page, reg)	((page) << 10 | (reg) << 2)

static int bcm_sf2_core_read8(struct b53_device *dev, u8 page, u8 reg,
			      u8 *val)
{
	struct bcm_sf2_priv *priv = dev->priv;

	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_read16(struct b53_device *dev, u8 page, u8 reg,
			       u16 *val)
{
	struct bcm_sf2_priv *priv = dev->priv;

	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_read32(struct b53_device *dev, u8 page, u8 reg,
			       u32 *val)
{
	struct bcm_sf2_priv *priv = dev->priv;

	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_read64(struct b53_device *dev, u8 page, u8 reg,
			       u64 *val)
{
	struct bcm_sf2_priv *priv = dev->priv;

	*val = core_readq(priv, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_write8(struct b53_device *dev, u8 page, u8 reg,
			       u8 value)
{
	struct bcm_sf2_priv *priv = dev->priv;

	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_write16(struct b53_device *dev, u8 page, u8 reg,
				u16 value)
{
	struct bcm_sf2_priv *priv = dev->priv;

	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_write32(struct b53_device *dev, u8 page, u8 reg,
				u32 value)
{
	struct bcm_sf2_priv *priv = dev->priv;

	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_write64(struct b53_device *dev, u8 page, u8 reg,
				u64 value)
{
	struct bcm_sf2_priv *priv = dev->priv;

	core_writeq(priv, value, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

1001
static const struct b53_io_ops bcm_sf2_io_ops = {
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	.read8	= bcm_sf2_core_read8,
	.read16	= bcm_sf2_core_read16,
	.read32	= bcm_sf2_core_read32,
	.read48	= bcm_sf2_core_read64,
	.read64	= bcm_sf2_core_read64,
	.write8	= bcm_sf2_core_write8,
	.write16 = bcm_sf2_core_write16,
	.write32 = bcm_sf2_core_write32,
	.write48 = bcm_sf2_core_write64,
	.write64 = bcm_sf2_core_write64,
};

1014 1015 1016
static void bcm_sf2_sw_get_strings(struct dsa_switch *ds, int port,
				   u32 stringset, uint8_t *data)
{
1017 1018
	int cnt = b53_get_sset_count(ds, port, stringset);

1019
	b53_get_strings(ds, port, stringset, data);
1020 1021
	bcm_sf2_cfp_get_strings(ds, port, stringset,
				data + cnt * ETH_GSTRING_LEN);
1022 1023 1024 1025 1026
}

static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds, int port,
					 uint64_t *data)
{
1027 1028
	int cnt = b53_get_sset_count(ds, port, ETH_SS_STATS);

1029
	b53_get_ethtool_stats(ds, port, data);
1030
	bcm_sf2_cfp_get_ethtool_stats(ds, port, data + cnt);
1031 1032 1033 1034 1035
}

static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds, int port,
				     int sset)
{
1036 1037 1038 1039 1040 1041 1042 1043
	int cnt = b53_get_sset_count(ds, port, sset);

	if (cnt < 0)
		return cnt;

	cnt += bcm_sf2_cfp_get_sset_count(ds, port, sset);

	return cnt;
1044 1045
}

1046
static const struct dsa_switch_ops bcm_sf2_ops = {
1047
	.get_tag_protocol	= b53_get_tag_protocol,
1048
	.setup			= bcm_sf2_sw_setup,
1049 1050 1051
	.get_strings		= bcm_sf2_sw_get_strings,
	.get_ethtool_stats	= bcm_sf2_sw_get_ethtool_stats,
	.get_sset_count		= bcm_sf2_sw_get_sset_count,
1052
	.get_ethtool_phy_stats	= b53_get_ethtool_phy_stats,
1053
	.get_phy_flags		= bcm_sf2_sw_get_phy_flags,
1054 1055 1056 1057 1058
	.phylink_validate	= bcm_sf2_sw_validate,
	.phylink_mac_config	= bcm_sf2_sw_mac_config,
	.phylink_mac_link_down	= bcm_sf2_sw_mac_link_down,
	.phylink_mac_link_up	= bcm_sf2_sw_mac_link_up,
	.phylink_fixed_state	= bcm_sf2_sw_fixed_state,
1059 1060 1061 1062 1063 1064
	.suspend		= bcm_sf2_sw_suspend,
	.resume			= bcm_sf2_sw_resume,
	.get_wol		= bcm_sf2_sw_get_wol,
	.set_wol		= bcm_sf2_sw_set_wol,
	.port_enable		= bcm_sf2_port_setup,
	.port_disable		= bcm_sf2_port_disable,
1065 1066
	.get_mac_eee		= b53_get_mac_eee,
	.set_mac_eee		= b53_set_mac_eee,
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	.port_bridge_join	= b53_br_join,
	.port_bridge_leave	= b53_br_leave,
	.port_stp_state_set	= b53_br_set_stp_state,
	.port_fast_age		= b53_br_fast_age,
	.port_vlan_filtering	= b53_vlan_filtering,
	.port_vlan_prepare	= b53_vlan_prepare,
	.port_vlan_add		= b53_vlan_add,
	.port_vlan_del		= b53_vlan_del,
	.port_fdb_dump		= b53_fdb_dump,
	.port_fdb_add		= b53_fdb_add,
	.port_fdb_del		= b53_fdb_del,
1078 1079
	.get_rxnfc		= bcm_sf2_get_rxnfc,
	.set_rxnfc		= bcm_sf2_set_rxnfc,
1080 1081
	.port_mirror_add	= b53_mirror_add,
	.port_mirror_del	= b53_mirror_del,
1082 1083 1084
	.port_mdb_prepare	= b53_mdb_prepare,
	.port_mdb_add		= b53_mdb_add,
	.port_mdb_del		= b53_mdb_del,
1085 1086
};

1087 1088 1089 1090
struct bcm_sf2_of_data {
	u32 type;
	const u16 *reg_offsets;
	unsigned int core_reg_align;
1091
	unsigned int num_cfp_rules;
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
};

/* Register offsets for the SWITCH_REG_* block */
static const u16 bcm_sf2_7445_reg_offsets[] = {
	[REG_SWITCH_CNTRL]	= 0x00,
	[REG_SWITCH_STATUS]	= 0x04,
	[REG_DIR_DATA_WRITE]	= 0x08,
	[REG_DIR_DATA_READ]	= 0x0C,
	[REG_SWITCH_REVISION]	= 0x18,
	[REG_PHY_REVISION]	= 0x1C,
	[REG_SPHY_CNTRL]	= 0x2C,
	[REG_RGMII_0_CNTRL]	= 0x34,
	[REG_RGMII_1_CNTRL]	= 0x40,
	[REG_RGMII_2_CNTRL]	= 0x4c,
	[REG_LED_0_CNTRL]	= 0x90,
	[REG_LED_1_CNTRL]	= 0x94,
	[REG_LED_2_CNTRL]	= 0x98,
};

static const struct bcm_sf2_of_data bcm_sf2_7445_data = {
	.type		= BCM7445_DEVICE_ID,
	.core_reg_align	= 0,
	.reg_offsets	= bcm_sf2_7445_reg_offsets,
1115
	.num_cfp_rules	= 256,
1116 1117
};

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static const u16 bcm_sf2_7278_reg_offsets[] = {
	[REG_SWITCH_CNTRL]	= 0x00,
	[REG_SWITCH_STATUS]	= 0x04,
	[REG_DIR_DATA_WRITE]	= 0x08,
	[REG_DIR_DATA_READ]	= 0x0c,
	[REG_SWITCH_REVISION]	= 0x10,
	[REG_PHY_REVISION]	= 0x14,
	[REG_SPHY_CNTRL]	= 0x24,
	[REG_RGMII_0_CNTRL]	= 0xe0,
	[REG_RGMII_1_CNTRL]	= 0xec,
	[REG_RGMII_2_CNTRL]	= 0xf8,
	[REG_LED_0_CNTRL]	= 0x40,
	[REG_LED_1_CNTRL]	= 0x4c,
	[REG_LED_2_CNTRL]	= 0x58,
};

static const struct bcm_sf2_of_data bcm_sf2_7278_data = {
	.type		= BCM7278_DEVICE_ID,
	.core_reg_align	= 1,
	.reg_offsets	= bcm_sf2_7278_reg_offsets,
1138
	.num_cfp_rules	= 128,
1139 1140
};

1141 1142 1143 1144
static const struct of_device_id bcm_sf2_of_match[] = {
	{ .compatible = "brcm,bcm7445-switch-v4.0",
	  .data = &bcm_sf2_7445_data
	},
1145 1146
	{ .compatible = "brcm,bcm7278-switch-v4.0",
	  .data = &bcm_sf2_7278_data
1147 1148 1149
	},
	{ .compatible = "brcm,bcm7278-switch-v4.8",
	  .data = &bcm_sf2_7278_data
1150
	},
1151 1152 1153 1154
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bcm_sf2_of_match);

1155 1156 1157 1158
static int bcm_sf2_sw_probe(struct platform_device *pdev)
{
	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
	struct device_node *dn = pdev->dev.of_node;
1159 1160
	const struct of_device_id *of_id = NULL;
	const struct bcm_sf2_of_data *data;
1161
	struct b53_platform_data *pdata;
1162
	struct dsa_switch_ops *ops;
1163
	struct device_node *ports;
1164
	struct bcm_sf2_priv *priv;
1165
	struct b53_device *dev;
1166 1167
	struct dsa_switch *ds;
	void __iomem **base;
1168 1169 1170 1171
	unsigned int i;
	u32 reg, rev;
	int ret;

1172 1173 1174 1175
	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

1176 1177 1178 1179
	ops = devm_kzalloc(&pdev->dev, sizeof(*ops), GFP_KERNEL);
	if (!ops)
		return -ENOMEM;

1180 1181
	dev = b53_switch_alloc(&pdev->dev, &bcm_sf2_io_ops, priv);
	if (!dev)
1182 1183
		return -ENOMEM;

1184 1185 1186 1187
	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	of_id = of_match_node(bcm_sf2_of_match, dn);
	if (!of_id || !of_id->data)
		return -EINVAL;

	data = of_id->data;

	/* Set SWITCH_REG register offsets and SWITCH_CORE align factor */
	priv->type = data->type;
	priv->reg_offsets = data->reg_offsets;
	priv->core_reg_align = data->core_reg_align;
1198
	priv->num_cfp_rules = data->num_cfp_rules;
1199

1200 1201 1202 1203 1204
	priv->rcdev = devm_reset_control_get_optional_exclusive(&pdev->dev,
								"switch");
	if (PTR_ERR(priv->rcdev) == -EPROBE_DEFER)
		return PTR_ERR(priv->rcdev);

1205 1206 1207 1208
	/* Auto-detection using standard registers will not work, so
	 * provide an indication of what kind of device we are for
	 * b53_common to work with
	 */
1209
	pdata->chip_id = priv->type;
1210 1211 1212 1213
	dev->pdata = pdata;

	priv->dev = dev;
	ds = dev->ds;
1214
	ds->ops = &bcm_sf2_ops;
1215

1216 1217 1218
	/* Advertise the 8 egress queues */
	ds->num_tx_queues = SF2_NUM_EGRESS_QUEUES;

1219
	dev_set_drvdata(&pdev->dev, priv);
1220

1221
	spin_lock_init(&priv->indir_lock);
1222
	mutex_init(&priv->cfp.lock);
1223
	INIT_LIST_HEAD(&priv->cfp.rules_list);
1224 1225 1226 1227 1228

	/* CFP rule #0 cannot be used for specific classifications, flag it as
	 * permanently used
	 */
	set_bit(0, priv->cfp.used);
1229
	set_bit(0, priv->cfp.unique);
1230

1231 1232
	/* Balance of_node_put() done by of_find_node_by_name() */
	of_node_get(dn);
1233 1234 1235 1236 1237
	ports = of_find_node_by_name(dn, "ports");
	if (ports) {
		bcm_sf2_identify_ports(priv, ports);
		of_node_put(ports);
	}
1238 1239 1240 1241 1242 1243

	priv->irq0 = irq_of_parse_and_map(dn, 0);
	priv->irq1 = irq_of_parse_and_map(dn, 1);

	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
1244
		*base = devm_platform_ioremap_resource(pdev, i);
1245
		if (IS_ERR(*base)) {
1246
			pr_err("unable to find register: %s\n", reg_names[i]);
1247
			return PTR_ERR(*base);
1248 1249 1250 1251
		}
		base++;
	}

1252 1253 1254 1255 1256 1257
	priv->clk = devm_clk_get_optional(&pdev->dev, "sw_switch");
	if (IS_ERR(priv->clk))
		return PTR_ERR(priv->clk);

	clk_prepare_enable(priv->clk);

1258 1259 1260 1261 1262 1263 1264 1265
	priv->clk_mdiv = devm_clk_get_optional(&pdev->dev, "sw_switch_mdiv");
	if (IS_ERR(priv->clk_mdiv)) {
		ret = PTR_ERR(priv->clk_mdiv);
		goto out_clk;
	}

	clk_prepare_enable(priv->clk_mdiv);

1266 1267 1268
	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("unable to software reset switch: %d\n", ret);
1269
		goto out_clk_mdiv;
1270 1271
	}

1272 1273
	bcm_sf2_gphy_enable_set(priv->dev->ds, true);

1274 1275 1276
	ret = bcm_sf2_mdio_register(ds);
	if (ret) {
		pr_err("failed to register MDIO bus\n");
1277
		goto out_clk_mdiv;
1278 1279
	}

1280 1281
	bcm_sf2_gphy_enable_set(priv->dev->ds, false);

1282 1283 1284 1285 1286 1287
	ret = bcm_sf2_cfp_rst(priv);
	if (ret) {
		pr_err("failed to reset CFP\n");
		goto out_mdio;
	}

1288 1289 1290
	/* Disable all interrupts and request them */
	bcm_sf2_intr_disable(priv);

1291
	ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0,
1292
			       "switch_0", ds);
1293 1294
	if (ret < 0) {
		pr_err("failed to request switch_0 IRQ\n");
1295
		goto out_mdio;
1296 1297
	}

1298
	ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0,
1299
			       "switch_1", ds);
1300 1301
	if (ret < 0) {
		pr_err("failed to request switch_1 IRQ\n");
1302
		goto out_mdio;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	}

	/* Reset the MIB counters */
	reg = core_readl(priv, CORE_GMNCFGCFG);
	reg |= RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);
	reg &= ~RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);

	/* Get the maximum number of ports for this switch */
	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
		priv->hw_params.num_ports = DSA_MAX_PORTS;

	/* Assume a single GPHY setup if we can't read that property */
	if (of_property_read_u32(dn, "brcm,num-gphy",
				 &priv->hw_params.num_gphy))
		priv->hw_params.num_gphy = 1;

	rev = reg_readl(priv, REG_SWITCH_REVISION);
	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
					SWITCH_TOP_REV_MASK;
	priv->hw_params.core_rev = (rev & SF2_REV_MASK);

	rev = reg_readl(priv, REG_PHY_REVISION);
	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;

1330
	ret = b53_switch_register(dev);
1331
	if (ret)
1332
		goto out_mdio;
1333

1334 1335 1336 1337 1338
	dev_info(&pdev->dev,
		 "Starfighter 2 top: %x.%02x, core: %x.%02x, IRQs: %d, %d\n",
		 priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
		 priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
		 priv->irq0, priv->irq1);
1339 1340 1341

	return 0;

1342 1343
out_mdio:
	bcm_sf2_mdio_unregister(priv);
1344 1345
out_clk_mdiv:
	clk_disable_unprepare(priv->clk_mdiv);
1346 1347
out_clk:
	clk_disable_unprepare(priv->clk);
1348 1349 1350
	return ret;
}

1351
static int bcm_sf2_sw_remove(struct platform_device *pdev)
1352
{
1353
	struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
1354 1355

	priv->wol_ports_mask = 0;
1356 1357
	/* Disable interrupts */
	bcm_sf2_intr_disable(priv);
1358
	dsa_unregister_switch(priv->dev->ds);
1359
	bcm_sf2_cfp_exit(priv->dev->ds);
1360
	bcm_sf2_mdio_unregister(priv);
1361
	clk_disable_unprepare(priv->clk_mdiv);
1362
	clk_disable_unprepare(priv->clk);
1363 1364
	if (priv->type == BCM7278_DEVICE_ID && !IS_ERR(priv->rcdev))
		reset_control_assert(priv->rcdev);
1365 1366 1367 1368

	return 0;
}

1369 1370 1371 1372 1373 1374 1375
static void bcm_sf2_sw_shutdown(struct platform_device *pdev)
{
	struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);

	/* For a kernel about to be kexec'd we want to keep the GPHY on for a
	 * successful MDIO bus scan to occur. If we did turn off the GPHY
	 * before (e.g: port_disable), this will also power it back on.
1376 1377
	 *
	 * Do not rely on kexec_in_progress, just power the PHY on.
1378 1379
	 */
	if (priv->hw_params.num_gphy == 1)
1380
		bcm_sf2_gphy_enable_set(priv->dev->ds, true);
1381 1382
}

1383 1384
#ifdef CONFIG_PM_SLEEP
static int bcm_sf2_suspend(struct device *dev)
1385
{
1386
	struct bcm_sf2_priv *priv = dev_get_drvdata(dev);
1387

1388
	return dsa_switch_suspend(priv->dev->ds);
1389
}
1390 1391 1392

static int bcm_sf2_resume(struct device *dev)
{
1393
	struct bcm_sf2_priv *priv = dev_get_drvdata(dev);
1394

1395
	return dsa_switch_resume(priv->dev->ds);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops,
			 bcm_sf2_suspend, bcm_sf2_resume);


static struct platform_driver bcm_sf2_driver = {
	.probe	= bcm_sf2_sw_probe,
	.remove	= bcm_sf2_sw_remove,
1406
	.shutdown = bcm_sf2_sw_shutdown,
1407 1408 1409 1410 1411 1412 1413
	.driver = {
		.name = "brcm-sf2",
		.of_match_table = bcm_sf2_of_match,
		.pm = &bcm_sf2_pm_ops,
	},
};
module_platform_driver(bcm_sf2_driver);
1414 1415 1416 1417 1418

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:brcm-sf2");