sgtl5000.c 37.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
 *
 * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/clk.h>
19
#include <linux/log2.h>
20
#include <linux/regmap.h>
21 22 23
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/consumer.h>
24
#include <linux/of_device.h>
25 26 27 28 29 30 31 32 33 34 35 36 37
#include <sound/core.h>
#include <sound/tlv.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>

#include "sgtl5000.h"

#define SGTL5000_DAP_REG_OFFSET	0x0100
#define SGTL5000_MAX_REG_OFFSET	0x013A

38
/* default value of sgtl5000 registers */
39
static const struct reg_default sgtl5000_reg_defaults[] = {
40
	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
41
	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
42
	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
43
	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
44 45
	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
46
	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
47 48
	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
49 50 51
	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
52 53
	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
54 55 56 57 58 59
	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
	{ SGTL5000_DAP_CTRL,			0x0000 },
	{ SGTL5000_DAP_PEQ,			0x0000 },
60 61
	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
62
	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
63 64 65 66 67 68 69
	{ SGTL5000_DAP_SURROUND,		0x0040 },
	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
70
	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
71 72 73 74
	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
};

/* regulator supplies for sgtl5000, VDDD is an optional external supply */
enum sgtl5000_regulator_supplies {
	VDDA,
	VDDIO,
	VDDD,
	SGTL5000_SUPPLY_NUM
};

/* vddd is optional supply */
static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
	"VDDA",
	"VDDIO",
	"VDDD"
};

#define LDO_VOLTAGE		1200000
93
#define LINREG_VDDD	((1600 - LDO_VOLTAGE / 1000) / 50)
94

95 96 97 98 99 100 101
enum sgtl5000_micbias_resistor {
	SGTL5000_MICBIAS_OFF = 0,
	SGTL5000_MICBIAS_2K = 2,
	SGTL5000_MICBIAS_4K = 4,
	SGTL5000_MICBIAS_8K = 8,
};

102 103 104 105 106 107
/* sgtl5000 private structure in codec */
struct sgtl5000_priv {
	int sysclk;	/* sysclk rate */
	int master;	/* i2s master or not */
	int fmt;	/* i2s data format */
	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
108
	int num_supplies;
109
	struct regmap *regmap;
110
	struct clk *mclk;
111
	int revision;
112
	u8 micbias_resistor;
113
	u8 micbias_voltage;
114 115 116 117 118 119 120 121 122 123 124 125 126 127
};

/*
 * mic_bias power on/off share the same register bits with
 * output impedance of mic bias, when power on mic bias, we
 * need reclaim it to impedance value.
 * 0x0 = Powered off
 * 0x1 = 2Kohm
 * 0x2 = 4Kohm
 * 0x3 = 8Kohm
 */
static int mic_bias_event(struct snd_soc_dapm_widget *w,
	struct snd_kcontrol *kcontrol, int event)
{
128 129
	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
130

131 132
	switch (event) {
	case SND_SOC_DAPM_POST_PMU:
133
		/* change mic bias resistor */
134
		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
135 136
			SGTL5000_BIAS_R_MASK,
			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
137 138 139
		break;

	case SND_SOC_DAPM_PRE_PMD:
140
		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
141
				SGTL5000_BIAS_R_MASK, 0);
142 143 144 145 146 147
		break;
	}
	return 0;
}

/*
148 149 150
 * As manual described, ADC/DAC only works when VAG powerup,
 * So enabled VAG before ADC/DAC up.
 * In power down case, we need wait 400ms when vag fully ramped down.
151
 */
152
static int power_vag_event(struct snd_soc_dapm_widget *w,
153 154
	struct snd_kcontrol *kcontrol, int event)
{
155
	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
156 157
	const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;

158
	switch (event) {
159
	case SND_SOC_DAPM_POST_PMU:
160
		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
161
			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
162
		msleep(400);
163 164
		break;

165
	case SND_SOC_DAPM_PRE_PMD:
166 167 168 169 170
		/*
		 * Don't clear VAG_POWERUP, when both DAC and ADC are
		 * operational to prevent inadvertently starving the
		 * other one of them.
		 */
171
		if ((snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER) &
172
				mask) != mask) {
173
			snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
174 175 176
				SGTL5000_VAG_POWERUP, 0);
			msleep(400);
		}
177 178 179 180 181 182 183 184 185 186 187 188 189
		break;
	default:
		break;
	}

	return 0;
}

/* input sources for ADC */
static const char *adc_mux_text[] = {
	"MIC_IN", "LINE_IN"
};

190 191 192
static SOC_ENUM_SINGLE_DECL(adc_enum,
			    SGTL5000_CHIP_ANA_CTRL, 2,
			    adc_mux_text);
193 194 195 196 197 198 199 200 201

static const struct snd_kcontrol_new adc_mux =
SOC_DAPM_ENUM("Capture Mux", adc_enum);

/* input sources for DAC */
static const char *dac_mux_text[] = {
	"DAC", "LINE_IN"
};

202 203 204
static SOC_ENUM_SINGLE_DECL(dac_enum,
			    SGTL5000_CHIP_ANA_CTRL, 6,
			    dac_mux_text);
205 206 207 208 209 210 211 212 213 214 215

static const struct snd_kcontrol_new dac_mux =
SOC_DAPM_ENUM("Headphone Mux", dac_enum);

static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
	SND_SOC_DAPM_INPUT("LINE_IN"),
	SND_SOC_DAPM_INPUT("MIC_IN"),

	SND_SOC_DAPM_OUTPUT("HP_OUT"),
	SND_SOC_DAPM_OUTPUT("LINE_OUT"),

216 217 218
	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
			    mic_bias_event,
			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
219

220 221
	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
222 223 224 225 226 227 228 229 230 231 232 233 234 235

	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),

	/* aif for i2s input */
	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
				0, SGTL5000_CHIP_DIG_POWER,
				0, 0),

	/* aif for i2s output */
	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
				0, SGTL5000_CHIP_DIG_POWER,
				1, 0),

236
	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
237
	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
238 239 240

	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
241 242 243
};

/* routes for sgtl5000 */
244
static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */

	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */

	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
	{"LO", NULL, "DAC"},			/* dac --> line_out */

	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */

	{"LINE_OUT", NULL, "LO"},
	{"HP_OUT", NULL, "HP"},
};

/* custom function to fetch info of PCM playback volume */
static int dac_info_volsw(struct snd_kcontrol *kcontrol,
			  struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 2;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = 0xfc - 0x3c;
	return 0;
}

/*
 * custom function to get of PCM playback volume
 *
 * dac volume register
 * 15-------------8-7--------------0
 * | R channel vol | L channel vol |
 *  -------------------------------
 *
 * PCM volume with 0.5017 dB steps from 0 to -90 dB
 *
 * register values map to dB
 * 0x3B and less = Reserved
 * 0x3C = 0 dB
 * 0x3D = -0.5 dB
 * 0xF0 = -90 dB
 * 0xFC and greater = Muted
 *
 * register value map to userspace value
 *
 * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
 *			------------------------------
 * userspace value	0xc0			     0
 */
static int dac_get_volsw(struct snd_kcontrol *kcontrol,
			 struct snd_ctl_elem_value *ucontrol)
{
299
	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	int reg;
	int l;
	int r;

	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);

	/* get left channel volume */
	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;

	/* get right channel volume */
	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;

	/* make sure value fall in (0x3c,0xfc) */
	l = clamp(l, 0x3c, 0xfc);
	r = clamp(r, 0x3c, 0xfc);

	/* invert it and map to userspace value */
	l = 0xfc - l;
	r = 0xfc - r;

	ucontrol->value.integer.value[0] = l;
	ucontrol->value.integer.value[1] = r;

	return 0;
}

/*
 * custom function to put of PCM playback volume
 *
 * dac volume register
 * 15-------------8-7--------------0
 * | R channel vol | L channel vol |
 *  -------------------------------
 *
 * PCM volume with 0.5017 dB steps from 0 to -90 dB
 *
 * register values map to dB
 * 0x3B and less = Reserved
 * 0x3C = 0 dB
 * 0x3D = -0.5 dB
 * 0xF0 = -90 dB
 * 0xFC and greater = Muted
 *
 * userspace value map to register value
 *
 * userspace value	0xc0			     0
 *			------------------------------
 * register value	0x3c(0dB)	0xf0(-90dB)0xfc
 */
static int dac_put_volsw(struct snd_kcontrol *kcontrol,
			 struct snd_ctl_elem_value *ucontrol)
{
352
	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	int reg;
	int l;
	int r;

	l = ucontrol->value.integer.value[0];
	r = ucontrol->value.integer.value[1];

	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
	l = clamp(l, 0, 0xfc - 0x3c);
	r = clamp(r, 0, 0xfc - 0x3c);

	/* invert it, get the value can be set to register */
	l = 0xfc - l;
	r = 0xfc - r;

	/* shift to get the register value */
	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;

	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);

	return 0;
}

static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);

/* tlv for mic gain, 0db 20db 30db 40db */
380
static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
381
	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
382 383
	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

/* tlv for hp volume, -51.5db to 12.0db, step .5db */
static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);

static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
	/* SOC_DOUBLE_S8_TLV with invert */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
		.name = "PCM Playback Volume",
		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
			SNDRV_CTL_ELEM_ACCESS_READWRITE,
		.info = dac_info_volsw,
		.get = dac_get_volsw,
		.put = dac_put_volsw,
	},

	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
			SGTL5000_CHIP_ANA_ADC_CTRL,
403
			8, 1, 0, capture_6db_attenuate),
404 405 406 407 408 409 410 411 412 413 414
	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),

	SOC_DOUBLE_TLV("Headphone Playback Volume",
			SGTL5000_CHIP_ANA_HP_CTRL,
			0, 8,
			0x7f, 1,
			headphone_volume),
	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
			5, 1, 0),

	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
415
			0, 3, 0, mic_gain_tlv),
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
};

/* mute the codec used by alsa core */
static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
{
	struct snd_soc_codec *codec = codec_dai->codec;
	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;

	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
			adcdac_ctrl, mute ? adcdac_ctrl : 0);

	return 0;
}

/* set codec format */
static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
	struct snd_soc_codec *codec = codec_dai->codec;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
	u16 i2sctl = 0;

	sgtl5000->master = 0;
	/*
	 * i2s clock and frame master setting.
	 * ONLY support:
	 *  - clock and frame slave,
	 *  - clock and frame master
	 */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		i2sctl |= SGTL5000_I2S_MASTER;
		sgtl5000->master = 1;
		break;
	default:
		return -EINVAL;
	}

	/* setting i2s data format */
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_DSP_A:
458
		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
459 460
		break;
	case SND_SOC_DAIFMT_DSP_B:
461
		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
462 463 464
		i2sctl |= SGTL5000_I2S_LRALIGN;
		break;
	case SND_SOC_DAIFMT_I2S:
465
		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
466 467
		break;
	case SND_SOC_DAIFMT_RIGHT_J:
468
		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
469 470 471
		i2sctl |= SGTL5000_I2S_LRPOL;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
472
		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
		i2sctl |= SGTL5000_I2S_LRALIGN;
		break;
	default:
		return -EINVAL;
	}

	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;

	/* Clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		break;
	case SND_SOC_DAIFMT_IB_NF:
		i2sctl |= SGTL5000_I2S_SCLK_INV;
		break;
	default:
		return -EINVAL;
	}

	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);

	return 0;
}

/* set codec sysclk */
static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
				   int clk_id, unsigned int freq, int dir)
{
	struct snd_soc_codec *codec = codec_dai->codec;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	switch (clk_id) {
	case SGTL5000_SYSCLK:
		sgtl5000->sysclk = freq;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/*
 * set clock according to i2s frame clock,
517 518
 * sgtl5000 provides 2 clock sources:
 * 1. sys_mclk: sample freq can only be configured to
519
 *	1/256, 1/384, 1/512 of sys_mclk.
520
 * 2. pll: can derive any audio clocks.
521 522
 *
 * clock setting rules:
523 524 525 526
 * 1. in slave mode, only sys_mclk can be used
 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
 * and above.
 * 3. usage of sys_mclk is preferred over pll to save power.
527 528 529 530 531 532 533 534 535
 */
static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
{
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
	int clk_ctl = 0;
	int sys_fs;	/* sample freq */

	/*
	 * sample freq should be divided by frame clock,
536 537
	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
	 * 32 kHz or 44.1 kHz.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	 */
	switch (frame_rate) {
	case 8000:
	case 16000:
		sys_fs = 32000;
		break;
	case 11025:
	case 22050:
		sys_fs = 44100;
		break;
	default:
		sys_fs = frame_rate;
		break;
	}

	/* set divided factor of frame clock */
	switch (sys_fs / frame_rate) {
	case 4:
		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
		break;
	case 2:
		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
		break;
	case 1:
		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
		break;
	default:
		return -EINVAL;
	}

	/* set the sys_fs according to frame rate */
	switch (sys_fs) {
	case 32000:
		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
		break;
	case 44100:
		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
		break;
	case 48000:
		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
		break;
	case 96000:
		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
		break;
	default:
		dev_err(codec->dev, "frame rate %d not supported\n",
			frame_rate);
		return -EINVAL;
	}

	/*
	 * calculate the divider of mclk/sample_freq,
590 591
	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
	 * of 8 MHz - 27 MHz
592
	 */
593
	switch (sgtl5000->sysclk / frame_rate) {
594 595 596 597 598 599 600 601 602 603 604 605 606
	case 256:
		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
			SGTL5000_MCLK_FREQ_SHIFT;
		break;
	case 384:
		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
			SGTL5000_MCLK_FREQ_SHIFT;
		break;
	case 512:
		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
			SGTL5000_MCLK_FREQ_SHIFT;
		break;
	default:
607
		/* if mclk does not satisfy the divider, use pll */
608 609 610 611 612 613
		if (sgtl5000->master) {
			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
				SGTL5000_MCLK_FREQ_SHIFT;
		} else {
			dev_err(codec->dev,
				"PLL not supported in slave mode\n");
614 615
			dev_err(codec->dev, "%d ratio is not supported. "
				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
616
				sgtl5000->sysclk / frame_rate);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
			return -EINVAL;
		}
	}

	/* if using pll, please check manual 6.4.2 for detail */
	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
		u64 out, t;
		int div2;
		int pll_ctl;
		unsigned int in, int_div, frac_div;

		if (sgtl5000->sysclk > 17000000) {
			div2 = 1;
			in = sgtl5000->sysclk / 2;
		} else {
			div2 = 0;
			in = sgtl5000->sysclk;
		}
		if (sys_fs == 44100)
			out = 180633600;
		else
			out = 196608000;
		t = do_div(out, in);
		int_div = out;
		t *= 2048;
		do_div(t, in);
		frac_div = t;
		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;

		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
		if (div2)
			snd_soc_update_bits(codec,
				SGTL5000_CHIP_CLK_TOP_CTRL,
				SGTL5000_INPUT_FREQ_DIV2,
				SGTL5000_INPUT_FREQ_DIV2);
		else
			snd_soc_update_bits(codec,
				SGTL5000_CHIP_CLK_TOP_CTRL,
				SGTL5000_INPUT_FREQ_DIV2,
				0);

		/* power up pll */
		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
663 664 665

		/* if using pll, clk_ctrl must be set after pll power up */
		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
666
	} else {
667 668 669
		/* otherwise, clk_ctrl must be set before pll power down */
		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		/* power down pll */
		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
			0);
	}

	return 0;
}

/*
 * Set PCM DAI bit size and sample rate.
 * input: params_rate, params_fmt
 */
static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
				  struct snd_pcm_hw_params *params,
				  struct snd_soc_dai *dai)
{
687
	struct snd_soc_codec *codec = dai->codec;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
	int channels = params_channels(params);
	int i2s_ctl = 0;
	int stereo;
	int ret;

	/* sysclk should already set */
	if (!sgtl5000->sysclk) {
		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
		return -EFAULT;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		stereo = SGTL5000_DAC_STEREO;
	else
		stereo = SGTL5000_ADC_STEREO;

	/* set mono to save power */
	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
			channels == 1 ? 0 : stereo);

	/* set codec clock base on lrclk */
	ret = sgtl5000_set_clock(codec, params_rate(params));
	if (ret)
		return ret;

	/* set i2s data format */
715 716
	switch (params_width(params)) {
	case 16:
717 718 719 720 721 722
		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
			return -EINVAL;
		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
		    SGTL5000_I2S_SCLKFREQ_SHIFT;
		break;
723
	case 20:
724 725 726 727
		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
		    SGTL5000_I2S_SCLKFREQ_SHIFT;
		break;
728
	case 24:
729 730 731 732
		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
		    SGTL5000_I2S_SCLKFREQ_SHIFT;
		break;
733
	case 32:
734 735 736 737 738 739 740 741 742 743
		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
			return -EINVAL;
		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
		    SGTL5000_I2S_SCLKFREQ_SHIFT;
		break;
	default:
		return -EINVAL;
	}

744 745 746
	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
			    i2s_ctl);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

	return 0;
}

/*
 * set dac bias
 * common state changes:
 * startup:
 * off --> standby --> prepare --> on
 * standby --> prepare --> on
 *
 * stop:
 * on --> prepare --> standby
 */
static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
				   enum snd_soc_bias_level level)
{
	int ret;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	switch (level) {
	case SND_SOC_BIAS_ON:
	case SND_SOC_BIAS_PREPARE:
		break;
	case SND_SOC_BIAS_STANDBY:
772
		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
773
			ret = regulator_bulk_enable(
774
						sgtl5000->num_supplies,
775 776 777 778
						sgtl5000->supplies);
			if (ret)
				return ret;
			udelay(10);
779 780 781 782 783 784 785 786 787

			regcache_cache_only(sgtl5000->regmap, false);

			ret = regcache_sync(sgtl5000->regmap);
			if (ret != 0) {
				dev_err(codec->dev,
					"Failed to restore cache: %d\n", ret);

				regcache_cache_only(sgtl5000->regmap, true);
788
				regulator_bulk_disable(sgtl5000->num_supplies,
789 790 791 792
						       sgtl5000->supplies);

				return ret;
			}
793 794 795 796
		}

		break;
	case SND_SOC_BIAS_OFF:
797
		regcache_cache_only(sgtl5000->regmap, true);
798 799
		regulator_bulk_disable(sgtl5000->num_supplies,
				       sgtl5000->supplies);
800 801 802 803 804 805 806 807 808 809 810
		break;
	}

	return 0;
}

#define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
			SNDRV_PCM_FMTBIT_S20_3LE |\
			SNDRV_PCM_FMTBIT_S24_LE |\
			SNDRV_PCM_FMTBIT_S32_LE)

811
static const struct snd_soc_dai_ops sgtl5000_ops = {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	.hw_params = sgtl5000_pcm_hw_params,
	.digital_mute = sgtl5000_digital_mute,
	.set_fmt = sgtl5000_set_dai_fmt,
	.set_sysclk = sgtl5000_set_dai_sysclk,
};

static struct snd_soc_dai_driver sgtl5000_dai = {
	.name = "sgtl5000",
	.playback = {
		.stream_name = "Playback",
		.channels_min = 1,
		.channels_max = 2,
		/*
		 * only support 8~48K + 96K,
		 * TODO modify hw_param to support more
		 */
		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
		.formats = SGTL5000_FORMATS,
	},
	.capture = {
		.stream_name = "Capture",
		.channels_min = 1,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
		.formats = SGTL5000_FORMATS,
	},
	.ops = &sgtl5000_ops,
	.symmetric_rates = 1,
};

842
static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
843 844 845 846 847
{
	switch (reg) {
	case SGTL5000_CHIP_ID:
	case SGTL5000_CHIP_ADCDAC_CTRL:
	case SGTL5000_CHIP_ANA_STATUS:
848
		return true;
849 850
	}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	return false;
}

static bool sgtl5000_readable(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case SGTL5000_CHIP_ID:
	case SGTL5000_CHIP_DIG_POWER:
	case SGTL5000_CHIP_CLK_CTRL:
	case SGTL5000_CHIP_I2S_CTRL:
	case SGTL5000_CHIP_SSS_CTRL:
	case SGTL5000_CHIP_ADCDAC_CTRL:
	case SGTL5000_CHIP_DAC_VOL:
	case SGTL5000_CHIP_PAD_STRENGTH:
	case SGTL5000_CHIP_ANA_ADC_CTRL:
	case SGTL5000_CHIP_ANA_HP_CTRL:
	case SGTL5000_CHIP_ANA_CTRL:
	case SGTL5000_CHIP_LINREG_CTRL:
	case SGTL5000_CHIP_REF_CTRL:
	case SGTL5000_CHIP_MIC_CTRL:
	case SGTL5000_CHIP_LINE_OUT_CTRL:
	case SGTL5000_CHIP_LINE_OUT_VOL:
	case SGTL5000_CHIP_ANA_POWER:
	case SGTL5000_CHIP_PLL_CTRL:
	case SGTL5000_CHIP_CLK_TOP_CTRL:
	case SGTL5000_CHIP_ANA_STATUS:
	case SGTL5000_CHIP_SHORT_CTRL:
	case SGTL5000_CHIP_ANA_TEST2:
	case SGTL5000_DAP_CTRL:
	case SGTL5000_DAP_PEQ:
	case SGTL5000_DAP_BASS_ENHANCE:
	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
	case SGTL5000_DAP_AUDIO_EQ:
	case SGTL5000_DAP_SURROUND:
	case SGTL5000_DAP_FLT_COEF_ACCESS:
	case SGTL5000_DAP_COEF_WR_B0_MSB:
	case SGTL5000_DAP_COEF_WR_B0_LSB:
	case SGTL5000_DAP_EQ_BASS_BAND0:
	case SGTL5000_DAP_EQ_BASS_BAND1:
	case SGTL5000_DAP_EQ_BASS_BAND2:
	case SGTL5000_DAP_EQ_BASS_BAND3:
	case SGTL5000_DAP_EQ_BASS_BAND4:
	case SGTL5000_DAP_MAIN_CHAN:
	case SGTL5000_DAP_MIX_CHAN:
	case SGTL5000_DAP_AVC_CTRL:
	case SGTL5000_DAP_AVC_THRESHOLD:
	case SGTL5000_DAP_AVC_ATTACK:
	case SGTL5000_DAP_AVC_DECAY:
	case SGTL5000_DAP_COEF_WR_B1_MSB:
	case SGTL5000_DAP_COEF_WR_B1_LSB:
	case SGTL5000_DAP_COEF_WR_B2_MSB:
	case SGTL5000_DAP_COEF_WR_B2_LSB:
	case SGTL5000_DAP_COEF_WR_A1_MSB:
	case SGTL5000_DAP_COEF_WR_A1_LSB:
	case SGTL5000_DAP_COEF_WR_A2_MSB:
	case SGTL5000_DAP_COEF_WR_A2_LSB:
		return true;

	default:
		return false;
	}
912 913
}

914 915 916 917 918 919 920 921 922 923 924 925 926
/*
 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
 * The calculatation was done for all possible register values which
 * is the array index and the following formula: 10^((idx−15)/40) * 100
 */
static const u8 vol_quot_table[] = {
	42, 45, 47, 50, 53, 56, 60, 63,
	67, 71, 75, 79, 84, 89, 94, 100,
	106, 112, 119, 126, 133, 141, 150, 158,
	168, 178, 188, 200, 211, 224, 237, 251
};

927 928 929
/*
 * sgtl5000 has 3 internal power supplies:
 * 1. VAG, normally set to vdda/2
930
 * 2. charge pump, set to different value
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
 *	according to voltage of vdda and vddio
 * 3. line out VAG, normally set to vddio/2
 *
 * and should be set according to:
 * 1. vddd provided by external or not
 * 2. vdda and vddio voltage value. > 3.1v or not
 */
static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
{
	int vddd;
	int vdda;
	int vddio;
	u16 ana_pwr;
	u16 lreg_ctrl;
	int vag;
946
	int lo_vag;
947 948 949
	int vol_quot;
	int lo_vol;
	size_t i;
950 951 952 953
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
954 955 956
	vddd  = (sgtl5000->num_supplies > VDDD)
		? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
		: LDO_VOLTAGE;
957 958 959 960 961 962 963 964 965 966 967 968 969 970

	vdda  = vdda / 1000;
	vddio = vddio / 1000;
	vddd  = vddd / 1000;

	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
		dev_err(codec->dev, "regulator voltage not set correctly\n");

		return -EINVAL;
	}

	/* according to datasheet, maximum voltage of supplies */
	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
		dev_err(codec->dev,
971
			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
			vdda, vddio, vddd);

		return -EINVAL;
	}

	/* reset value */
	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
	ana_pwr |= SGTL5000_DAC_STEREO |
			SGTL5000_ADC_STEREO |
			SGTL5000_REFTOP_POWERUP;
	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);

	if (vddio < 3100 && vdda < 3100) {
		/* enable internal oscillator used for charge pump */
		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
					SGTL5000_INT_OSC_EN,
					SGTL5000_INT_OSC_EN);
		/* Enable VDDC charge pump */
		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
	} else if (vddio >= 3100 && vdda >= 3100) {
992
		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		/* VDDC use VDDIO rail */
		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
	}

	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);

	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);

	/*
	 * set ADC/DAC VAG to vdda / 2,
	 * should stay in range (0.8v, 1.575v)
	 */
	vag = vdda / 2;
	if (vag <= SGTL5000_ANA_GND_BASE)
		vag = 0;
	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
	else
		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;

	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1017
			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1018 1019

	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1020 1021 1022 1023
	lo_vag = vddio / 2;
	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
		lo_vag = 0;
	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1024
		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1025
		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1026
	else
1027
		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1028 1029 1030
		    SGTL5000_LINE_OUT_GND_STP;

	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1031 1032
			SGTL5000_LINE_OUT_CURRENT_MASK |
			SGTL5000_LINE_OUT_GND_MASK,
1033
			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1034 1035 1036
			SGTL5000_LINE_OUT_CURRENT_360u <<
				SGTL5000_LINE_OUT_CURRENT_SHIFT);

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	/*
	 * Set lineout output level in range (0..31)
	 * the same value is used for right and left channel
	 *
	 * Searching for a suitable index solving this formula:
	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
	 */
	vol_quot = (vag * 100) / lo_vag;
	lo_vol = 0;
	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
		if (vol_quot >= vol_quot_table[i])
			lo_vol = i;
		else
			break;
	}

	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_VOL,
		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);

1059 1060 1061
	return 0;
}

1062
static int sgtl5000_enable_regulators(struct i2c_client *client)
1063 1064 1065 1066
{
	int ret;
	int i;
	int external_vddd = 0;
1067
	struct regulator *vddd;
1068
	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1069 1070 1071 1072

	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
		sgtl5000->supplies[i].supply = supply_names[i];

1073 1074 1075 1076 1077 1078 1079 1080
	vddd = regulator_get_optional(&client->dev, "VDDD");
	if (IS_ERR(vddd)) {
		/* See if it's just not registered yet */
		if (PTR_ERR(vddd) == -EPROBE_DEFER)
			return -EPROBE_DEFER;
	} else {
		external_vddd = 1;
		regulator_put(vddd);
1081 1082
	}

1083 1084 1085
	sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
				 - 1 + external_vddd;
	ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1086 1087
				 sgtl5000->supplies);
	if (ret)
1088
		return ret;
1089

1090 1091 1092 1093 1094 1095 1096
	ret = regulator_bulk_enable(sgtl5000->num_supplies,
				    sgtl5000->supplies);
	if (!ret)
		usleep_range(10, 20);
	else
		regulator_bulk_free(sgtl5000->num_supplies,
				    sgtl5000->supplies);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	return ret;
}

static int sgtl5000_probe(struct snd_soc_codec *codec)
{
	int ret;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	/* power up sgtl5000 */
	ret = sgtl5000_set_power_regs(codec);
	if (ret)
		goto err;

	/* enable small pop, introduce 400ms delay in turning off */
	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1113
				SGTL5000_SMALL_POP, 1);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	/* disable short cut detector */
	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);

	/*
	 * set i2s as default input of sound switch
	 * TODO: add sound switch to control and dapm widge.
	 */
	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
			SGTL5000_ADC_EN | SGTL5000_DAC_EN);

	/* enable dac volume ramp by default */
	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
			SGTL5000_DAC_VOL_RAMP_EN |
			SGTL5000_DAC_MUTE_RIGHT |
			SGTL5000_DAC_MUTE_LEFT);

	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);

	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
			SGTL5000_HP_ZCD_EN |
			SGTL5000_ADC_ZCD_EN);

1139 1140 1141
	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
			SGTL5000_BIAS_R_MASK,
			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1142

1143
	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1144 1145
			SGTL5000_BIAS_VOLT_MASK,
			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/*
	 * disable DAP
	 * TODO:
	 * Enable DAP in kcontrol and dapm.
	 */
	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);

	return 0;

err:
	return ret;
}

static int sgtl5000_remove(struct snd_soc_codec *codec)
{
	return 0;
}

1164
static struct snd_soc_codec_driver sgtl5000_driver = {
1165 1166 1167
	.probe = sgtl5000_probe,
	.remove = sgtl5000_remove,
	.set_bias_level = sgtl5000_set_bias_level,
1168
	.suspend_bias_off = true,
1169 1170
	.controls = sgtl5000_snd_controls,
	.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1171 1172 1173 1174
	.dapm_widgets = sgtl5000_dapm_widgets,
	.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
	.dapm_routes = sgtl5000_dapm_routes,
	.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1175 1176
};

1177 1178 1179
static const struct regmap_config sgtl5000_regmap = {
	.reg_bits = 16,
	.val_bits = 16,
1180
	.reg_stride = 2,
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

	.max_register = SGTL5000_MAX_REG_OFFSET,
	.volatile_reg = sgtl5000_volatile,
	.readable_reg = sgtl5000_readable,

	.cache_type = REGCACHE_RBTREE,
	.reg_defaults = sgtl5000_reg_defaults,
	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
};

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/*
 * Write all the default values from sgtl5000_reg_defaults[] array into the
 * sgtl5000 registers, to make sure we always start with the sane registers
 * values as stated in the datasheet.
 *
 * Since sgtl5000 does not have a reset line, nor a reset command in software,
 * we follow this approach to guarantee we always start from the default values
 * and avoid problems like, not being able to probe after an audio playback
 * followed by a system reset or a 'reboot' command in Linux
 */
1201
static void sgtl5000_fill_defaults(struct i2c_client *client)
1202
{
1203
	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1204 1205 1206 1207 1208 1209 1210
	int i, ret, val, index;

	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
		val = sgtl5000_reg_defaults[i].def;
		index = sgtl5000_reg_defaults[i].reg;
		ret = regmap_write(sgtl5000->regmap, index, val);
		if (ret)
1211 1212 1213
			dev_err(&client->dev,
				"%s: error %d setting reg 0x%02x to 0x%04x\n",
				__func__, ret, index, val);
1214 1215 1216
	}
}

1217 1218
static int sgtl5000_i2c_probe(struct i2c_client *client,
			      const struct i2c_device_id *id)
1219 1220
{
	struct sgtl5000_priv *sgtl5000;
1221
	int ret, reg, rev;
1222 1223
	struct device_node *np = client->dev.of_node;
	u32 value;
1224
	u16 ana_pwr;
1225

1226
	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1227 1228 1229
	if (!sgtl5000)
		return -ENOMEM;

1230 1231 1232 1233 1234 1235
	i2c_set_clientdata(client, sgtl5000);

	ret = sgtl5000_enable_regulators(client);
	if (ret)
		return ret;

1236 1237 1238 1239
	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
	if (IS_ERR(sgtl5000->regmap)) {
		ret = PTR_ERR(sgtl5000->regmap);
		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1240
		goto disable_regs;
1241 1242
	}

1243 1244 1245 1246
	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
	if (IS_ERR(sgtl5000->mclk)) {
		ret = PTR_ERR(sgtl5000->mclk);
		dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1247 1248
		/* Defer the probe to see if the clk will be provided later */
		if (ret == -ENOENT)
1249 1250
			ret = -EPROBE_DEFER;
		goto disable_regs;
1251 1252 1253
	}

	ret = clk_prepare_enable(sgtl5000->mclk);
1254 1255 1256 1257
	if (ret) {
		dev_err(&client->dev, "Error enabling clock %d\n", ret);
		goto disable_regs;
	}
1258

1259 1260 1261
	/* Need 8 clocks before I2C accesses */
	udelay(1);

1262 1263
	/* read chip information */
	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1264 1265
	if (ret) {
		dev_err(&client->dev, "Error reading chip id %d\n", ret);
1266
		goto disable_clk;
1267
	}
1268 1269 1270 1271 1272

	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
	    SGTL5000_PARTID_PART_ID) {
		dev_err(&client->dev,
			"Device with ID register %x is not a sgtl5000\n", reg);
1273 1274
		ret = -ENODEV;
		goto disable_clk;
1275 1276 1277 1278
	}

	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1279
	sgtl5000->revision = rev;
1280

1281 1282 1283 1284 1285 1286 1287 1288
	/* reconfigure the clocks in case we're using the PLL */
	ret = regmap_write(sgtl5000->regmap,
			   SGTL5000_CHIP_CLK_CTRL,
			   SGTL5000_CHIP_CLK_CTRL_DEFAULT);
	if (ret)
		dev_err(&client->dev,
			"Error %d initializing CHIP_CLK_CTRL\n", ret);

1289
	/* Follow section 2.2.1.1 of AN3663 */
1290
	ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1291 1292
	if (sgtl5000->num_supplies <= VDDD) {
		/* internal VDDD at 1.2V */
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		ret = regmap_update_bits(sgtl5000->regmap,
					 SGTL5000_CHIP_LINREG_CTRL,
					 SGTL5000_LINREG_VDDD_MASK,
					 LINREG_VDDD);
		if (ret)
			dev_err(&client->dev,
				"Error %d setting LINREG_VDDD\n", ret);

		ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
		dev_info(&client->dev,
			 "Using internal LDO instead of VDDD: check ER1\n");
1304 1305 1306 1307 1308
	} else {
		/* using external LDO for VDDD
		 * Clear startup powerup and simple powerup
		 * bits to save power
		 */
1309 1310
		ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
			     | SGTL5000_LINREG_SIMPLE_POWERUP);
1311 1312
		dev_dbg(&client->dev, "Using external VDDD\n");
	}
1313 1314 1315 1316 1317
	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
	if (ret)
		dev_err(&client->dev,
			"Error %d setting CHIP_ANA_POWER to %04x\n",
			ret, ana_pwr);
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (np) {
		if (!of_property_read_u32(np,
			"micbias-resistor-k-ohms", &value)) {
			switch (value) {
			case SGTL5000_MICBIAS_OFF:
				sgtl5000->micbias_resistor = 0;
				break;
			case SGTL5000_MICBIAS_2K:
				sgtl5000->micbias_resistor = 1;
				break;
			case SGTL5000_MICBIAS_4K:
				sgtl5000->micbias_resistor = 2;
				break;
			case SGTL5000_MICBIAS_8K:
				sgtl5000->micbias_resistor = 3;
				break;
			default:
				sgtl5000->micbias_resistor = 2;
				dev_err(&client->dev,
					"Unsuitable MicBias resistor\n");
			}
		} else {
			/* default is 4Kohms */
			sgtl5000->micbias_resistor = 2;
		}
1344 1345 1346 1347 1348 1349 1350 1351
		if (!of_property_read_u32(np,
			"micbias-voltage-m-volts", &value)) {
			/* 1250mV => 0 */
			/* steps of 250mV */
			if ((value >= 1250) && (value <= 3000))
				sgtl5000->micbias_voltage = (value / 250) - 5;
			else {
				sgtl5000->micbias_voltage = 0;
1352
				dev_err(&client->dev,
1353
					"Unsuitable MicBias voltage\n");
1354 1355
			}
		} else {
1356
			sgtl5000->micbias_voltage = 0;
1357 1358 1359
		}
	}

1360
	/* Ensure sgtl5000 will start with sane register values */
1361
	sgtl5000_fill_defaults(client);
1362

1363 1364
	ret = snd_soc_register_codec(&client->dev,
			&sgtl5000_driver, &sgtl5000_dai, 1);
1365 1366 1367 1368 1369 1370 1371
	if (ret)
		goto disable_clk;

	return 0;

disable_clk:
	clk_disable_unprepare(sgtl5000->mclk);
1372 1373 1374 1375 1376

disable_regs:
	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);

1377
	return ret;
1378 1379
}

1380
static int sgtl5000_i2c_remove(struct i2c_client *client)
1381
{
1382
	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1383

1384 1385
	snd_soc_unregister_codec(&client->dev);
	clk_disable_unprepare(sgtl5000->mclk);
1386 1387 1388
	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	return 0;
}

static const struct i2c_device_id sgtl5000_id[] = {
	{"sgtl5000", 0},
	{},
};

MODULE_DEVICE_TABLE(i2c, sgtl5000_id);

1399 1400 1401 1402
static const struct of_device_id sgtl5000_dt_ids[] = {
	{ .compatible = "fsl,sgtl5000", },
	{ /* sentinel */ }
};
1403
MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1404

1405 1406 1407
static struct i2c_driver sgtl5000_i2c_driver = {
	.driver = {
		   .name = "sgtl5000",
1408
		   .of_match_table = sgtl5000_dt_ids,
1409 1410
		   },
	.probe = sgtl5000_i2c_probe,
1411
	.remove = sgtl5000_i2c_remove,
1412 1413 1414
	.id_table = sgtl5000_id,
};

1415
module_i2c_driver(sgtl5000_i2c_driver);
1416 1417

MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1418
MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1419
MODULE_LICENSE("GPL");