sgtl5000.c 40.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
 *
 * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/clk.h>
19
#include <linux/regmap.h>
20 21 22
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/consumer.h>
23
#include <linux/of_device.h>
24 25 26 27 28 29 30 31 32 33 34 35 36
#include <sound/core.h>
#include <sound/tlv.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>

#include "sgtl5000.h"

#define SGTL5000_DAP_REG_OFFSET	0x0100
#define SGTL5000_MAX_REG_OFFSET	0x013A

37
/* default value of sgtl5000 registers */
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static const struct reg_default sgtl5000_reg_defaults[] = {
	{ SGTL5000_CHIP_CLK_CTRL,		0x0008 },
	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
	{ SGTL5000_CHIP_SSS_CTRL,		0x0008 },
	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
	{ SGTL5000_CHIP_ANA_POWER,		0x7060 },
	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
	{ SGTL5000_DAP_SURROUND,		0x0040 },
	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
};

/* regulator supplies for sgtl5000, VDDD is an optional external supply */
enum sgtl5000_regulator_supplies {
	VDDA,
	VDDIO,
	VDDD,
	SGTL5000_SUPPLY_NUM
};

/* vddd is optional supply */
static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
	"VDDA",
	"VDDIO",
	"VDDD"
};

#define LDO_CONSUMER_NAME	"VDDD_LDO"
#define LDO_VOLTAGE		1200000

static struct regulator_consumer_supply ldo_consumer[] = {
	REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL),
};

86
static struct regulator_init_data ldo_init_data = {
87
	.constraints = {
88 89
		.min_uV                 = 1200000,
		.max_uV                 = 1200000,
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
		.valid_modes_mask       = REGULATOR_MODE_NORMAL,
		.valid_ops_mask         = REGULATOR_CHANGE_STATUS,
	},
	.num_consumer_supplies = 1,
	.consumer_supplies = &ldo_consumer[0],
};

/*
 * sgtl5000 internal ldo regulator,
 * enabled when VDDD not provided
 */
struct ldo_regulator {
	struct regulator_desc desc;
	struct regulator_dev *dev;
	int voltage;
	void *codec_data;
	bool enabled;
};

/* sgtl5000 private structure in codec */
struct sgtl5000_priv {
	int sysclk;	/* sysclk rate */
	int master;	/* i2s master or not */
	int fmt;	/* i2s data format */
	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
	struct ldo_regulator *ldo;
116
	struct regmap *regmap;
117
	struct clk *mclk;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
};

/*
 * mic_bias power on/off share the same register bits with
 * output impedance of mic bias, when power on mic bias, we
 * need reclaim it to impedance value.
 * 0x0 = Powered off
 * 0x1 = 2Kohm
 * 0x2 = 4Kohm
 * 0x3 = 8Kohm
 */
static int mic_bias_event(struct snd_soc_dapm_widget *w,
	struct snd_kcontrol *kcontrol, int event)
{
	switch (event) {
	case SND_SOC_DAPM_POST_PMU:
		/* change mic bias resistor to 4Kohm */
		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
136 137
				SGTL5000_BIAS_R_MASK,
				SGTL5000_BIAS_R_4k << SGTL5000_BIAS_R_SHIFT);
138 139 140 141
		break;

	case SND_SOC_DAPM_PRE_PMD:
		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
142
				SGTL5000_BIAS_R_MASK, 0);
143 144 145 146 147 148
		break;
	}
	return 0;
}

/*
149 150 151
 * As manual described, ADC/DAC only works when VAG powerup,
 * So enabled VAG before ADC/DAC up.
 * In power down case, we need wait 400ms when vag fully ramped down.
152
 */
153
static int power_vag_event(struct snd_soc_dapm_widget *w,
154 155 156
	struct snd_kcontrol *kcontrol, int event)
{
	switch (event) {
157
	case SND_SOC_DAPM_POST_PMU:
158 159 160 161
		snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
		break;

162
	case SND_SOC_DAPM_PRE_PMD:
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
			SGTL5000_VAG_POWERUP, 0);
		msleep(400);
		break;
	default:
		break;
	}

	return 0;
}

/* input sources for ADC */
static const char *adc_mux_text[] = {
	"MIC_IN", "LINE_IN"
};

static const struct soc_enum adc_enum =
SOC_ENUM_SINGLE(SGTL5000_CHIP_ANA_CTRL, 2, 2, adc_mux_text);

static const struct snd_kcontrol_new adc_mux =
SOC_DAPM_ENUM("Capture Mux", adc_enum);

/* input sources for DAC */
static const char *dac_mux_text[] = {
	"DAC", "LINE_IN"
};

static const struct soc_enum dac_enum =
SOC_ENUM_SINGLE(SGTL5000_CHIP_ANA_CTRL, 6, 2, dac_mux_text);

static const struct snd_kcontrol_new dac_mux =
SOC_DAPM_ENUM("Headphone Mux", dac_enum);

static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
	SND_SOC_DAPM_INPUT("LINE_IN"),
	SND_SOC_DAPM_INPUT("MIC_IN"),

	SND_SOC_DAPM_OUTPUT("HP_OUT"),
	SND_SOC_DAPM_OUTPUT("LINE_OUT"),

203 204 205
	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
			    mic_bias_event,
			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
206

207 208
	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
209 210 211 212 213 214 215 216 217 218 219 220 221 222

	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),

	/* aif for i2s input */
	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
				0, SGTL5000_CHIP_DIG_POWER,
				0, 0),

	/* aif for i2s output */
	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
				0, SGTL5000_CHIP_DIG_POWER,
				1, 0),

223
	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
224
	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
225 226 227

	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
228 229 230
};

/* routes for sgtl5000 */
231
static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */

	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */

	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
	{"LO", NULL, "DAC"},			/* dac --> line_out */

	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */

	{"LINE_OUT", NULL, "LO"},
	{"HP_OUT", NULL, "HP"},
};

/* custom function to fetch info of PCM playback volume */
static int dac_info_volsw(struct snd_kcontrol *kcontrol,
			  struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 2;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = 0xfc - 0x3c;
	return 0;
}

/*
 * custom function to get of PCM playback volume
 *
 * dac volume register
 * 15-------------8-7--------------0
 * | R channel vol | L channel vol |
 *  -------------------------------
 *
 * PCM volume with 0.5017 dB steps from 0 to -90 dB
 *
 * register values map to dB
 * 0x3B and less = Reserved
 * 0x3C = 0 dB
 * 0x3D = -0.5 dB
 * 0xF0 = -90 dB
 * 0xFC and greater = Muted
 *
 * register value map to userspace value
 *
 * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
 *			------------------------------
 * userspace value	0xc0			     0
 */
static int dac_get_volsw(struct snd_kcontrol *kcontrol,
			 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
	int reg;
	int l;
	int r;

	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);

	/* get left channel volume */
	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;

	/* get right channel volume */
	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;

	/* make sure value fall in (0x3c,0xfc) */
	l = clamp(l, 0x3c, 0xfc);
	r = clamp(r, 0x3c, 0xfc);

	/* invert it and map to userspace value */
	l = 0xfc - l;
	r = 0xfc - r;

	ucontrol->value.integer.value[0] = l;
	ucontrol->value.integer.value[1] = r;

	return 0;
}

/*
 * custom function to put of PCM playback volume
 *
 * dac volume register
 * 15-------------8-7--------------0
 * | R channel vol | L channel vol |
 *  -------------------------------
 *
 * PCM volume with 0.5017 dB steps from 0 to -90 dB
 *
 * register values map to dB
 * 0x3B and less = Reserved
 * 0x3C = 0 dB
 * 0x3D = -0.5 dB
 * 0xF0 = -90 dB
 * 0xFC and greater = Muted
 *
 * userspace value map to register value
 *
 * userspace value	0xc0			     0
 *			------------------------------
 * register value	0x3c(0dB)	0xf0(-90dB)0xfc
 */
static int dac_put_volsw(struct snd_kcontrol *kcontrol,
			 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
	int reg;
	int l;
	int r;

	l = ucontrol->value.integer.value[0];
	r = ucontrol->value.integer.value[1];

	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
	l = clamp(l, 0, 0xfc - 0x3c);
	r = clamp(r, 0, 0xfc - 0x3c);

	/* invert it, get the value can be set to register */
	l = 0xfc - l;
	r = 0xfc - r;

	/* shift to get the register value */
	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;

	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);

	return 0;
}

static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);

/* tlv for mic gain, 0db 20db 30db 40db */
static const unsigned int mic_gain_tlv[] = {
368
	TLV_DB_RANGE_HEAD(2),
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0),
};

/* tlv for hp volume, -51.5db to 12.0db, step .5db */
static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);

static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
	/* SOC_DOUBLE_S8_TLV with invert */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
		.name = "PCM Playback Volume",
		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
			SNDRV_CTL_ELEM_ACCESS_READWRITE,
		.info = dac_info_volsw,
		.get = dac_get_volsw,
		.put = dac_put_volsw,
	},

	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
			SGTL5000_CHIP_ANA_ADC_CTRL,
			8, 2, 0, capture_6db_attenuate),
	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),

	SOC_DOUBLE_TLV("Headphone Playback Volume",
			SGTL5000_CHIP_ANA_HP_CTRL,
			0, 8,
			0x7f, 1,
			headphone_volume),
	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
			5, 1, 0),

	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
403
			0, 3, 0, mic_gain_tlv),
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
};

/* mute the codec used by alsa core */
static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
{
	struct snd_soc_codec *codec = codec_dai->codec;
	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;

	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
			adcdac_ctrl, mute ? adcdac_ctrl : 0);

	return 0;
}

/* set codec format */
static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
	struct snd_soc_codec *codec = codec_dai->codec;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
	u16 i2sctl = 0;

	sgtl5000->master = 0;
	/*
	 * i2s clock and frame master setting.
	 * ONLY support:
	 *  - clock and frame slave,
	 *  - clock and frame master
	 */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		i2sctl |= SGTL5000_I2S_MASTER;
		sgtl5000->master = 1;
		break;
	default:
		return -EINVAL;
	}

	/* setting i2s data format */
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_DSP_A:
		i2sctl |= SGTL5000_I2S_MODE_PCM;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		i2sctl |= SGTL5000_I2S_MODE_PCM;
		i2sctl |= SGTL5000_I2S_LRALIGN;
		break;
	case SND_SOC_DAIFMT_I2S:
		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
		break;
	case SND_SOC_DAIFMT_RIGHT_J:
		i2sctl |= SGTL5000_I2S_MODE_RJ;
		i2sctl |= SGTL5000_I2S_LRPOL;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
		i2sctl |= SGTL5000_I2S_LRALIGN;
		break;
	default:
		return -EINVAL;
	}

	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;

	/* Clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		break;
	case SND_SOC_DAIFMT_IB_NF:
		i2sctl |= SGTL5000_I2S_SCLK_INV;
		break;
	default:
		return -EINVAL;
	}

	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);

	return 0;
}

/* set codec sysclk */
static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
				   int clk_id, unsigned int freq, int dir)
{
	struct snd_soc_codec *codec = codec_dai->codec;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	switch (clk_id) {
	case SGTL5000_SYSCLK:
		sgtl5000->sysclk = freq;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/*
 * set clock according to i2s frame clock,
 * sgtl5000 provide 2 clock sources.
 * 1. sys_mclk. sample freq can only configure to
 *	1/256, 1/384, 1/512 of sys_mclk.
 * 2. pll. can derive any audio clocks.
 *
 * clock setting rules:
 * 1. in slave mode, only sys_mclk can use.
 * 2. as constraint by sys_mclk, sample freq should
 *	set to 32k, 44.1k and above.
 * 3. using sys_mclk prefer to pll to save power.
 */
static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
{
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
	int clk_ctl = 0;
	int sys_fs;	/* sample freq */

	/*
	 * sample freq should be divided by frame clock,
	 * if frame clock lower than 44.1khz, sample feq should set to
	 * 32khz or 44.1khz.
	 */
	switch (frame_rate) {
	case 8000:
	case 16000:
		sys_fs = 32000;
		break;
	case 11025:
	case 22050:
		sys_fs = 44100;
		break;
	default:
		sys_fs = frame_rate;
		break;
	}

	/* set divided factor of frame clock */
	switch (sys_fs / frame_rate) {
	case 4:
		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
		break;
	case 2:
		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
		break;
	case 1:
		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
		break;
	default:
		return -EINVAL;
	}

	/* set the sys_fs according to frame rate */
	switch (sys_fs) {
	case 32000:
		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
		break;
	case 44100:
		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
		break;
	case 48000:
		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
		break;
	case 96000:
		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
		break;
	default:
		dev_err(codec->dev, "frame rate %d not supported\n",
			frame_rate);
		return -EINVAL;
	}

	/*
	 * calculate the divider of mclk/sample_freq,
	 * factor of freq =96k can only be 256, since mclk in range (12m,27m)
	 */
	switch (sgtl5000->sysclk / sys_fs) {
	case 256:
		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
			SGTL5000_MCLK_FREQ_SHIFT;
		break;
	case 384:
		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
			SGTL5000_MCLK_FREQ_SHIFT;
		break;
	case 512:
		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
			SGTL5000_MCLK_FREQ_SHIFT;
		break;
	default:
		/* if mclk not satisify the divider, use pll */
		if (sgtl5000->master) {
			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
				SGTL5000_MCLK_FREQ_SHIFT;
		} else {
			dev_err(codec->dev,
				"PLL not supported in slave mode\n");
			return -EINVAL;
		}
	}

	/* if using pll, please check manual 6.4.2 for detail */
	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
		u64 out, t;
		int div2;
		int pll_ctl;
		unsigned int in, int_div, frac_div;

		if (sgtl5000->sysclk > 17000000) {
			div2 = 1;
			in = sgtl5000->sysclk / 2;
		} else {
			div2 = 0;
			in = sgtl5000->sysclk;
		}
		if (sys_fs == 44100)
			out = 180633600;
		else
			out = 196608000;
		t = do_div(out, in);
		int_div = out;
		t *= 2048;
		do_div(t, in);
		frac_div = t;
		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;

		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
		if (div2)
			snd_soc_update_bits(codec,
				SGTL5000_CHIP_CLK_TOP_CTRL,
				SGTL5000_INPUT_FREQ_DIV2,
				SGTL5000_INPUT_FREQ_DIV2);
		else
			snd_soc_update_bits(codec,
				SGTL5000_CHIP_CLK_TOP_CTRL,
				SGTL5000_INPUT_FREQ_DIV2,
				0);

		/* power up pll */
		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
	} else {
		/* power down pll */
		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
			0);
	}

	/* if using pll, clk_ctrl must be set after pll power up */
	snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);

	return 0;
}

/*
 * Set PCM DAI bit size and sample rate.
 * input: params_rate, params_fmt
 */
static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
				  struct snd_pcm_hw_params *params,
				  struct snd_soc_dai *dai)
{
668
	struct snd_soc_codec *codec = dai->codec;
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
	int channels = params_channels(params);
	int i2s_ctl = 0;
	int stereo;
	int ret;

	/* sysclk should already set */
	if (!sgtl5000->sysclk) {
		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
		return -EFAULT;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		stereo = SGTL5000_DAC_STEREO;
	else
		stereo = SGTL5000_ADC_STEREO;

	/* set mono to save power */
	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
			channels == 1 ? 0 : stereo);

	/* set codec clock base on lrclk */
	ret = sgtl5000_set_clock(codec, params_rate(params));
	if (ret)
		return ret;

	/* set i2s data format */
	switch (params_format(params)) {
	case SNDRV_PCM_FORMAT_S16_LE:
		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
			return -EINVAL;
		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
		    SGTL5000_I2S_SCLKFREQ_SHIFT;
		break;
	case SNDRV_PCM_FORMAT_S20_3LE:
		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
		    SGTL5000_I2S_SCLKFREQ_SHIFT;
		break;
	case SNDRV_PCM_FORMAT_S24_LE:
		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
		    SGTL5000_I2S_SCLKFREQ_SHIFT;
		break;
	case SNDRV_PCM_FORMAT_S32_LE:
		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
			return -EINVAL;
		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
		    SGTL5000_I2S_SCLKFREQ_SHIFT;
		break;
	default:
		return -EINVAL;
	}

725 726 727
	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
			    i2s_ctl);
728 729 730 731

	return 0;
}

732
#ifdef CONFIG_REGULATOR
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
static int ldo_regulator_is_enabled(struct regulator_dev *dev)
{
	struct ldo_regulator *ldo = rdev_get_drvdata(dev);

	return ldo->enabled;
}

static int ldo_regulator_enable(struct regulator_dev *dev)
{
	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
	int reg;

	if (ldo_regulator_is_enabled(dev))
		return 0;

	/* set regulator value firstly */
	reg = (1600 - ldo->voltage / 1000) / 50;
	reg = clamp(reg, 0x0, 0xf);

	/* amend the voltage value, unit: uV */
	ldo->voltage = (1600 - reg * 50) * 1000;

	/* set voltage to register */
	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
758
				SGTL5000_LINREG_VDDD_MASK, reg);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
				SGTL5000_LINEREG_D_POWERUP,
				SGTL5000_LINEREG_D_POWERUP);

	/* when internal ldo enabled, simple digital power can be disabled */
	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
				SGTL5000_LINREG_SIMPLE_POWERUP,
				0);

	ldo->enabled = 1;
	return 0;
}

static int ldo_regulator_disable(struct regulator_dev *dev)
{
	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;

	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
				SGTL5000_LINEREG_D_POWERUP,
				0);

	/* clear voltage info */
	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
784
				SGTL5000_LINREG_VDDD_MASK, 0);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

	ldo->enabled = 0;

	return 0;
}

static int ldo_regulator_get_voltage(struct regulator_dev *dev)
{
	struct ldo_regulator *ldo = rdev_get_drvdata(dev);

	return ldo->voltage;
}

static struct regulator_ops ldo_regulator_ops = {
	.is_enabled = ldo_regulator_is_enabled,
	.enable = ldo_regulator_enable,
	.disable = ldo_regulator_disable,
	.get_voltage = ldo_regulator_get_voltage,
};

static int ldo_regulator_register(struct snd_soc_codec *codec,
				struct regulator_init_data *init_data,
				int voltage)
{
	struct ldo_regulator *ldo;
810
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
811
	struct regulator_config config = { };
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

	ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL);

	if (!ldo) {
		dev_err(codec->dev, "failed to allocate ldo_regulator\n");
		return -ENOMEM;
	}

	ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL);
	if (!ldo->desc.name) {
		kfree(ldo);
		dev_err(codec->dev, "failed to allocate decs name memory\n");
		return -ENOMEM;
	}

	ldo->desc.type  = REGULATOR_VOLTAGE;
	ldo->desc.owner = THIS_MODULE;
	ldo->desc.ops   = &ldo_regulator_ops;
	ldo->desc.n_voltages = 1;

	ldo->codec_data = codec;
	ldo->voltage = voltage;

835 836 837 838 839
	config.dev = codec->dev;
	config.driver_data = ldo;
	config.init_data = init_data;

	ldo->dev = regulator_register(&ldo->desc, &config);
840
	if (IS_ERR(ldo->dev)) {
841 842
		int ret = PTR_ERR(ldo->dev);

843 844 845 846
		dev_err(codec->dev, "failed to register regulator\n");
		kfree(ldo->desc.name);
		kfree(ldo);

847
		return ret;
848
	}
849
	sgtl5000->ldo = ldo;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	return 0;
}

static int ldo_regulator_remove(struct snd_soc_codec *codec)
{
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
	struct ldo_regulator *ldo = sgtl5000->ldo;

	if (!ldo)
		return 0;

	regulator_unregister(ldo->dev);
	kfree(ldo->desc.name);
	kfree(ldo);

	return 0;
}
868 869 870 871 872
#else
static int ldo_regulator_register(struct snd_soc_codec *codec,
				struct regulator_init_data *init_data,
				int voltage)
{
873
	dev_err(codec->dev, "this setup needs regulator support in the kernel\n");
874 875 876 877 878 879 880 881
	return -EINVAL;
}

static int ldo_regulator_remove(struct snd_soc_codec *codec)
{
	return 0;
}
#endif
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

/*
 * set dac bias
 * common state changes:
 * startup:
 * off --> standby --> prepare --> on
 * standby --> prepare --> on
 *
 * stop:
 * on --> prepare --> standby
 */
static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
				   enum snd_soc_bias_level level)
{
	int ret;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	switch (level) {
	case SND_SOC_BIAS_ON:
	case SND_SOC_BIAS_PREPARE:
		break;
	case SND_SOC_BIAS_STANDBY:
		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
			ret = regulator_bulk_enable(
						ARRAY_SIZE(sgtl5000->supplies),
						sgtl5000->supplies);
			if (ret)
				return ret;
			udelay(10);
911 912 913 914 915 916 917 918 919 920 921 922 923 924

			regcache_cache_only(sgtl5000->regmap, false);

			ret = regcache_sync(sgtl5000->regmap);
			if (ret != 0) {
				dev_err(codec->dev,
					"Failed to restore cache: %d\n", ret);

				regcache_cache_only(sgtl5000->regmap, true);
				regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
						       sgtl5000->supplies);

				return ret;
			}
925 926 927 928
		}

		break;
	case SND_SOC_BIAS_OFF:
929
		regcache_cache_only(sgtl5000->regmap, true);
930 931 932 933 934 935 936 937 938 939 940 941 942 943
		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
					sgtl5000->supplies);
		break;
	}

	codec->dapm.bias_level = level;
	return 0;
}

#define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
			SNDRV_PCM_FMTBIT_S20_3LE |\
			SNDRV_PCM_FMTBIT_S24_LE |\
			SNDRV_PCM_FMTBIT_S32_LE)

944
static const struct snd_soc_dai_ops sgtl5000_ops = {
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	.hw_params = sgtl5000_pcm_hw_params,
	.digital_mute = sgtl5000_digital_mute,
	.set_fmt = sgtl5000_set_dai_fmt,
	.set_sysclk = sgtl5000_set_dai_sysclk,
};

static struct snd_soc_dai_driver sgtl5000_dai = {
	.name = "sgtl5000",
	.playback = {
		.stream_name = "Playback",
		.channels_min = 1,
		.channels_max = 2,
		/*
		 * only support 8~48K + 96K,
		 * TODO modify hw_param to support more
		 */
		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
		.formats = SGTL5000_FORMATS,
	},
	.capture = {
		.stream_name = "Capture",
		.channels_min = 1,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
		.formats = SGTL5000_FORMATS,
	},
	.ops = &sgtl5000_ops,
	.symmetric_rates = 1,
};

975
static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
976 977 978 979 980
{
	switch (reg) {
	case SGTL5000_CHIP_ID:
	case SGTL5000_CHIP_ADCDAC_CTRL:
	case SGTL5000_CHIP_ANA_STATUS:
981
		return true;
982 983
	}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	return false;
}

static bool sgtl5000_readable(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case SGTL5000_CHIP_ID:
	case SGTL5000_CHIP_DIG_POWER:
	case SGTL5000_CHIP_CLK_CTRL:
	case SGTL5000_CHIP_I2S_CTRL:
	case SGTL5000_CHIP_SSS_CTRL:
	case SGTL5000_CHIP_ADCDAC_CTRL:
	case SGTL5000_CHIP_DAC_VOL:
	case SGTL5000_CHIP_PAD_STRENGTH:
	case SGTL5000_CHIP_ANA_ADC_CTRL:
	case SGTL5000_CHIP_ANA_HP_CTRL:
	case SGTL5000_CHIP_ANA_CTRL:
	case SGTL5000_CHIP_LINREG_CTRL:
	case SGTL5000_CHIP_REF_CTRL:
	case SGTL5000_CHIP_MIC_CTRL:
	case SGTL5000_CHIP_LINE_OUT_CTRL:
	case SGTL5000_CHIP_LINE_OUT_VOL:
	case SGTL5000_CHIP_ANA_POWER:
	case SGTL5000_CHIP_PLL_CTRL:
	case SGTL5000_CHIP_CLK_TOP_CTRL:
	case SGTL5000_CHIP_ANA_STATUS:
	case SGTL5000_CHIP_SHORT_CTRL:
	case SGTL5000_CHIP_ANA_TEST2:
	case SGTL5000_DAP_CTRL:
	case SGTL5000_DAP_PEQ:
	case SGTL5000_DAP_BASS_ENHANCE:
	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
	case SGTL5000_DAP_AUDIO_EQ:
	case SGTL5000_DAP_SURROUND:
	case SGTL5000_DAP_FLT_COEF_ACCESS:
	case SGTL5000_DAP_COEF_WR_B0_MSB:
	case SGTL5000_DAP_COEF_WR_B0_LSB:
	case SGTL5000_DAP_EQ_BASS_BAND0:
	case SGTL5000_DAP_EQ_BASS_BAND1:
	case SGTL5000_DAP_EQ_BASS_BAND2:
	case SGTL5000_DAP_EQ_BASS_BAND3:
	case SGTL5000_DAP_EQ_BASS_BAND4:
	case SGTL5000_DAP_MAIN_CHAN:
	case SGTL5000_DAP_MIX_CHAN:
	case SGTL5000_DAP_AVC_CTRL:
	case SGTL5000_DAP_AVC_THRESHOLD:
	case SGTL5000_DAP_AVC_ATTACK:
	case SGTL5000_DAP_AVC_DECAY:
	case SGTL5000_DAP_COEF_WR_B1_MSB:
	case SGTL5000_DAP_COEF_WR_B1_LSB:
	case SGTL5000_DAP_COEF_WR_B2_MSB:
	case SGTL5000_DAP_COEF_WR_B2_LSB:
	case SGTL5000_DAP_COEF_WR_A1_MSB:
	case SGTL5000_DAP_COEF_WR_A1_LSB:
	case SGTL5000_DAP_COEF_WR_A2_MSB:
	case SGTL5000_DAP_COEF_WR_A2_LSB:
		return true;

	default:
		return false;
	}
1045 1046 1047
}

#ifdef CONFIG_SUSPEND
1048
static int sgtl5000_suspend(struct snd_soc_codec *codec)
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
{
	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);

	return 0;
}

/*
 * restore all sgtl5000 registers,
 * since a big hole between dap and regular registers,
 * we will restore them respectively.
 */
static int sgtl5000_restore_regs(struct snd_soc_codec *codec)
{
	u16 *cache = codec->reg_cache;
1063
	u16 reg;
1064 1065

	/* restore regular registers */
1066
	for (reg = 0; reg <= SGTL5000_CHIP_SHORT_CTRL; reg += 2) {
1067

1068
		/* These regs should restore in particular order */
1069 1070 1071 1072
		if (reg == SGTL5000_CHIP_ANA_POWER ||
			reg == SGTL5000_CHIP_CLK_CTRL ||
			reg == SGTL5000_CHIP_LINREG_CTRL ||
			reg == SGTL5000_CHIP_LINE_OUT_CTRL ||
1073
			reg == SGTL5000_CHIP_REF_CTRL)
1074 1075
			continue;

1076
		snd_soc_write(codec, reg, cache[reg]);
1077 1078 1079
	}

	/* restore dap registers */
1080 1081
	for (reg = SGTL5000_DAP_REG_OFFSET; reg < SGTL5000_MAX_REG_OFFSET; reg += 2)
		snd_soc_write(codec, reg, cache[reg]);
1082 1083

	/*
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	 * restore these regs according to the power setting sequence in
	 * sgtl5000_set_power_regs() and clock setting sequence in
	 * sgtl5000_set_clock().
	 *
	 * The order of restore is:
	 * 1. SGTL5000_CHIP_CLK_CTRL MCLK_FREQ bits (1:0) should be restore after
	 *    SGTL5000_CHIP_ANA_POWER PLL bits set
	 * 2. SGTL5000_CHIP_LINREG_CTRL should be set before
	 *    SGTL5000_CHIP_ANA_POWER LINREG_D restored
	 * 3. SGTL5000_CHIP_REF_CTRL controls Analog Ground Voltage,
	 *    prefer to resotre it after SGTL5000_CHIP_ANA_POWER restored
1095 1096
	 */
	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL,
1097
			cache[SGTL5000_CHIP_LINREG_CTRL]);
1098 1099

	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER,
1100
			cache[SGTL5000_CHIP_ANA_POWER]);
1101 1102

	snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL,
1103
			cache[SGTL5000_CHIP_CLK_CTRL]);
1104 1105

	snd_soc_write(codec, SGTL5000_CHIP_REF_CTRL,
1106
			cache[SGTL5000_CHIP_REF_CTRL]);
1107 1108

	snd_soc_write(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1109
			cache[SGTL5000_CHIP_LINE_OUT_CTRL]);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	return 0;
}

static int sgtl5000_resume(struct snd_soc_codec *codec)
{
	/* Bring the codec back up to standby to enable regulators */
	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);

	/* Restore registers by cached in memory */
	sgtl5000_restore_regs(codec);
	return 0;
}
#else
#define sgtl5000_suspend NULL
#define sgtl5000_resume  NULL
#endif	/* CONFIG_SUSPEND */

/*
 * sgtl5000 has 3 internal power supplies:
 * 1. VAG, normally set to vdda/2
 * 2. chargepump, set to different value
 *	according to voltage of vdda and vddio
 * 3. line out VAG, normally set to vddio/2
 *
 * and should be set according to:
 * 1. vddd provided by external or not
 * 2. vdda and vddio voltage value. > 3.1v or not
 * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd.
 */
static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
{
	int vddd;
	int vdda;
	int vddio;
	u16 ana_pwr;
	u16 lreg_ctrl;
	int vag;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
	vddd  = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer);

	vdda  = vdda / 1000;
	vddio = vddio / 1000;
	vddd  = vddd / 1000;

	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
		dev_err(codec->dev, "regulator voltage not set correctly\n");

		return -EINVAL;
	}

	/* according to datasheet, maximum voltage of supplies */
	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
		dev_err(codec->dev,
1166
			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
			vdda, vddio, vddd);

		return -EINVAL;
	}

	/* reset value */
	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
	ana_pwr |= SGTL5000_DAC_STEREO |
			SGTL5000_ADC_STEREO |
			SGTL5000_REFTOP_POWERUP;
	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);

	if (vddio < 3100 && vdda < 3100) {
		/* enable internal oscillator used for charge pump */
		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
					SGTL5000_INT_OSC_EN,
					SGTL5000_INT_OSC_EN);
		/* Enable VDDC charge pump */
		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
	} else if (vddio >= 3100 && vdda >= 3100) {
		/*
		 * if vddio and vddd > 3.1v,
		 * charge pump should be clean before set ana_pwr
		 */
		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
				SGTL5000_VDDC_CHRGPMP_POWERUP, 0);

		/* VDDC use VDDIO rail */
		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
	}

	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);

	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);

	/* set voltage to register */
	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
1206
				SGTL5000_LINREG_VDDD_MASK, 0x8);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	/*
	 * if vddd linear reg has been enabled,
	 * simple digital supply should be clear to get
	 * proper VDDD voltage.
	 */
	if (ana_pwr & SGTL5000_LINEREG_D_POWERUP)
		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
				SGTL5000_LINREG_SIMPLE_POWERUP,
				0);
	else
		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
				SGTL5000_LINREG_SIMPLE_POWERUP |
				SGTL5000_STARTUP_POWERUP,
				0);

	/*
	 * set ADC/DAC VAG to vdda / 2,
	 * should stay in range (0.8v, 1.575v)
	 */
	vag = vdda / 2;
	if (vag <= SGTL5000_ANA_GND_BASE)
		vag = 0;
	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
	else
		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;

	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1237
			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
	vag = vddio / 2;
	if (vag <= SGTL5000_LINE_OUT_GND_BASE)
		vag = 0;
	else if (vag >= SGTL5000_LINE_OUT_GND_BASE +
		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
		vag = SGTL5000_LINE_OUT_GND_MAX;
	else
		vag = (vag - SGTL5000_LINE_OUT_GND_BASE) /
		    SGTL5000_LINE_OUT_GND_STP;

	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1251 1252
			SGTL5000_LINE_OUT_CURRENT_MASK |
			SGTL5000_LINE_OUT_GND_MASK,
1253 1254 1255 1256 1257 1258 1259
			vag << SGTL5000_LINE_OUT_GND_SHIFT |
			SGTL5000_LINE_OUT_CURRENT_360u <<
				SGTL5000_LINE_OUT_CURRENT_SHIFT);

	return 0;
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec)
{
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
	int ret;

	/* set internal ldo to 1.2v */
	ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE);
	if (ret) {
		dev_err(codec->dev,
			"Failed to register vddd internal supplies: %d\n", ret);
		return ret;
	}

	sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME;

	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
			sgtl5000->supplies);

	if (ret) {
		ldo_regulator_remove(codec);
		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
		return ret;
	}

	dev_info(codec->dev, "Using internal LDO instead of VDDD\n");
	return 0;
}

1288 1289
static int sgtl5000_enable_regulators(struct snd_soc_codec *codec)
{
1290
	int reg;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	int ret;
	int rev;
	int i;
	int external_vddd = 0;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
		sgtl5000->supplies[i].supply = supply_names[i];

	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
				sgtl5000->supplies);
	if (!ret)
		external_vddd = 1;
	else {
1305 1306
		ret = sgtl5000_replace_vddd_with_ldo(codec);
		if (ret)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			return ret;
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
					sgtl5000->supplies);
	if (ret)
		goto err_regulator_free;

	/* wait for all power rails bring up */
	udelay(10);

	/*
	 * workaround for revision 0x11 and later,
	 * roll back to use internal LDO
	 */
1322 1323 1324 1325 1326 1327 1328

	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
	if (ret)
		goto err_regulator_disable;

	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;

1329 1330 1331 1332 1333 1334 1335 1336
	if (external_vddd && rev >= 0x11) {
		/* disable all regulator first */
		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
					sgtl5000->supplies);
		/* free VDDD regulator */
		regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
					sgtl5000->supplies);

1337
		ret = sgtl5000_replace_vddd_with_ldo(codec);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
		if (ret)
			return ret;

		ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
						sgtl5000->supplies);
		if (ret)
			goto err_regulator_free;

		/* wait for all power rails bring up */
		udelay(10);
	}

	return 0;

err_regulator_disable:
	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
				sgtl5000->supplies);
err_regulator_free:
	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
				sgtl5000->supplies);
	if (external_vddd)
		ldo_regulator_remove(codec);
	return ret;

}

static int sgtl5000_probe(struct snd_soc_codec *codec)
{
	int ret;
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	/* setup i2c data ops */
1370 1371
	codec->control_data = sgtl5000->regmap;
	ret = snd_soc_codec_set_cache_io(codec, 16, 16, SND_SOC_REGMAP);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (ret < 0) {
		dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
		return ret;
	}

	ret = sgtl5000_enable_regulators(codec);
	if (ret)
		return ret;

	/* power up sgtl5000 */
	ret = sgtl5000_set_power_regs(codec);
	if (ret)
		goto err;

	/* enable small pop, introduce 400ms delay in turning off */
	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
				SGTL5000_SMALL_POP,
				SGTL5000_SMALL_POP);

	/* disable short cut detector */
	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);

	/*
	 * set i2s as default input of sound switch
	 * TODO: add sound switch to control and dapm widge.
	 */
	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
			SGTL5000_ADC_EN | SGTL5000_DAC_EN);

	/* enable dac volume ramp by default */
	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
			SGTL5000_DAC_VOL_RAMP_EN |
			SGTL5000_DAC_MUTE_RIGHT |
			SGTL5000_DAC_MUTE_LEFT);

	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);

	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
			SGTL5000_HP_ZCD_EN |
			SGTL5000_ADC_ZCD_EN);

1415
	snd_soc_write(codec, SGTL5000_CHIP_MIC_CTRL, 2);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	/*
	 * disable DAP
	 * TODO:
	 * Enable DAP in kcontrol and dapm.
	 */
	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);

	/* leading to standby state */
	ret = sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
	if (ret)
		goto err;

	return 0;

err:
	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
						sgtl5000->supplies);
	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
				sgtl5000->supplies);
	ldo_regulator_remove(codec);

	return ret;
}

static int sgtl5000_remove(struct snd_soc_codec *codec)
{
	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);

	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);

	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
						sgtl5000->supplies);
	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
				sgtl5000->supplies);
	ldo_regulator_remove(codec);

	return 0;
}

1456
static struct snd_soc_codec_driver sgtl5000_driver = {
1457 1458 1459 1460 1461
	.probe = sgtl5000_probe,
	.remove = sgtl5000_remove,
	.suspend = sgtl5000_suspend,
	.resume = sgtl5000_resume,
	.set_bias_level = sgtl5000_set_bias_level,
1462 1463
	.controls = sgtl5000_snd_controls,
	.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1464 1465 1466 1467
	.dapm_widgets = sgtl5000_dapm_widgets,
	.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
	.dapm_routes = sgtl5000_dapm_routes,
	.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1468 1469
};

1470 1471 1472
static const struct regmap_config sgtl5000_regmap = {
	.reg_bits = 16,
	.val_bits = 16,
1473
	.reg_stride = 2,
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

	.max_register = SGTL5000_MAX_REG_OFFSET,
	.volatile_reg = sgtl5000_volatile,
	.readable_reg = sgtl5000_readable,

	.cache_type = REGCACHE_RBTREE,
	.reg_defaults = sgtl5000_reg_defaults,
	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
};

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/*
 * Write all the default values from sgtl5000_reg_defaults[] array into the
 * sgtl5000 registers, to make sure we always start with the sane registers
 * values as stated in the datasheet.
 *
 * Since sgtl5000 does not have a reset line, nor a reset command in software,
 * we follow this approach to guarantee we always start from the default values
 * and avoid problems like, not being able to probe after an audio playback
 * followed by a system reset or a 'reboot' command in Linux
 */
static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000)
{
	int i, ret, val, index;

	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
		val = sgtl5000_reg_defaults[i].def;
		index = sgtl5000_reg_defaults[i].reg;
		ret = regmap_write(sgtl5000->regmap, index, val);
		if (ret)
			return ret;
	}

	return 0;
}

1509 1510
static int sgtl5000_i2c_probe(struct i2c_client *client,
			      const struct i2c_device_id *id)
1511 1512
{
	struct sgtl5000_priv *sgtl5000;
1513
	int ret, reg, rev;
1514

1515 1516
	sgtl5000 = devm_kzalloc(&client->dev, sizeof(struct sgtl5000_priv),
								GFP_KERNEL);
1517 1518 1519
	if (!sgtl5000)
		return -ENOMEM;

1520 1521 1522 1523 1524 1525 1526
	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
	if (IS_ERR(sgtl5000->regmap)) {
		ret = PTR_ERR(sgtl5000->regmap);
		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
		return ret;
	}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
	if (IS_ERR(sgtl5000->mclk)) {
		ret = PTR_ERR(sgtl5000->mclk);
		dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
		return ret;
	}

	ret = clk_prepare_enable(sgtl5000->mclk);
	if (ret)
		return ret;

1538 1539 1540
	/* read chip information */
	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
	if (ret)
1541
		goto disable_clk;
1542 1543 1544 1545 1546

	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
	    SGTL5000_PARTID_PART_ID) {
		dev_err(&client->dev,
			"Device with ID register %x is not a sgtl5000\n", reg);
1547 1548
		ret = -ENODEV;
		goto disable_clk;
1549 1550 1551 1552 1553
	}

	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);

1554 1555
	i2c_set_clientdata(client, sgtl5000);

1556 1557 1558
	/* Ensure sgtl5000 will start with sane register values */
	ret = sgtl5000_fill_defaults(sgtl5000);
	if (ret)
1559
		goto disable_clk;
1560

1561 1562
	ret = snd_soc_register_codec(&client->dev,
			&sgtl5000_driver, &sgtl5000_dai, 1);
1563 1564 1565 1566 1567 1568 1569
	if (ret)
		goto disable_clk;

	return 0;

disable_clk:
	clk_disable_unprepare(sgtl5000->mclk);
1570
	return ret;
1571 1572
}

1573
static int sgtl5000_i2c_remove(struct i2c_client *client)
1574
{
1575
	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1576

1577 1578
	snd_soc_unregister_codec(&client->dev);
	clk_disable_unprepare(sgtl5000->mclk);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	return 0;
}

static const struct i2c_device_id sgtl5000_id[] = {
	{"sgtl5000", 0},
	{},
};

MODULE_DEVICE_TABLE(i2c, sgtl5000_id);

1589 1590 1591 1592
static const struct of_device_id sgtl5000_dt_ids[] = {
	{ .compatible = "fsl,sgtl5000", },
	{ /* sentinel */ }
};
1593
MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1594

1595 1596 1597 1598
static struct i2c_driver sgtl5000_i2c_driver = {
	.driver = {
		   .name = "sgtl5000",
		   .owner = THIS_MODULE,
1599
		   .of_match_table = sgtl5000_dt_ids,
1600 1601
		   },
	.probe = sgtl5000_i2c_probe,
1602
	.remove = sgtl5000_i2c_remove,
1603 1604 1605
	.id_table = sgtl5000_id,
};

1606
module_i2c_driver(sgtl5000_i2c_driver);
1607 1608

MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1609
MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1610
MODULE_LICENSE("GPL");