fault.c 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Derived from "arch/i386/mm/fault.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Modified by Cort Dougan and Paul Mackerras.
 *
 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/signal.h>
#include <linux/sched.h>
20
#include <linux/sched/task_stack.h>
21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
30
#include <linux/extable.h>
31
#include <linux/kprobes.h>
32
#include <linux/kdebug.h>
33
#include <linux/perf_event.h>
34
#include <linux/ratelimit.h>
35
#include <linux/context_tracking.h>
36
#include <linux/hugetlb.h>
37
#include <linux/uaccess.h>
38

39
#include <asm/firmware.h>
40 41 42 43 44 45
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/siginfo.h>
46
#include <asm/debug.h>
47

48
static inline bool notify_page_fault(struct pt_regs *regs)
49
{
50
	bool ret = false;
51

52
#ifdef CONFIG_KPROBES
53 54 55 56
	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 11))
57
			ret = true;
58 59
		preempt_enable();
	}
60 61 62 63
#endif /* CONFIG_KPROBES */

	if (unlikely(debugger_fault_handler(regs)))
		ret = true;
64

65
	return ret;
66 67
}

68 69 70 71
/*
 * Check whether the instruction at regs->nip is a store using
 * an update addressing form which will update r1.
 */
72
static bool store_updates_sp(struct pt_regs *regs)
73 74 75 76
{
	unsigned int inst;

	if (get_user(inst, (unsigned int __user *)regs->nip))
77
		return false;
78 79
	/* check for 1 in the rA field */
	if (((inst >> 16) & 0x1f) != 1)
80
		return false;
81 82 83 84 85 86 87
	/* check major opcode */
	switch (inst >> 26) {
	case 37:	/* stwu */
	case 39:	/* stbu */
	case 45:	/* sthu */
	case 53:	/* stfsu */
	case 55:	/* stfdu */
88
		return true;
89 90 91 92 93 94 95 96 97 98 99
	case 62:	/* std or stdu */
		return (inst & 3) == 1;
	case 31:
		/* check minor opcode */
		switch ((inst >> 1) & 0x3ff) {
		case 181:	/* stdux */
		case 183:	/* stwux */
		case 247:	/* stbux */
		case 439:	/* sthux */
		case 695:	/* stfsux */
		case 759:	/* stfdux */
100
			return true;
101 102
		}
	}
103
	return false;
104
}
105 106 107 108
/*
 * do_page_fault error handling helpers
 */

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static int
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
{
	/*
	 * If we are in kernel mode, bail out with a SEGV, this will
	 * be caught by the assembly which will restore the non-volatile
	 * registers before calling bad_page_fault()
	 */
	if (!user_mode(regs))
		return SIGSEGV;

	_exception(SIGSEGV, regs, si_code, address);

	return 0;
}

static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
{
	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
}

static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
{
	struct mm_struct *mm = current->mm;

	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
	up_read(&mm->mmap_sem);

	return __bad_area_nosemaphore(regs, address, si_code);
}

static noinline int bad_area(struct pt_regs *regs, unsigned long address)
{
	return __bad_area(regs, address, SEGV_MAPERR);
}

148 149
static int do_sigbus(struct pt_regs *regs, unsigned long address,
		     unsigned int fault)
150 151
{
	siginfo_t info;
152
	unsigned int lsb = 0;
153

A
Anton Blanchard 已提交
154
	if (!user_mode(regs))
155
		return SIGBUS;
A
Anton Blanchard 已提交
156 157 158 159 160 161

	current->thread.trap_nr = BUS_ADRERR;
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code = BUS_ADRERR;
	info.si_addr = (void __user *)address;
162 163 164 165 166 167
#ifdef CONFIG_MEMORY_FAILURE
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			current->comm, current->pid, address);
		info.si_code = BUS_MCEERR_AR;
	}
168 169 170 171 172

	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
173
#endif
174
	info.si_addr_lsb = lsb;
A
Anton Blanchard 已提交
175
	force_sig_info(SIGBUS, &info, current);
176
	return 0;
177 178 179 180 181
}

static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
{
	/*
182 183
	 * Kernel page fault interrupted by SIGKILL. We have no reason to
	 * continue processing.
184
	 */
185 186
	if (fatal_signal_pending(current) && !user_mode(regs))
		return SIGKILL;
187 188

	/* Out of memory */
189 190 191 192 193 194
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, or some other thing happened to us that
		 * made us unable to handle the page fault gracefully.
		 */
		if (!user_mode(regs))
195
			return SIGSEGV;
196
		pagefault_out_of_memory();
197 198 199 200 201 202 203 204
	} else {
		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
			     VM_FAULT_HWPOISON_LARGE))
			return do_sigbus(regs, addr, fault);
		else if (fault & VM_FAULT_SIGSEGV)
			return bad_area_nosemaphore(regs, addr);
		else
			BUG();
205
	}
206
	return 0;
207
}
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222
/* Is this a bad kernel fault ? */
static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
			     unsigned long address)
{
	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
		printk_ratelimited(KERN_CRIT "kernel tried to execute"
				   " exec-protected page (%lx) -"
				   "exploit attempt? (uid: %d)\n",
				   address, from_kuid(&init_user_ns,
						      current_uid()));
	}
	return is_exec || (address >= TASK_SIZE);
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
				struct vm_area_struct *vma,
				bool store_update_sp)
{
	/*
	 * N.B. The POWER/Open ABI allows programs to access up to
	 * 288 bytes below the stack pointer.
	 * The kernel signal delivery code writes up to about 1.5kB
	 * below the stack pointer (r1) before decrementing it.
	 * The exec code can write slightly over 640kB to the stack
	 * before setting the user r1.  Thus we allow the stack to
	 * expand to 1MB without further checks.
	 */
	if (address + 0x100000 < vma->vm_end) {
		/* get user regs even if this fault is in kernel mode */
		struct pt_regs *uregs = current->thread.regs;
		if (uregs == NULL)
			return true;

		/*
		 * A user-mode access to an address a long way below
		 * the stack pointer is only valid if the instruction
		 * is one which would update the stack pointer to the
		 * address accessed if the instruction completed,
		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
		 * (or the byte, halfword, float or double forms).
		 *
		 * If we don't check this then any write to the area
		 * between the last mapped region and the stack will
		 * expand the stack rather than segfaulting.
		 */
		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
			return true;
	}
	return false;
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static bool access_error(bool is_write, bool is_exec,
			 struct vm_area_struct *vma)
{
	/*
	 * Allow execution from readable areas if the MMU does not
	 * provide separate controls over reading and executing.
	 *
	 * Note: That code used to not be enabled for 4xx/BookE.
	 * It is now as I/D cache coherency for these is done at
	 * set_pte_at() time and I see no reason why the test
	 * below wouldn't be valid on those processors. This -may-
	 * break programs compiled with a really old ABI though.
	 */
	if (is_exec) {
		return !(vma->vm_flags & VM_EXEC) &&
			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
	}

	if (is_write) {
		if (unlikely(!(vma->vm_flags & VM_WRITE)))
			return true;
		return false;
	}

	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
		return true;

	return false;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
#ifdef CONFIG_PPC_SMLPAR
static inline void cmo_account_page_fault(void)
{
	if (firmware_has_feature(FW_FEATURE_CMO)) {
		u32 page_ins;

		preempt_disable();
		page_ins = be32_to_cpu(get_lppaca()->page_ins);
		page_ins += 1 << PAGE_FACTOR;
		get_lppaca()->page_ins = cpu_to_be32(page_ins);
		preempt_enable();
	}
}
#else
static inline void cmo_account_page_fault(void) { }
#endif /* CONFIG_PPC_SMLPAR */

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
#ifdef CONFIG_PPC_STD_MMU
static void sanity_check_fault(bool is_write, unsigned long error_code)
{
	/*
	 * For hash translation mode, we should never get a
	 * PROTFAULT. Any update to pte to reduce access will result in us
	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
	 * fault instead of DSISR_PROTFAULT.
	 *
	 * A pte update to relax the access will not result in a hash page table
	 * entry invalidate and hence can result in DSISR_PROTFAULT.
	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
	 * the special !is_write in the below conditional.
	 *
	 * For platforms that doesn't supports coherent icache and do support
	 * per page noexec bit, we do setup things such that we do the
	 * sync between D/I cache via fault. But that is handled via low level
	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
	 * here in such case.
	 *
	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
	 * check should handle those and hence we should fall to the bad_area
	 * handling correctly.
	 *
	 * For embedded with per page exec support that doesn't support coherent
	 * icache we do get PROTFAULT and we handle that D/I cache sync in
	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
	 * is conditional for server MMU.
	 *
	 * For radix, we can get prot fault for autonuma case, because radix
	 * page table will have them marked noaccess for user.
	 */
	if (!radix_enabled() && !is_write)
		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
}
#else
static void sanity_check_fault(bool is_write, unsigned long error_code) { }
#endif /* CONFIG_PPC_STD_MMU */

347 348 349 350 351 352
/*
 * Define the correct "is_write" bit in error_code based
 * on the processor family
 */
#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
#define page_fault_is_write(__err)	((__err) & ESR_DST)
353
#define page_fault_is_bad(__err)	(0)
354 355
#else
#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
356
#if defined(CONFIG_PPC_8xx)
357
#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
358 359 360 361 362
#elif defined(CONFIG_PPC64)
#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
#else
#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
#endif
363 364
#endif

365 366 367 368 369 370 371 372 373 374 375 376 377
/*
 * For 600- and 800-family processors, the error_code parameter is DSISR
 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 * the error_code parameter is ESR for a data fault, 0 for an instruction
 * fault.
 * For 64-bit processors, the error_code parameter is
 *  - DSISR for a non-SLB data access fault,
 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 *  - 0 any SLB fault.
 *
 * The return value is 0 if the fault was handled, or the signal
 * number if this is a kernel fault that can't be handled here.
 */
378 379
static int __do_page_fault(struct pt_regs *regs, unsigned long address,
			   unsigned long error_code)
380 381 382
{
	struct vm_area_struct * vma;
	struct mm_struct *mm = current->mm;
383
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
384
 	int is_exec = TRAP(regs) == 0x400;
385
	int is_user = user_mode(regs);
386
	int is_write = page_fault_is_write(error_code);
387
	int fault, major = 0;
388
	bool store_update_sp = false;
389

390
	if (notify_page_fault(regs))
391
		return 0;
392

393
	if (unlikely(page_fault_is_bad(error_code))) {
394
		if (is_user) {
395
			_exception(SIGBUS, regs, BUS_OBJERR, address);
396 397 398
			return 0;
		}
		return SIGBUS;
399 400
	}

401 402 403
	/* Additional sanity check(s) */
	sanity_check_fault(is_write, error_code);

404 405 406 407
	/*
	 * The kernel should never take an execute fault nor should it
	 * take a page fault to a kernel address.
	 */
408
	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
409
		return SIGSEGV;
410

411 412 413 414 415 416 417 418 419 420 421 422 423
	/*
	 * If we're in an interrupt, have no user context or are running
	 * in a region with pagefaults disabled then we must not take the fault
	 */
	if (unlikely(faulthandler_disabled() || !mm)) {
		if (is_user)
			printk_ratelimited(KERN_ERR "Page fault in user mode"
					   " with faulthandler_disabled()=%d"
					   " mm=%p\n",
					   faulthandler_disabled(), mm);
		return bad_area_nosemaphore(regs, address);
	}

424 425 426 427
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

428
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
429

430 431 432 433 434
	if (error_code & DSISR_KEYFAULT) {
		_exception(SIGSEGV, regs, SEGV_PKUERR, address);
		return 0;
	}

435 436 437 438 439
	/*
	 * We want to do this outside mmap_sem, because reading code around nip
	 * can result in fault, which will cause a deadlock when called with
	 * mmap_sem held
	 */
440
	if (is_write && is_user)
441 442
		store_update_sp = store_updates_sp(regs);

443
	if (is_user)
444
		flags |= FAULT_FLAG_USER;
445 446 447 448
	if (is_write)
		flags |= FAULT_FLAG_WRITE;
	if (is_exec)
		flags |= FAULT_FLAG_INSTRUCTION;
449

450 451
	/* When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
452 453
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
	 * erroneous fault occurring in a code path which already holds mmap_sem
454 455 456 457 458 459
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
460
	 * the source reference check when there is a possibility of a deadlock.
461 462 463 464
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
465
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
466
		if (!is_user && !search_exception_tables(regs->nip))
467
			return bad_area_nosemaphore(regs, address);
468

469
retry:
470
		down_read(&mm->mmap_sem);
471 472 473 474 475 476 477
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
		 */
		might_sleep();
478 479 480
	}

	vma = find_vma(mm, address);
481
	if (unlikely(!vma))
482
		return bad_area(regs, address);
483
	if (likely(vma->vm_start <= address))
484
		goto good_area;
485
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
486
		return bad_area(regs, address);
487

488 489 490
	/* The stack is being expanded, check if it's valid */
	if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
		return bad_area(regs, address);
491

492
	/* Try to expand it */
493
	if (unlikely(expand_stack(vma, address)))
494
		return bad_area(regs, address);
495 496

good_area:
497 498
	if (unlikely(access_error(is_write, is_exec, vma)))
		return bad_area(regs, address);
499 500 501 502 503 504

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
505
	fault = handle_mm_fault(vma, address, flags);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

#ifdef CONFIG_PPC_MEM_KEYS
	/*
	 * if the HPTE is not hashed, hardware will not detect
	 * a key fault. Lets check if we failed because of a
	 * software detected key fault.
	 */
	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
		!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
			is_exec, 0)) {
		int pkey = vma_pkey(vma);

		if (likely(pkey))
			return __bad_area(regs, address, SEGV_PKUERR);
	}
#endif /* CONFIG_PPC_MEM_KEYS */

523
	major |= fault & VM_FAULT_MAJOR;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

	/*
	 * Handle the retry right now, the mmap_sem has been released in that
	 * case.
	 */
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* We retry only once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			/*
			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
			 * of starvation.
			 */
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(current))
				goto retry;
		}

542 543 544 545 546
		/*
		 * User mode? Just return to handle the fatal exception otherwise
		 * return to bad_page_fault
		 */
		return is_user ? 0 : SIGBUS;
547
	}
548

549 550 551 552 553
	up_read(&current->mm->mmap_sem);

	if (unlikely(fault & VM_FAULT_ERROR))
		return mm_fault_error(regs, address, fault);

554
	/*
555
	 * Major/minor page fault accounting.
556
	 */
557
	if (major) {
558
		current->maj_flt++;
559
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
560
		cmo_account_page_fault();
561 562
	} else {
		current->min_flt++;
563
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
564
	}
565
	return 0;
566 567 568 569 570 571 572 573
}
NOKPROBE_SYMBOL(__do_page_fault);

int do_page_fault(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code)
{
	enum ctx_state prev_state = exception_enter();
	int rc = __do_page_fault(regs, address, error_code);
574 575
	exception_exit(prev_state);
	return rc;
576
}
577
NOKPROBE_SYMBOL(do_page_fault);
578 579 580 581 582 583 584 585 586 587 588 589

/*
 * bad_page_fault is called when we have a bad access from the kernel.
 * It is called from the DSI and ISI handlers in head.S and from some
 * of the procedures in traps.c.
 */
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
{
	const struct exception_table_entry *entry;

	/* Are we prepared to handle this fault?  */
	if ((entry = search_exception_tables(regs->nip)) != NULL) {
590
		regs->nip = extable_fixup(entry);
591 592 593 594
		return;
	}

	/* kernel has accessed a bad area */
595

596
	switch (TRAP(regs)) {
597 598 599 600 601 602 603 604 605 606
	case 0x300:
	case 0x380:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"data at address 0x%08lx\n", regs->dar);
		break;
	case 0x400:
	case 0x480:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"instruction fetch\n");
		break;
607 608 609 610
	case 0x600:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"unaligned access at address 0x%08lx\n", regs->dar);
		break;
611 612 613 614
	default:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"unknown fault\n");
		break;
615 616 617 618
	}
	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
		regs->nip);

619
	if (task_stack_end_corrupted(current))
620 621
		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");

622 623
	die("Kernel access of bad area", regs, sig);
}