fault.c 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Derived from "arch/i386/mm/fault.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Modified by Cort Dougan and Paul Mackerras.
 *
 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/kprobes.h>
31
#include <linux/kdebug.h>
32
#include <linux/perf_event.h>
33
#include <linux/magic.h>
34
#include <linux/ratelimit.h>
35
#include <linux/context_tracking.h>
36

37
#include <asm/firmware.h>
38 39 40 41 42 43 44
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
#include <asm/siginfo.h>
45
#include <asm/debug.h>
46
#include <mm/mmu_decl.h>
47

48 49
#include "icswx.h"

50 51
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs)
52
{
53 54 55 56 57 58 59 60 61
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 11))
			ret = 1;
		preempt_enable();
	}
62

63
	return ret;
64 65
}
#else
66
static inline int notify_page_fault(struct pt_regs *regs)
67
{
68
	return 0;
69 70 71
}
#endif

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * Check whether the instruction at regs->nip is a store using
 * an update addressing form which will update r1.
 */
static int store_updates_sp(struct pt_regs *regs)
{
	unsigned int inst;

	if (get_user(inst, (unsigned int __user *)regs->nip))
		return 0;
	/* check for 1 in the rA field */
	if (((inst >> 16) & 0x1f) != 1)
		return 0;
	/* check major opcode */
	switch (inst >> 26) {
	case 37:	/* stwu */
	case 39:	/* stbu */
	case 45:	/* sthu */
	case 53:	/* stfsu */
	case 55:	/* stfdu */
		return 1;
	case 62:	/* std or stdu */
		return (inst & 3) == 1;
	case 31:
		/* check minor opcode */
		switch ((inst >> 1) & 0x3ff) {
		case 181:	/* stdux */
		case 183:	/* stwux */
		case 247:	/* stbux */
		case 439:	/* sthux */
		case 695:	/* stfsux */
		case 759:	/* stfdux */
			return 1;
		}
	}
	return 0;
}
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/*
 * do_page_fault error handling helpers
 */

#define MM_FAULT_RETURN		0
#define MM_FAULT_CONTINUE	-1
#define MM_FAULT_ERR(sig)	(sig)

static int do_sigbus(struct pt_regs *regs, unsigned long address)
{
	siginfo_t info;

	up_read(&current->mm->mmap_sem);

	if (user_mode(regs)) {
124
		current->thread.trap_nr = BUS_ADRERR;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
		info.si_signo = SIGBUS;
		info.si_errno = 0;
		info.si_code = BUS_ADRERR;
		info.si_addr = (void __user *)address;
		force_sig_info(SIGBUS, &info, current);
		return MM_FAULT_RETURN;
	}
	return MM_FAULT_ERR(SIGBUS);
}

static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
{
	/*
	 * Pagefault was interrupted by SIGKILL. We have no reason to
	 * continue the pagefault.
	 */
	if (fatal_signal_pending(current)) {
		/*
		 * If we have retry set, the mmap semaphore will have
		 * alrady been released in __lock_page_or_retry(). Else
		 * we release it now.
		 */
		if (!(fault & VM_FAULT_RETRY))
			up_read(&current->mm->mmap_sem);
		/* Coming from kernel, we need to deal with uaccess fixups */
		if (user_mode(regs))
			return MM_FAULT_RETURN;
		return MM_FAULT_ERR(SIGKILL);
	}

	/* No fault: be happy */
	if (!(fault & VM_FAULT_ERROR))
		return MM_FAULT_CONTINUE;

	/* Out of memory */
160 161 162 163 164 165 166 167 168 169 170 171
	if (fault & VM_FAULT_OOM) {
		up_read(&current->mm->mmap_sem);

		/*
		 * We ran out of memory, or some other thing happened to us that
		 * made us unable to handle the page fault gracefully.
		 */
		if (!user_mode(regs))
			return MM_FAULT_ERR(SIGKILL);
		pagefault_out_of_memory();
		return MM_FAULT_RETURN;
	}
172 173 174 175 176 177 178 179 180 181 182

	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
	 * we support the feature in HW
	 */
	if (fault & VM_FAULT_SIGBUS)
		return do_sigbus(regs, addr);

	/* We don't understand the fault code, this is fatal */
	BUG();
	return MM_FAULT_CONTINUE;
}
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

/*
 * For 600- and 800-family processors, the error_code parameter is DSISR
 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 * the error_code parameter is ESR for a data fault, 0 for an instruction
 * fault.
 * For 64-bit processors, the error_code parameter is
 *  - DSISR for a non-SLB data access fault,
 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 *  - 0 any SLB fault.
 *
 * The return value is 0 if the fault was handled, or the signal
 * number if this is a kernel fault that can't be handled here.
 */
int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
			    unsigned long error_code)
{
200
	enum ctx_state prev_state = exception_enter();
201 202
	struct vm_area_struct * vma;
	struct mm_struct *mm = current->mm;
203
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
204
	int code = SEGV_MAPERR;
205
	int is_write = 0;
206 207
	int trap = TRAP(regs);
 	int is_exec = trap == 0x400;
208
	int fault;
209
	int rc = 0, store_update_sp = 0;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
	/*
	 * Fortunately the bit assignments in SRR1 for an instruction
	 * fault and DSISR for a data fault are mostly the same for the
	 * bits we are interested in.  But there are some bits which
	 * indicate errors in DSISR but can validly be set in SRR1.
	 */
	if (trap == 0x400)
		error_code &= 0x48200000;
	else
		is_write = error_code & DSISR_ISSTORE;
#else
	is_write = error_code & ESR_DST;
#endif /* CONFIG_4xx || CONFIG_BOOKE */

226 227 228 229 230 231 232
#ifdef CONFIG_PPC_ICSWX
	/*
	 * we need to do this early because this "data storage
	 * interrupt" does not update the DAR/DEAR so we don't want to
	 * look at it
	 */
	if (error_code & ICSWX_DSI_UCT) {
233
		rc = acop_handle_fault(regs, address, error_code);
234
		if (rc)
235
			goto bail;
236
	}
237
#endif /* CONFIG_PPC_ICSWX */
238

239
	if (notify_page_fault(regs))
240
		goto bail;
241

242
	if (unlikely(debugger_fault_handler(regs)))
243
		goto bail;
244 245

	/* On a kernel SLB miss we can only check for a valid exception entry */
246 247 248 249
	if (!user_mode(regs) && (address >= TASK_SIZE)) {
		rc = SIGSEGV;
		goto bail;
	}
250

251 252
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
			     defined(CONFIG_PPC_BOOK3S_64))
253
  	if (error_code & DSISR_DABRMATCH) {
254 255
		/* breakpoint match */
		do_break(regs, address, error_code);
256
		goto bail;
257
	}
258
#endif
259

260 261 262 263
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

264
	if (in_atomic() || mm == NULL) {
265 266 267 268
		if (!user_mode(regs)) {
			rc = SIGSEGV;
			goto bail;
		}
269 270
		/* in_atomic() in user mode is really bad,
		   as is current->mm == NULL. */
271
		printk(KERN_EMERG "Page fault in user mode with "
272 273 274 275 276 277
		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
		       regs->nip, regs->msr);
		die("Weird page fault", regs, SIGSEGV);
	}

278
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
279

280 281 282 283 284 285 286 287
	/*
	 * We want to do this outside mmap_sem, because reading code around nip
	 * can result in fault, which will cause a deadlock when called with
	 * mmap_sem held
	 */
	if (user_mode(regs))
		store_update_sp = store_updates_sp(regs);

288 289 290
	if (user_mode(regs))
		flags |= FAULT_FLAG_USER;

291 292
	/* When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
293 294
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
	 * erroneous fault occurring in a code path which already holds mmap_sem
295 296 297 298 299 300
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
301
	 * the source reference check when there is a possibility of a deadlock.
302 303 304 305 306 307 308 309
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->nip))
			goto bad_area_nosemaphore;

310
retry:
311
		down_read(&mm->mmap_sem);
312 313 314 315 316 317 318
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
		 */
		might_sleep();
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	}

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;
	if (vma->vm_start <= address)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;

	/*
	 * N.B. The POWER/Open ABI allows programs to access up to
	 * 288 bytes below the stack pointer.
	 * The kernel signal delivery code writes up to about 1.5kB
	 * below the stack pointer (r1) before decrementing it.
	 * The exec code can write slightly over 640kB to the stack
	 * before setting the user r1.  Thus we allow the stack to
	 * expand to 1MB without further checks.
	 */
	if (address + 0x100000 < vma->vm_end) {
		/* get user regs even if this fault is in kernel mode */
		struct pt_regs *uregs = current->thread.regs;
		if (uregs == NULL)
			goto bad_area;

		/*
		 * A user-mode access to an address a long way below
		 * the stack pointer is only valid if the instruction
		 * is one which would update the stack pointer to the
		 * address accessed if the instruction completed,
		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
		 * (or the byte, halfword, float or double forms).
		 *
		 * If we don't check this then any write to the area
		 * between the last mapped region and the stack will
		 * expand the stack rather than segfaulting.
		 */
356
		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
357 358 359 360 361 362 363 364 365 366 367 368 369 370
			goto bad_area;
	}
	if (expand_stack(vma, address))
		goto bad_area;

good_area:
	code = SEGV_ACCERR;
#if defined(CONFIG_6xx)
	if (error_code & 0x95700000)
		/* an error such as lwarx to I/O controller space,
		   address matching DABR, eciwx, etc. */
		goto bad_area;
#endif /* CONFIG_6xx */
#if defined(CONFIG_8xx)
371 372 373 374 375 376
	/* 8xx sometimes need to load a invalid/non-present TLBs.
	 * These must be invalidated separately as linux mm don't.
	 */
	if (error_code & 0x40000000) /* no translation? */
		_tlbil_va(address, 0, 0, 0);

377 378 379 380 381 382 383 384 385 386
        /* The MPC8xx seems to always set 0x80000000, which is
         * "undefined".  Of those that can be set, this is the only
         * one which seems bad.
         */
	if (error_code & 0x10000000)
                /* Guarded storage error. */
		goto bad_area;
#endif /* CONFIG_8xx */

	if (is_exec) {
387 388 389 390 391 392 393 394 395
#ifdef CONFIG_PPC_STD_MMU
		/* Protection fault on exec go straight to failure on
		 * Hash based MMUs as they either don't support per-page
		 * execute permission, or if they do, it's handled already
		 * at the hash level. This test would probably have to
		 * be removed if we change the way this works to make hash
		 * processors use the same I/D cache coherency mechanism
		 * as embedded.
		 */
396 397
		if (error_code & DSISR_PROTFAULT)
			goto bad_area;
398 399
#endif /* CONFIG_PPC_STD_MMU */

400 401 402
		/*
		 * Allow execution from readable areas if the MMU does not
		 * provide separate controls over reading and executing.
403 404 405 406 407 408
		 *
		 * Note: That code used to not be enabled for 4xx/BookE.
		 * It is now as I/D cache coherency for these is done at
		 * set_pte_at() time and I see no reason why the test
		 * below wouldn't be valid on those processors. This -may-
		 * break programs compiled with a really old ABI though.
409 410 411 412
		 */
		if (!(vma->vm_flags & VM_EXEC) &&
		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
413 414 415 416 417
			goto bad_area;
	/* a write */
	} else if (is_write) {
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
418
		flags |= FAULT_FLAG_WRITE;
419 420 421 422 423
	/* a read */
	} else {
		/* protection fault */
		if (error_code & 0x08000000)
			goto bad_area;
424
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
425 426 427 428 429 430 431 432
			goto bad_area;
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
433 434
	fault = handle_mm_fault(mm, vma, address, flags);
	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
435
		rc = mm_fault_error(regs, address, fault);
436
		if (rc >= MM_FAULT_RETURN)
437 438 439
			goto bail;
		else
			rc = 0;
440
	}
441 442 443 444 445 446 447 448 449 450 451

	/*
	 * Major/minor page fault accounting is only done on the
	 * initial attempt. If we go through a retry, it is extremely
	 * likely that the page will be found in page cache at that point.
	 */
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		if (fault & VM_FAULT_MAJOR) {
			current->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
				      regs, address);
452
#ifdef CONFIG_PPC_SMLPAR
453
			if (firmware_has_feature(FW_FEATURE_CMO)) {
454 455
				u32 page_ins;

456
				preempt_disable();
457 458 459
				page_ins = be32_to_cpu(get_lppaca()->page_ins);
				page_ins += 1 << PAGE_FACTOR;
				get_lppaca()->page_ins = cpu_to_be32(page_ins);
460 461 462 463 464 465 466 467 468 469 470 471
				preempt_enable();
			}
#endif /* CONFIG_PPC_SMLPAR */
		} else {
			current->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
				      regs, address);
		}
		if (fault & VM_FAULT_RETRY) {
			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
			 * of starvation. */
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
472
			flags |= FAULT_FLAG_TRIED;
473
			goto retry;
474
		}
475
	}
476

477
	up_read(&mm->mmap_sem);
478
	goto bail;
479 480 481 482 483 484 485 486

bad_area:
	up_read(&mm->mmap_sem);

bad_area_nosemaphore:
	/* User mode accesses cause a SIGSEGV */
	if (user_mode(regs)) {
		_exception(SIGSEGV, regs, code, address);
487
		goto bail;
488 489
	}

490 491 492
	if (is_exec && (error_code & DSISR_PROTFAULT))
		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
				   " page (%lx) - exploit attempt? (uid: %d)\n",
493
				   address, from_kuid(&init_user_ns, current_uid()));
494

495 496 497 498 499
	rc = SIGSEGV;

bail:
	exception_exit(prev_state);
	return rc;
500 501 502 503 504 505 506 507 508 509 510

}

/*
 * bad_page_fault is called when we have a bad access from the kernel.
 * It is called from the DSI and ISI handlers in head.S and from some
 * of the procedures in traps.c.
 */
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
{
	const struct exception_table_entry *entry;
511
	unsigned long *stackend;
512 513 514 515 516 517 518 519

	/* Are we prepared to handle this fault?  */
	if ((entry = search_exception_tables(regs->nip)) != NULL) {
		regs->nip = entry->fixup;
		return;
	}

	/* kernel has accessed a bad area */
520 521

	switch (regs->trap) {
522 523 524 525 526 527 528 529 530 531 532 533 534 535
	case 0x300:
	case 0x380:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"data at address 0x%08lx\n", regs->dar);
		break;
	case 0x400:
	case 0x480:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"instruction fetch\n");
		break;
	default:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"unknown fault\n");
		break;
536 537 538 539
	}
	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
		regs->nip);

540 541 542 543
	stackend = end_of_stack(current);
	if (current != &init_task && *stackend != STACK_END_MAGIC)
		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");

544 545
	die("Kernel access of bad area", regs, sig);
}