volumes.c 205.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */
5

6
#include <linux/sched.h>
7
#include <linux/sched/mm.h>
8
#include <linux/bio.h>
9
#include <linux/slab.h>
10
#include <linux/blkdev.h>
11
#include <linux/ratelimit.h>
I
Ilya Dryomov 已提交
12
#include <linux/kthread.h>
D
David Woodhouse 已提交
13
#include <linux/raid/pq.h>
S
Stefan Behrens 已提交
14
#include <linux/semaphore.h>
15
#include <linux/uuid.h>
A
Anand Jain 已提交
16
#include <linux/list_sort.h>
17
#include "misc.h"
18 19 20 21 22 23
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
D
David Woodhouse 已提交
24
#include "raid56.h"
25
#include "async-thread.h"
26
#include "check-integrity.h"
27
#include "rcu-string.h"
28
#include "dev-replace.h"
29
#include "sysfs.h"
30
#include "tree-checker.h"
31
#include "space-info.h"
32
#include "block-group.h"
33
#include "discard.h"
34

Z
Zhao Lei 已提交
35 36 37 38 39 40
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
41
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
42 43
		.devs_increment	= 2,
		.ncopies	= 2,
44
		.nparity        = 0,
45
		.raid_name	= "raid10",
46
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47
		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
Z
Zhao Lei 已提交
48 49 50 51 52 53
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
54
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
55 56
		.devs_increment	= 2,
		.ncopies	= 2,
57
		.nparity        = 0,
58
		.raid_name	= "raid1",
59
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60
		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
Z
Zhao Lei 已提交
61
	},
62 63 64
	[BTRFS_RAID_RAID1C3] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
65
		.devs_max	= 3,
66 67 68 69
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 3,
		.ncopies	= 3,
70
		.nparity        = 0,
71 72 73 74
		.raid_name	= "raid1c3",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
	},
75 76 77
	[BTRFS_RAID_RAID1C4] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
78
		.devs_max	= 4,
79 80 81 82
		.devs_min	= 4,
		.tolerated_failures = 3,
		.devs_increment	= 4,
		.ncopies	= 4,
83
		.nparity        = 0,
84 85 86 87
		.raid_name	= "raid1c4",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
	},
Z
Zhao Lei 已提交
88 89 90 91 92
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
93
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
94 95
		.devs_increment	= 1,
		.ncopies	= 2,
96
		.nparity        = 0,
97
		.raid_name	= "dup",
98
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99
		.mindev_error	= 0,
Z
Zhao Lei 已提交
100 101 102 103 104 105
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
106
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
107 108
		.devs_increment	= 1,
		.ncopies	= 1,
109
		.nparity        = 0,
110
		.raid_name	= "raid0",
111
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112
		.mindev_error	= 0,
Z
Zhao Lei 已提交
113 114 115 116 117 118
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
119
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
120 121
		.devs_increment	= 1,
		.ncopies	= 1,
122
		.nparity        = 0,
123
		.raid_name	= "single",
124
		.bg_flag	= 0,
125
		.mindev_error	= 0,
Z
Zhao Lei 已提交
126 127 128 129 130 131
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
132
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
133
		.devs_increment	= 1,
134
		.ncopies	= 1,
135
		.nparity        = 1,
136
		.raid_name	= "raid5",
137
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138
		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
Z
Zhao Lei 已提交
139 140 141 142 143 144
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
145
		.tolerated_failures = 2,
Z
Zhao Lei 已提交
146
		.devs_increment	= 1,
147
		.ncopies	= 1,
148
		.nparity        = 2,
149
		.raid_name	= "raid6",
150
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151
		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
Z
Zhao Lei 已提交
152 153 154
	},
};

155
const char *btrfs_bg_type_to_raid_name(u64 flags)
156
{
157 158 159
	const int index = btrfs_bg_flags_to_raid_index(flags);

	if (index >= BTRFS_NR_RAID_TYPES)
160 161
		return NULL;

162
	return btrfs_raid_array[index].raid_name;
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 * bytes including terminating null byte.
 */
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
{
	int i;
	int ret;
	char *bp = buf;
	u64 flags = bg_flags;
	u32 size_bp = size_buf;

	if (!flags) {
		strcpy(bp, "NONE");
		return;
	}

#define DESCRIBE_FLAG(flag, desc)						\
	do {								\
		if (flags & (flag)) {					\
			ret = snprintf(bp, size_bp, "%s|", (desc));	\
			if (ret < 0 || ret >= size_bp)			\
				goto out_overflow;			\
			size_bp -= ret;					\
			bp += ret;					\
			flags &= ~(flag);				\
		}							\
	} while (0)

	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");

	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
			      btrfs_raid_array[i].raid_name);
#undef DESCRIBE_FLAG

	if (flags) {
		ret = snprintf(bp, size_bp, "0x%llx|", flags);
		size_bp -= ret;
	}

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */

	/*
	 * The text is trimmed, it's up to the caller to provide sufficiently
	 * large buffer
	 */
out_overflow:;
}

219
static int init_first_rw_device(struct btrfs_trans_handle *trans);
220
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 224 225 226 227
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
			     u64 logical, u64 *length,
			     struct btrfs_bio **bbio_ret,
			     int mirror_num, int need_raid_map);
Y
Yan Zheng 已提交
228

D
David Sterba 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Device locking
 * ==============
 *
 * There are several mutexes that protect manipulation of devices and low-level
 * structures like chunks but not block groups, extents or files
 *
 * uuid_mutex (global lock)
 * ------------------------
 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 * device) or requested by the device= mount option
 *
 * the mutex can be very coarse and can cover long-running operations
 *
 * protects: updates to fs_devices counters like missing devices, rw devices,
245
 * seeding, structure cloning, opening/closing devices at mount/umount time
D
David Sterba 已提交
246 247 248
 *
 * global::fs_devs - add, remove, updates to the global list
 *
249 250 251
 * does not protect: manipulation of the fs_devices::devices list in general
 * but in mount context it could be used to exclude list modifications by eg.
 * scan ioctl
D
David Sterba 已提交
252 253 254 255 256 257 258 259 260 261 262 263
 *
 * btrfs_device::name - renames (write side), read is RCU
 *
 * fs_devices::device_list_mutex (per-fs, with RCU)
 * ------------------------------------------------
 * protects updates to fs_devices::devices, ie. adding and deleting
 *
 * simple list traversal with read-only actions can be done with RCU protection
 *
 * may be used to exclude some operations from running concurrently without any
 * modifications to the list (see write_all_supers)
 *
264 265 266
 * Is not required at mount and close times, because our device list is
 * protected by the uuid_mutex at that point.
 *
D
David Sterba 已提交
267 268 269 270 271 272 273 274
 * balance_mutex
 * -------------
 * protects balance structures (status, state) and context accessed from
 * several places (internally, ioctl)
 *
 * chunk_mutex
 * -----------
 * protects chunks, adding or removing during allocation, trim or when a new
275 276 277
 * device is added/removed. Additionally it also protects post_commit_list of
 * individual devices, since they can be added to the transaction's
 * post_commit_list only with chunk_mutex held.
D
David Sterba 已提交
278 279 280 281 282 283 284 285 286 287 288
 *
 * cleaner_mutex
 * -------------
 * a big lock that is held by the cleaner thread and prevents running subvolume
 * cleaning together with relocation or delayed iputs
 *
 *
 * Lock nesting
 * ============
 *
 * uuid_mutex
289 290 291
 *   device_list_mutex
 *     chunk_mutex
 *   balance_mutex
292 293
 *
 *
294 295
 * Exclusive operations
 * ====================
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
 *
 * Maintains the exclusivity of the following operations that apply to the
 * whole filesystem and cannot run in parallel.
 *
 * - Balance (*)
 * - Device add
 * - Device remove
 * - Device replace (*)
 * - Resize
 *
 * The device operations (as above) can be in one of the following states:
 *
 * - Running state
 * - Paused state
 * - Completed state
 *
 * Only device operations marked with (*) can go into the Paused state for the
 * following reasons:
 *
 * - ioctl (only Balance can be Paused through ioctl)
 * - filesystem remounted as read-only
 * - filesystem unmounted and mounted as read-only
 * - system power-cycle and filesystem mounted as read-only
 * - filesystem or device errors leading to forced read-only
 *
321 322
 * The status of exclusive operation is set and cleared atomically.
 * During the course of Paused state, fs_info::exclusive_operation remains set.
323 324
 * A device operation in Paused or Running state can be canceled or resumed
 * either by ioctl (Balance only) or when remounted as read-write.
325
 * The exclusive status is cleared when the device operation is canceled or
326
 * completed.
D
David Sterba 已提交
327 328
 */

329
DEFINE_MUTEX(uuid_mutex);
330
static LIST_HEAD(fs_uuids);
D
David Sterba 已提交
331
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 333 334
{
	return &fs_uuids;
}
335

D
David Sterba 已提交
336 337
/*
 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 339
 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
D
David Sterba 已提交
340 341 342 343 344
 *
 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 * The returned struct is not linked onto any lists and can be destroyed with
 * kfree() right away.
 */
345 346
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
						 const u8 *metadata_fsid)
347 348 349
{
	struct btrfs_fs_devices *fs_devs;

350
	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 352 353 354 355 356 357
	if (!fs_devs)
		return ERR_PTR(-ENOMEM);

	mutex_init(&fs_devs->device_list_mutex);

	INIT_LIST_HEAD(&fs_devs->devices);
	INIT_LIST_HEAD(&fs_devs->alloc_list);
358
	INIT_LIST_HEAD(&fs_devs->fs_list);
359
	INIT_LIST_HEAD(&fs_devs->seed_list);
360 361 362
	if (fsid)
		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);

363 364 365 366 367
	if (metadata_fsid)
		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
	else if (fsid)
		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);

368 369 370
	return fs_devs;
}

371
void btrfs_free_device(struct btrfs_device *device)
372
{
373
	WARN_ON(!list_empty(&device->post_commit_list));
374
	rcu_string_free(device->name);
375
	extent_io_tree_release(&device->alloc_state);
376 377 378 379
	bio_put(device->flush_bio);
	kfree(device);
}

Y
Yan Zheng 已提交
380 381 382 383 384 385 386 387
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
388
		btrfs_free_device(device);
Y
Yan Zheng 已提交
389 390 391 392
	}
	kfree(fs_devices);
}

393
void __exit btrfs_cleanup_fs_uuids(void)
394 395 396
{
	struct btrfs_fs_devices *fs_devices;

Y
Yan Zheng 已提交
397 398
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
399 400
					struct btrfs_fs_devices, fs_list);
		list_del(&fs_devices->fs_list);
Y
Yan Zheng 已提交
401
		free_fs_devices(fs_devices);
402 403 404
	}
}

405 406 407
/*
 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 * Returned struct is not linked onto any lists and must be destroyed using
408
 * btrfs_free_device.
409
 */
410
static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 412 413
{
	struct btrfs_device *dev;

414
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 416 417
	if (!dev)
		return ERR_PTR(-ENOMEM);

418 419 420 421 422 423 424 425 426 427
	/*
	 * Preallocate a bio that's always going to be used for flushing device
	 * barriers and matches the device lifespan
	 */
	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
	if (!dev->flush_bio) {
		kfree(dev);
		return ERR_PTR(-ENOMEM);
	}

428 429
	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_alloc_list);
430
	INIT_LIST_HEAD(&dev->post_commit_list);
431 432

	atomic_set(&dev->reada_in_flight, 0);
433
	atomic_set(&dev->dev_stats_ccnt, 0);
434
	btrfs_device_data_ordered_init(dev, fs_info);
435
	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436
	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 438
	extent_io_tree_init(fs_info, &dev->alloc_state,
			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
439 440 441 442

	return dev;
}

443 444
static noinline struct btrfs_fs_devices *find_fsid(
		const u8 *fsid, const u8 *metadata_fsid)
445 446 447
{
	struct btrfs_fs_devices *fs_devices;

448 449
	ASSERT(fsid);

450
	/* Handle non-split brain cases */
451
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 453 454 455 456 457 458 459 460
		if (metadata_fsid) {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
				      BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		} else {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		}
461 462 463 464
	}
	return NULL;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
				struct btrfs_super_block *disk_super)
{

	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by first scanning
	 * a device which didn't have its fsid/metadata_uuid changed
	 * at all and the CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}
	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by a device that
	 * has an outdated pair of fsid/metadata_uuid and
	 * CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(fs_devices->metadata_uuid,
			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}

	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
}


506 507 508
static int
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
		      int flush, struct block_device **bdev,
509
		      struct btrfs_super_block **disk_super)
510 511 512 513 514 515 516 517 518 519 520 521
{
	int ret;

	*bdev = blkdev_get_by_path(device_path, flags, holder);

	if (IS_ERR(*bdev)) {
		ret = PTR_ERR(*bdev);
		goto error;
	}

	if (flush)
		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522
	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 524 525 526 527
	if (ret) {
		blkdev_put(*bdev, flags);
		goto error;
	}
	invalidate_bdev(*bdev);
528 529 530
	*disk_super = btrfs_read_dev_super(*bdev);
	if (IS_ERR(*disk_super)) {
		ret = PTR_ERR(*disk_super);
531 532 533 534 535 536 537 538 539 540 541
		blkdev_put(*bdev, flags);
		goto error;
	}

	return 0;

error:
	*bdev = NULL;
	return ret;
}

542 543 544 545 546 547 548 549 550 551 552
static bool device_path_matched(const char *path, struct btrfs_device *device)
{
	int found;

	rcu_read_lock();
	found = strcmp(rcu_str_deref(device->name), path);
	rcu_read_unlock();

	return found == 0;
}

553 554 555 556 557 558 559
/*
 *  Search and remove all stale (devices which are not mounted) devices.
 *  When both inputs are NULL, it will search and release all stale devices.
 *  path:	Optional. When provided will it release all unmounted devices
 *		matching this path only.
 *  skip_dev:	Optional. Will skip this device when searching for the stale
 *		devices.
560 561 562
 *  Return:	0 for success or if @path is NULL.
 * 		-EBUSY if @path is a mounted device.
 * 		-ENOENT if @path does not match any device in the list.
563
 */
564
static int btrfs_free_stale_devices(const char *path,
565
				     struct btrfs_device *skip_device)
A
Anand Jain 已提交
566
{
567 568
	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
	struct btrfs_device *device, *tmp_device;
569 570 571 572
	int ret = 0;

	if (path)
		ret = -ENOENT;
A
Anand Jain 已提交
573

574
	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
A
Anand Jain 已提交
575

576
		mutex_lock(&fs_devices->device_list_mutex);
577 578 579
		list_for_each_entry_safe(device, tmp_device,
					 &fs_devices->devices, dev_list) {
			if (skip_device && skip_device == device)
580
				continue;
581
			if (path && !device->name)
A
Anand Jain 已提交
582
				continue;
583
			if (path && !device_path_matched(path, device))
584
				continue;
585 586 587 588 589 590
			if (fs_devices->opened) {
				/* for an already deleted device return 0 */
				if (path && ret != 0)
					ret = -EBUSY;
				break;
			}
A
Anand Jain 已提交
591 592

			/* delete the stale device */
593 594 595 596
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);

597
			ret = 0;
598 599
		}
		mutex_unlock(&fs_devices->device_list_mutex);
600

601 602 603 604
		if (fs_devices->num_devices == 0) {
			btrfs_sysfs_remove_fsid(fs_devices);
			list_del(&fs_devices->fs_list);
			free_fs_devices(fs_devices);
A
Anand Jain 已提交
605 606
		}
	}
607 608

	return ret;
A
Anand Jain 已提交
609 610
}

611 612 613 614 615
/*
 * This is only used on mount, and we are protected from competing things
 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 * fs_devices->device_list_mutex here.
 */
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
			struct btrfs_device *device, fmode_t flags,
			void *holder)
{
	struct request_queue *q;
	struct block_device *bdev;
	struct btrfs_super_block *disk_super;
	u64 devid;
	int ret;

	if (device->bdev)
		return -EINVAL;
	if (!device->name)
		return -EINVAL;

	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632
				    &bdev, &disk_super);
633 634 635 636 637
	if (ret)
		return ret;

	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (devid != device->devid)
638
		goto error_free_page;
639 640

	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641
		goto error_free_page;
642 643 644 645

	device->generation = btrfs_super_generation(disk_super);

	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 647 648 649
		if (btrfs_super_incompat_flags(disk_super) &
		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
			pr_err(
		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650
			goto error_free_page;
651 652
		}

653
		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654
		fs_devices->seeding = true;
655
	} else {
656 657 658 659
		if (bdev_read_only(bdev))
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
		else
			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 661 662 663
	}

	q = bdev_get_queue(bdev);
	if (!blk_queue_nonrot(q))
664
		fs_devices->rotating = true;
665 666

	device->bdev = bdev;
667
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 669 670
	device->mode = flags;

	fs_devices->open_devices++;
671 672
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673
		fs_devices->rw_devices++;
674
		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675
	}
676
	btrfs_release_disk_super(disk_super);
677 678 679

	return 0;

680 681
error_free_page:
	btrfs_release_disk_super(disk_super);
682 683 684 685 686
	blkdev_put(bdev, flags);

	return -EINVAL;
}

687 688
/*
 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689 690 691
 * being created with a disk that has already completed its fsid change. Such
 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 * Handle both cases here.
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
 */
static struct btrfs_fs_devices *find_fsid_inprogress(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
			return fs_devices;
		}
	}

707
	return find_fsid(disk_super->fsid, NULL);
708 709
}

710 711 712 713 714 715 716 717 718

static struct btrfs_fs_devices *find_fsid_changed(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handles the case where scanned device is part of an fs that had
	 * multiple successful changes of FSID but curently device didn't
719 720 721 722 723
	 * observe it. Meaning our fsid will be different than theirs. We need
	 * to handle two subcases :
	 *  1 - The fs still continues to have different METADATA/FSID uuids.
	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
	 *  are equal).
724 725
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726
		/* Changed UUIDs */
727 728 729 730 731
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->fsid,
732 733 734 735 736 737 738 739
			   BTRFS_FSID_SIZE) != 0)
			return fs_devices;

		/* Unchanged UUIDs */
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0)
740 741 742 743 744
			return fs_devices;
	}

	return NULL;
}
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

static struct btrfs_fs_devices *find_fsid_reverted_metadata(
				struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle the case where the scanned device is part of an fs whose last
	 * metadata UUID change reverted it to the original FSID. At the same
	 * time * fs_devices was first created by another constitutent device
	 * which didn't fully observe the operation. This results in an
	 * btrfs_fs_devices created with metadata/fsid different AND
	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
	 * fs_devices equal to the FSID of the disk.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    fs_devices->fsid_change)
			return fs_devices;
	}

	return NULL;
}
771 772 773 774
/*
 * Add new device to list of registered devices
 *
 * Returns:
775 776
 * device pointer which was just added or updated when successful
 * error pointer when failed
777
 */
778
static noinline struct btrfs_device *device_list_add(const char *path,
779 780
			   struct btrfs_super_block *disk_super,
			   bool *new_device_added)
781 782
{
	struct btrfs_device *device;
783
	struct btrfs_fs_devices *fs_devices = NULL;
784
	struct rcu_string *name;
785
	u64 found_transid = btrfs_super_generation(disk_super);
786
	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 788
	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 790
	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791

792
	if (fsid_change_in_progress) {
793
		if (!has_metadata_uuid)
794
			fs_devices = find_fsid_inprogress(disk_super);
795
		else
796
			fs_devices = find_fsid_changed(disk_super);
797
	} else if (has_metadata_uuid) {
798
		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799
	} else {
800 801 802
		fs_devices = find_fsid_reverted_metadata(disk_super);
		if (!fs_devices)
			fs_devices = find_fsid(disk_super->fsid, NULL);
803 804
	}

805 806

	if (!fs_devices) {
807 808 809 810 811 812
		if (has_metadata_uuid)
			fs_devices = alloc_fs_devices(disk_super->fsid,
						      disk_super->metadata_uuid);
		else
			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);

813
		if (IS_ERR(fs_devices))
814
			return ERR_CAST(fs_devices);
815

816 817
		fs_devices->fsid_change = fsid_change_in_progress;

818
		mutex_lock(&fs_devices->device_list_mutex);
819
		list_add(&fs_devices->fs_list, &fs_uuids);
820

821 822
		device = NULL;
	} else {
823
		mutex_lock(&fs_devices->device_list_mutex);
824 825
		device = btrfs_find_device(fs_devices, devid,
				disk_super->dev_item.uuid, NULL, false);
826 827 828 829 830 831

		/*
		 * If this disk has been pulled into an fs devices created by
		 * a device which had the CHANGING_FSID_V2 flag then replace the
		 * metadata_uuid/fsid values of the fs_devices.
		 */
832
		if (fs_devices->fsid_change &&
833 834 835
		    found_transid > fs_devices->latest_generation) {
			memcpy(fs_devices->fsid, disk_super->fsid,
					BTRFS_FSID_SIZE);
836 837 838 839 840 841 842 843

			if (has_metadata_uuid)
				memcpy(fs_devices->metadata_uuid,
				       disk_super->metadata_uuid,
				       BTRFS_FSID_SIZE);
			else
				memcpy(fs_devices->metadata_uuid,
				       disk_super->fsid, BTRFS_FSID_SIZE);
844 845 846

			fs_devices->fsid_change = false;
		}
847
	}
848

849
	if (!device) {
850 851
		if (fs_devices->opened) {
			mutex_unlock(&fs_devices->device_list_mutex);
852
			return ERR_PTR(-EBUSY);
853
		}
Y
Yan Zheng 已提交
854

855 856 857
		device = btrfs_alloc_device(NULL, &devid,
					    disk_super->dev_item.uuid);
		if (IS_ERR(device)) {
858
			mutex_unlock(&fs_devices->device_list_mutex);
859
			/* we can safely leave the fs_devices entry around */
860
			return device;
861
		}
862 863 864

		name = rcu_string_strdup(path, GFP_NOFS);
		if (!name) {
865
			btrfs_free_device(device);
866
			mutex_unlock(&fs_devices->device_list_mutex);
867
			return ERR_PTR(-ENOMEM);
868
		}
869
		rcu_assign_pointer(device->name, name);
870

871
		list_add_rcu(&device->dev_list, &fs_devices->devices);
872
		fs_devices->num_devices++;
873

Y
Yan Zheng 已提交
874
		device->fs_devices = fs_devices;
875
		*new_device_added = true;
876 877

		if (disk_super->label[0])
878 879 880 881
			pr_info(
	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->label, devid, found_transid, path,
				current->comm, task_pid_nr(current));
882
		else
883 884 885 886
			pr_info(
	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->fsid, devid, found_transid, path,
				current->comm, task_pid_nr(current));
887

888
	} else if (!device->name || strcmp(device->name->str, path)) {
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		/*
		 * When FS is already mounted.
		 * 1. If you are here and if the device->name is NULL that
		 *    means this device was missing at time of FS mount.
		 * 2. If you are here and if the device->name is different
		 *    from 'path' that means either
		 *      a. The same device disappeared and reappeared with
		 *         different name. or
		 *      b. The missing-disk-which-was-replaced, has
		 *         reappeared now.
		 *
		 * We must allow 1 and 2a above. But 2b would be a spurious
		 * and unintentional.
		 *
		 * Further in case of 1 and 2a above, the disk at 'path'
		 * would have missed some transaction when it was away and
		 * in case of 2a the stale bdev has to be updated as well.
		 * 2b must not be allowed at all time.
		 */

		/*
910 911 912 913
		 * For now, we do allow update to btrfs_fs_device through the
		 * btrfs dev scan cli after FS has been mounted.  We're still
		 * tracking a problem where systems fail mount by subvolume id
		 * when we reject replacement on a mounted FS.
914
		 */
915
		if (!fs_devices->opened && found_transid < device->generation) {
916 917 918 919 920 921 922
			/*
			 * That is if the FS is _not_ mounted and if you
			 * are here, that means there is more than one
			 * disk with same uuid and devid.We keep the one
			 * with larger generation number or the last-in if
			 * generation are equal.
			 */
923
			mutex_unlock(&fs_devices->device_list_mutex);
924
			return ERR_PTR(-EEXIST);
925
		}
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		/*
		 * We are going to replace the device path for a given devid,
		 * make sure it's the same device if the device is mounted
		 */
		if (device->bdev) {
			struct block_device *path_bdev;

			path_bdev = lookup_bdev(path);
			if (IS_ERR(path_bdev)) {
				mutex_unlock(&fs_devices->device_list_mutex);
				return ERR_CAST(path_bdev);
			}

			if (device->bdev != path_bdev) {
				bdput(path_bdev);
				mutex_unlock(&fs_devices->device_list_mutex);
943 944 945 946 947 948 949
				/*
				 * device->fs_info may not be reliable here, so
				 * pass in a NULL instead. This avoids a
				 * possible use-after-free when the fs_info and
				 * fs_info->sb are already torn down.
				 */
				btrfs_warn_in_rcu(NULL,
950 951 952 953
	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
						  path, devid, found_transid,
						  current->comm,
						  task_pid_nr(current));
954 955 956 957
				return ERR_PTR(-EEXIST);
			}
			bdput(path_bdev);
			btrfs_info_in_rcu(device->fs_info,
958 959 960 961
	"devid %llu device path %s changed to %s scanned by %s (%d)",
					  devid, rcu_str_deref(device->name),
					  path, current->comm,
					  task_pid_nr(current));
962 963
		}

964
		name = rcu_string_strdup(path, GFP_NOFS);
965 966
		if (!name) {
			mutex_unlock(&fs_devices->device_list_mutex);
967
			return ERR_PTR(-ENOMEM);
968
		}
969 970
		rcu_string_free(device->name);
		rcu_assign_pointer(device->name, name);
971
		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
972
			fs_devices->missing_devices--;
973
			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
974
		}
975 976
	}

977 978 979 980 981 982
	/*
	 * Unmount does not free the btrfs_device struct but would zero
	 * generation along with most of the other members. So just update
	 * it back. We need it to pick the disk with largest generation
	 * (as above).
	 */
983
	if (!fs_devices->opened) {
984
		device->generation = found_transid;
985 986 987
		fs_devices->latest_generation = max_t(u64, found_transid,
						fs_devices->latest_generation);
	}
988

989 990
	fs_devices->total_devices = btrfs_super_num_devices(disk_super);

991
	mutex_unlock(&fs_devices->device_list_mutex);
992
	return device;
993 994
}

Y
Yan Zheng 已提交
995 996 997 998 999
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;
1000
	int ret = 0;
Y
Yan Zheng 已提交
1001

1002
	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1003 1004
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
1005

1006
	mutex_lock(&orig->device_list_mutex);
J
Josef Bacik 已提交
1007
	fs_devices->total_devices = orig->total_devices;
Y
Yan Zheng 已提交
1008 1009

	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1010 1011
		struct rcu_string *name;

1012 1013
		device = btrfs_alloc_device(NULL, &orig_dev->devid,
					    orig_dev->uuid);
1014 1015
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
Y
Yan Zheng 已提交
1016
			goto error;
1017
		}
Y
Yan Zheng 已提交
1018

1019 1020 1021 1022
		/*
		 * This is ok to do without rcu read locked because we hold the
		 * uuid mutex so nothing we touch in here is going to disappear.
		 */
1023
		if (orig_dev->name) {
1024 1025
			name = rcu_string_strdup(orig_dev->name->str,
					GFP_KERNEL);
1026
			if (!name) {
1027
				btrfs_free_device(device);
1028
				ret = -ENOMEM;
1029 1030 1031
				goto error;
			}
			rcu_assign_pointer(device->name, name);
J
Julia Lawall 已提交
1032
		}
Y
Yan Zheng 已提交
1033 1034 1035 1036 1037

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
1038
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1039 1040
	return fs_devices;
error:
1041
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1042
	free_fs_devices(fs_devices);
1043
	return ERR_PTR(ret);
Y
Yan Zheng 已提交
1044 1045
}

1046 1047
static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
				      int step, struct btrfs_device **latest_dev)
1048
{
Q
Qinghuang Feng 已提交
1049
	struct btrfs_device *device, *next;
1050

1051
	/* This is the initialized path, it is safe to release the devices. */
Q
Qinghuang Feng 已提交
1052
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1053
		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1054
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1055
				      &device->dev_state) &&
1056 1057
			    !test_bit(BTRFS_DEV_STATE_MISSING,
				      &device->dev_state) &&
1058 1059 1060
			    (!*latest_dev ||
			     device->generation > (*latest_dev)->generation)) {
				*latest_dev = device;
1061
			}
Y
Yan Zheng 已提交
1062
			continue;
1063
		}
Y
Yan Zheng 已提交
1064

1065 1066 1067 1068 1069 1070 1071
		/*
		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
		 * in btrfs_init_dev_replace() so just continue.
		 */
		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
			continue;

Y
Yan Zheng 已提交
1072
		if (device->bdev) {
1073
			blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
1074 1075 1076
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
1077
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
1078
			list_del_init(&device->dev_alloc_list);
1079
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
1080
		}
Y
Yan Zheng 已提交
1081 1082
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
1083
		btrfs_free_device(device);
1084
	}
Y
Yan Zheng 已提交
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094
}

/*
 * After we have read the system tree and know devids belonging to this
 * filesystem, remove the device which does not belong there.
 */
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
{
	struct btrfs_device *latest_dev = NULL;
1095
	struct btrfs_fs_devices *seed_dev;
1096 1097 1098

	mutex_lock(&uuid_mutex);
	__btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1099 1100 1101

	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
		__btrfs_free_extra_devids(seed_dev, step, &latest_dev);
Y
Yan Zheng 已提交
1102

1103
	fs_devices->latest_bdev = latest_dev->bdev;
1104

1105 1106
	mutex_unlock(&uuid_mutex);
}
1107

1108 1109
static void btrfs_close_bdev(struct btrfs_device *device)
{
D
David Sterba 已提交
1110 1111 1112
	if (!device->bdev)
		return;

1113
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 1115 1116 1117
		sync_blockdev(device->bdev);
		invalidate_bdev(device->bdev);
	}

D
David Sterba 已提交
1118
	blkdev_put(device->bdev, device->mode);
1119 1120
}

1121
static void btrfs_close_one_device(struct btrfs_device *device)
1122 1123 1124
{
	struct btrfs_fs_devices *fs_devices = device->fs_devices;

1125
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 1127 1128 1129 1130
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
		list_del_init(&device->dev_alloc_list);
		fs_devices->rw_devices--;
	}

1131
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1132 1133
		fs_devices->missing_devices--;

1134
	btrfs_close_bdev(device);
1135
	if (device->bdev) {
1136
		fs_devices->open_devices--;
1137
		device->bdev = NULL;
1138
	}
1139
	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1140

1141 1142 1143
	device->fs_info = NULL;
	atomic_set(&device->dev_stats_ccnt, 0);
	extent_io_tree_release(&device->alloc_state);
1144

1145 1146 1147 1148 1149 1150
	/* Verify the device is back in a pristine state  */
	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
	ASSERT(list_empty(&device->dev_alloc_list));
	ASSERT(list_empty(&device->post_commit_list));
	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1151 1152
}

1153
static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1154
{
1155
	struct btrfs_device *device, *tmp;
Y
Yan Zheng 已提交
1156

1157 1158
	lockdep_assert_held(&uuid_mutex);

Y
Yan Zheng 已提交
1159
	if (--fs_devices->opened > 0)
1160
		return;
1161

1162
	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1163
		btrfs_close_one_device(device);
1164

Y
Yan Zheng 已提交
1165 1166
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Y
Yan Zheng 已提交
1167
	fs_devices->opened = 0;
1168
	fs_devices->seeding = false;
1169
	fs_devices->fs_info = NULL;
1170 1171
}

1172
void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
Y
Yan Zheng 已提交
1173
{
1174 1175
	LIST_HEAD(list);
	struct btrfs_fs_devices *tmp;
Y
Yan Zheng 已提交
1176 1177

	mutex_lock(&uuid_mutex);
1178
	close_fs_devices(fs_devices);
1179 1180
	if (!fs_devices->opened)
		list_splice_init(&fs_devices->seed_list, &list);
Y
Yan Zheng 已提交
1181

1182
	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1183
		close_fs_devices(fs_devices);
1184
		list_del(&fs_devices->seed_list);
Y
Yan Zheng 已提交
1185 1186
		free_fs_devices(fs_devices);
	}
1187
	mutex_unlock(&uuid_mutex);
Y
Yan Zheng 已提交
1188 1189
}

1190
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
Y
Yan Zheng 已提交
1191
				fmode_t flags, void *holder)
1192 1193
{
	struct btrfs_device *device;
1194
	struct btrfs_device *latest_dev = NULL;
1195
	struct btrfs_device *tmp_device;
1196

1197 1198
	flags |= FMODE_EXCL;

1199 1200 1201
	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
				 dev_list) {
		int ret;
1202

1203 1204 1205
		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
		if (ret == 0 &&
		    (!latest_dev || device->generation > latest_dev->generation)) {
1206
			latest_dev = device;
1207 1208 1209 1210 1211
		} else if (ret == -ENODATA) {
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);
		}
1212
	}
1213 1214 1215
	if (fs_devices->open_devices == 0)
		return -EINVAL;

Y
Yan Zheng 已提交
1216
	fs_devices->opened = 1;
1217
	fs_devices->latest_bdev = latest_dev->bdev;
Y
Yan Zheng 已提交
1218
	fs_devices->total_rw_bytes = 0;
1219
	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1220 1221

	return 0;
Y
Yan Zheng 已提交
1222 1223
}

A
Anand Jain 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct btrfs_device *dev1, *dev2;

	dev1 = list_entry(a, struct btrfs_device, dev_list);
	dev2 = list_entry(b, struct btrfs_device, dev_list);

	if (dev1->devid < dev2->devid)
		return -1;
	else if (dev1->devid > dev2->devid)
		return 1;
	return 0;
}

Y
Yan Zheng 已提交
1238
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1239
		       fmode_t flags, void *holder)
Y
Yan Zheng 已提交
1240 1241 1242
{
	int ret;

1243
	lockdep_assert_held(&uuid_mutex);
1244 1245 1246 1247 1248 1249 1250
	/*
	 * The device_list_mutex cannot be taken here in case opening the
	 * underlying device takes further locks like bd_mutex.
	 *
	 * We also don't need the lock here as this is called during mount and
	 * exclusion is provided by uuid_mutex
	 */
1251

Y
Yan Zheng 已提交
1252
	if (fs_devices->opened) {
Y
Yan Zheng 已提交
1253 1254
		fs_devices->opened++;
		ret = 0;
Y
Yan Zheng 已提交
1255
	} else {
A
Anand Jain 已提交
1256
		list_sort(NULL, &fs_devices->devices, devid_cmp);
1257
		ret = open_fs_devices(fs_devices, flags, holder);
Y
Yan Zheng 已提交
1258
	}
1259

1260 1261 1262
	return ret;
}

1263
void btrfs_release_disk_super(struct btrfs_super_block *super)
1264
{
1265 1266
	struct page *page = virt_to_page(super);

1267 1268 1269
	put_page(page);
}

1270 1271
static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
						       u64 bytenr)
1272
{
1273 1274
	struct btrfs_super_block *disk_super;
	struct page *page;
1275 1276 1277 1278 1279
	void *p;
	pgoff_t index;

	/* make sure our super fits in the device */
	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1280
		return ERR_PTR(-EINVAL);
1281 1282

	/* make sure our super fits in the page */
1283 1284
	if (sizeof(*disk_super) > PAGE_SIZE)
		return ERR_PTR(-EINVAL);
1285 1286 1287

	/* make sure our super doesn't straddle pages on disk */
	index = bytenr >> PAGE_SHIFT;
1288 1289
	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
		return ERR_PTR(-EINVAL);
1290 1291

	/* pull in the page with our super */
1292
	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1293

1294 1295
	if (IS_ERR(page))
		return ERR_CAST(page);
1296

1297
	p = page_address(page);
1298 1299

	/* align our pointer to the offset of the super block */
1300
	disk_super = p + offset_in_page(bytenr);
1301

1302 1303
	if (btrfs_super_bytenr(disk_super) != bytenr ||
	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1304
		btrfs_release_disk_super(p);
1305
		return ERR_PTR(-EINVAL);
1306 1307
	}

1308 1309
	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1310

1311
	return disk_super;
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
int btrfs_forget_devices(const char *path)
{
	int ret;

	mutex_lock(&uuid_mutex);
	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
	mutex_unlock(&uuid_mutex);

	return ret;
}

1325 1326 1327 1328 1329
/*
 * Look for a btrfs signature on a device. This may be called out of the mount path
 * and we are not allowed to call set_blocksize during the scan. The superblock
 * is read via pagecache
 */
1330 1331
struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
					   void *holder)
1332 1333
{
	struct btrfs_super_block *disk_super;
1334
	bool new_device_added = false;
1335
	struct btrfs_device *device = NULL;
1336
	struct block_device *bdev;
1337
	u64 bytenr;
1338

1339 1340
	lockdep_assert_held(&uuid_mutex);

1341 1342 1343 1344 1345 1346 1347
	/*
	 * we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	bytenr = btrfs_sb_offset(0);
1348
	flags |= FMODE_EXCL;
1349 1350

	bdev = blkdev_get_by_path(path, flags, holder);
1351
	if (IS_ERR(bdev))
1352
		return ERR_CAST(bdev);
1353

1354 1355 1356
	disk_super = btrfs_read_disk_super(bdev, bytenr);
	if (IS_ERR(disk_super)) {
		device = ERR_CAST(disk_super);
1357
		goto error_bdev_put;
1358
	}
1359

1360
	device = device_list_add(path, disk_super, &new_device_added);
1361
	if (!IS_ERR(device)) {
1362 1363 1364
		if (new_device_added)
			btrfs_free_stale_devices(path, device);
	}
1365

1366
	btrfs_release_disk_super(disk_super);
1367 1368

error_bdev_put:
1369
	blkdev_put(bdev, flags);
1370

1371
	return device;
1372
}
1373

1374 1375 1376 1377 1378 1379
/*
 * Try to find a chunk that intersects [start, start + len] range and when one
 * such is found, record the end of it in *start
 */
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
				    u64 len)
1380
{
1381
	u64 physical_start, physical_end;
1382

1383
	lockdep_assert_held(&device->fs_info->chunk_mutex);
1384

1385 1386 1387
	if (!find_first_extent_bit(&device->alloc_state, *start,
				   &physical_start, &physical_end,
				   CHUNK_ALLOCATED, NULL)) {
1388

1389 1390 1391 1392 1393
		if (in_range(physical_start, *start, len) ||
		    in_range(*start, physical_start,
			     physical_end - physical_start)) {
			*start = physical_end + 1;
			return true;
1394 1395
		}
	}
1396
	return false;
1397 1398
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
{
	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/*
		 * We don't want to overwrite the superblock on the drive nor
		 * any area used by the boot loader (grub for example), so we
		 * make sure to start at an offset of at least 1MB.
		 */
		return max_t(u64, start, SZ_1M);
	default:
		BUG();
	}
}

/**
 * dev_extent_hole_check - check if specified hole is suitable for allocation
 * @device:	the device which we have the hole
 * @hole_start: starting position of the hole
 * @hole_size:	the size of the hole
 * @num_bytes:	the size of the free space that we need
 *
 * This function may modify @hole_start and @hole_end to reflect the suitable
 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
 */
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
				  u64 *hole_size, u64 num_bytes)
{
	bool changed = false;
	u64 hole_end = *hole_start + *hole_size;

	/*
	 * Check before we set max_hole_start, otherwise we could end up
	 * sending back this offset anyway.
	 */
	if (contains_pending_extent(device, hole_start, *hole_size)) {
		if (hole_end >= *hole_start)
			*hole_size = hole_end - *hole_start;
		else
			*hole_size = 0;
		changed = true;
	}

	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/* No extra check */
		break;
	default:
		BUG();
	}

	return changed;
}
1452

1453
/*
1454 1455 1456 1457 1458 1459 1460
 * find_free_dev_extent_start - find free space in the specified device
 * @device:	  the device which we search the free space in
 * @num_bytes:	  the size of the free space that we need
 * @search_start: the position from which to begin the search
 * @start:	  store the start of the free space.
 * @len:	  the size of the free space. that we find, or the size
 *		  of the max free space if we don't find suitable free space
1461
 *
1462 1463 1464
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
1465 1466 1467 1468 1469 1470 1471 1472
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
1473 1474 1475 1476 1477 1478
 *
 * NOTE: This function will search *commit* root of device tree, and does extra
 * check to ensure dev extents are not double allocated.
 * This makes the function safe to allocate dev extents but may not report
 * correct usable device space, as device extent freed in current transaction
 * is not reported as avaiable.
1479
 */
1480 1481 1482
static int find_free_dev_extent_start(struct btrfs_device *device,
				u64 num_bytes, u64 search_start, u64 *start,
				u64 *len)
1483
{
1484 1485
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1486
	struct btrfs_key key;
1487
	struct btrfs_dev_extent *dev_extent;
Y
Yan Zheng 已提交
1488
	struct btrfs_path *path;
1489 1490 1491 1492
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
1493 1494
	u64 search_end = device->total_bytes;
	int ret;
1495
	int slot;
1496
	struct extent_buffer *l;
1497

1498
	search_start = dev_extent_search_start(device, search_start);
1499

1500 1501 1502
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1503

1504 1505 1506
	max_hole_start = search_start;
	max_hole_size = 0;

1507
again:
1508 1509
	if (search_start >= search_end ||
		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1510
		ret = -ENOSPC;
1511
		goto out;
1512 1513
	}

1514
	path->reada = READA_FORWARD;
1515 1516
	path->search_commit_root = 1;
	path->skip_locking = 1;
1517

1518 1519 1520
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1521

1522
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1523
	if (ret < 0)
1524
		goto out;
1525 1526 1527
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
1528
			goto out;
1529
	}
1530

1531 1532 1533 1534 1535 1536 1537 1538
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
1539 1540 1541
				goto out;

			break;
1542 1543 1544 1545 1546 1547 1548
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
1549
			break;
1550

1551
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1552
			goto next;
1553

1554 1555
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
1556 1557
			dev_extent_hole_check(device, &search_start, &hole_size,
					      num_bytes);
1558

1559 1560 1561 1562
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
1576 1577 1578 1579
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1580 1581 1582 1583
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
1584 1585 1586 1587 1588
next:
		path->slots[0]++;
		cond_resched();
	}

1589 1590 1591 1592 1593
	/*
	 * At this point, search_start should be the end of
	 * allocated dev extents, and when shrinking the device,
	 * search_end may be smaller than search_start.
	 */
1594
	if (search_end > search_start) {
1595
		hole_size = search_end - search_start;
1596 1597
		if (dev_extent_hole_check(device, &search_start, &hole_size,
					  num_bytes)) {
1598 1599 1600
			btrfs_release_path(path);
			goto again;
		}
1601

1602 1603 1604 1605
		if (hole_size > max_hole_size) {
			max_hole_start = search_start;
			max_hole_size = hole_size;
		}
1606 1607
	}

1608
	/* See above. */
1609
	if (max_hole_size < num_bytes)
1610 1611 1612 1613 1614
		ret = -ENOSPC;
	else
		ret = 0;

out:
Y
Yan Zheng 已提交
1615
	btrfs_free_path(path);
1616
	*start = max_hole_start;
1617
	if (len)
1618
		*len = max_hole_size;
1619 1620 1621
	return ret;
}

1622
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1623 1624 1625
			 u64 *start, u64 *len)
{
	/* FIXME use last free of some kind */
1626
	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1627 1628
}

1629
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1630
			  struct btrfs_device *device,
M
Miao Xie 已提交
1631
			  u64 start, u64 *dev_extent_len)
1632
{
1633 1634
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1635 1636 1637
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
1638 1639 1640
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
1641 1642 1643 1644 1645 1646 1647 1648

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;
M
Miao Xie 已提交
1649
again:
1650
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1651 1652 1653
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
1654 1655
		if (ret)
			goto out;
1656 1657 1658 1659 1660 1661
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
M
Miao Xie 已提交
1662 1663 1664
		key = found_key;
		btrfs_release_path(path);
		goto again;
1665 1666 1667 1668
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
1669
	} else {
1670
		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1671
		goto out;
1672
	}
1673

M
Miao Xie 已提交
1674 1675
	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);

1676
	ret = btrfs_del_item(trans, root, path);
1677
	if (ret) {
1678 1679
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to remove dev extent item");
Z
Zhao Lei 已提交
1680
	} else {
1681
		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1682
	}
1683
out:
1684 1685 1686 1687
	btrfs_free_path(path);
	return ret;
}

1688 1689 1690
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
				  struct btrfs_device *device,
				  u64 chunk_offset, u64 start, u64 num_bytes)
1691 1692 1693
{
	int ret;
	struct btrfs_path *path;
1694 1695
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1696 1697 1698 1699
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

1700
	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1701
	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1702 1703 1704 1705 1706
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
Y
Yan Zheng 已提交
1707
	key.offset = start;
1708 1709 1710
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
1711 1712
	if (ret)
		goto out;
1713 1714 1715 1716

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
1717 1718
	btrfs_set_dev_extent_chunk_tree(leaf, extent,
					BTRFS_CHUNK_TREE_OBJECTID);
1719 1720
	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1721 1722
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

1723 1724
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
1725
out:
1726 1727 1728 1729
	btrfs_free_path(path);
	return ret;
}

1730
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1731
{
1732 1733 1734 1735
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct rb_node *n;
	u64 ret = 0;
1736

1737
	em_tree = &fs_info->mapping_tree;
1738
	read_lock(&em_tree->lock);
L
Liu Bo 已提交
1739
	n = rb_last(&em_tree->map.rb_root);
1740 1741 1742
	if (n) {
		em = rb_entry(n, struct extent_map, rb_node);
		ret = em->start + em->len;
1743
	}
1744 1745
	read_unlock(&em_tree->lock);

1746 1747 1748
	return ret;
}

1749 1750
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
				    u64 *devid_ret)
1751 1752 1753 1754
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Y
Yan Zheng 已提交
1755 1756 1757 1758 1759
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1760 1761 1762 1763 1764

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

1765
	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1766 1767 1768
	if (ret < 0)
		goto error;

1769 1770 1771 1772 1773 1774
	if (ret == 0) {
		/* Corruption */
		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
		ret = -EUCLEAN;
		goto error;
	}
1775

1776 1777
	ret = btrfs_previous_item(fs_info->chunk_root, path,
				  BTRFS_DEV_ITEMS_OBJECTID,
1778 1779
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
1780
		*devid_ret = 1;
1781 1782 1783
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1784
		*devid_ret = found_key.offset + 1;
1785 1786 1787
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
1788
	btrfs_free_path(path);
1789 1790 1791 1792 1793 1794 1795
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
1796
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1797
			    struct btrfs_device *device)
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Y
Yan Zheng 已提交
1812
	key.offset = device->devid;
1813

1814 1815
	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
				      &key, sizeof(*dev_item));
1816 1817 1818 1819 1820 1821 1822
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Y
Yan Zheng 已提交
1823
	btrfs_set_device_generation(leaf, dev_item, 0);
1824 1825 1826 1827
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1828 1829 1830 1831
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
1832 1833 1834
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1835
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1836

1837
	ptr = btrfs_device_uuid(dev_item);
1838
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1839
	ptr = btrfs_device_fsid(dev_item);
1840 1841
	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
			    ptr, BTRFS_FSID_SIZE);
1842 1843
	btrfs_mark_buffer_dirty(leaf);

Y
Yan Zheng 已提交
1844
	ret = 0;
1845 1846 1847 1848
out:
	btrfs_free_path(path);
	return ret;
}
1849

1850 1851 1852 1853
/*
 * Function to update ctime/mtime for a given device path.
 * Mainly used for ctime/mtime based probe like libblkid.
 */
1854
static void update_dev_time(const char *path_name)
1855 1856 1857 1858
{
	struct file *filp;

	filp = filp_open(path_name, O_RDWR, 0);
1859
	if (IS_ERR(filp))
1860 1861 1862 1863 1864
		return;
	file_update_time(filp);
	filp_close(filp, NULL);
}

1865
static int btrfs_rm_dev_item(struct btrfs_device *device)
1866
{
1867
	struct btrfs_root *root = device->fs_info->chunk_root;
1868 1869 1870 1871 1872 1873 1874 1875 1876
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1877
	trans = btrfs_start_transaction(root, 0);
1878 1879 1880 1881
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}
1882 1883 1884 1885 1886
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1887 1888 1889 1890 1891
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
1892 1893 1894 1895
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
1896 1897 1898 1899 1900
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	}

1901 1902
out:
	btrfs_free_path(path);
1903 1904
	if (!ret)
		ret = btrfs_commit_transaction(trans);
1905 1906 1907
	return ret;
}

1908 1909 1910 1911 1912 1913 1914
/*
 * Verify that @num_devices satisfies the RAID profile constraints in the whole
 * filesystem. It's up to the caller to adjust that number regarding eg. device
 * replace.
 */
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
		u64 num_devices)
1915 1916
{
	u64 all_avail;
1917
	unsigned seq;
1918
	int i;
1919

1920
	do {
1921
		seq = read_seqbegin(&fs_info->profiles_lock);
1922

1923 1924 1925 1926
		all_avail = fs_info->avail_data_alloc_bits |
			    fs_info->avail_system_alloc_bits |
			    fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&fs_info->profiles_lock, seq));
1927

1928
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1929
		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1930
			continue;
1931

1932
		if (num_devices < btrfs_raid_array[i].devs_min) {
1933
			int ret = btrfs_raid_array[i].mindev_error;
1934

1935 1936 1937
			if (ret)
				return ret;
		}
D
David Woodhouse 已提交
1938 1939
	}

1940
	return 0;
1941 1942
}

1943 1944
static struct btrfs_device * btrfs_find_next_active_device(
		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1945
{
Y
Yan Zheng 已提交
1946
	struct btrfs_device *next_device;
1947 1948 1949

	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
		if (next_device != device &&
1950 1951
		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
		    && next_device->bdev)
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
			return next_device;
	}

	return NULL;
}

/*
 * Helper function to check if the given device is part of s_bdev / latest_bdev
 * and replace it with the provided or the next active device, in the context
 * where this function called, there should be always be another device (or
 * this_dev) which is active.
 */
1964
void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1965
					    struct btrfs_device *next_device)
1966
{
1967
	struct btrfs_fs_info *fs_info = device->fs_info;
1968

1969
	if (!next_device)
1970
		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1971
							    device);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	ASSERT(next_device);

	if (fs_info->sb->s_bdev &&
			(fs_info->sb->s_bdev == device->bdev))
		fs_info->sb->s_bdev = next_device->bdev;

	if (fs_info->fs_devices->latest_bdev == device->bdev)
		fs_info->fs_devices->latest_bdev = next_device->bdev;
}

1982 1983 1984 1985 1986 1987 1988 1989
/*
 * Return btrfs_fs_devices::num_devices excluding the device that's being
 * currently replaced.
 */
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
{
	u64 num_devices = fs_info->fs_devices->num_devices;

1990
	down_read(&fs_info->dev_replace.rwsem);
1991 1992 1993 1994
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
		ASSERT(num_devices > 1);
		num_devices--;
	}
1995
	up_read(&fs_info->dev_replace.rwsem);
1996 1997 1998 1999

	return num_devices;
}

2000 2001 2002
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
			       struct block_device *bdev,
			       const char *device_path)
2003 2004 2005 2006 2007 2008 2009 2010
{
	struct btrfs_super_block *disk_super;
	int copy_num;

	if (!bdev)
		return;

	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2011 2012
		struct page *page;
		int ret;
2013

2014 2015 2016
		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
		if (IS_ERR(disk_super))
			continue;
2017 2018

		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

		page = virt_to_page(disk_super);
		set_page_dirty(page);
		lock_page(page);
		/* write_on_page() unlocks the page */
		ret = write_one_page(page);
		if (ret)
			btrfs_warn(fs_info,
				"error clearing superblock number %d (%d)",
				copy_num, ret);
		btrfs_release_disk_super(disk_super);

2031 2032 2033 2034 2035 2036 2037 2038 2039
	}

	/* Notify udev that device has changed */
	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);

	/* Update ctime/mtime for device path for libblkid */
	update_dev_time(device_path);
}

2040
int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2041
		    u64 devid)
2042 2043
{
	struct btrfs_device *device;
2044
	struct btrfs_fs_devices *cur_devices;
2045
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2046
	u64 num_devices;
2047 2048 2049 2050
	int ret = 0;

	mutex_lock(&uuid_mutex);

2051
	num_devices = btrfs_num_devices(fs_info);
2052

2053
	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2054
	if (ret)
2055 2056
		goto out;

2057 2058 2059 2060 2061 2062 2063 2064
	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);

	if (IS_ERR(device)) {
		if (PTR_ERR(device) == -ENOENT &&
		    strcmp(device_path, "missing") == 0)
			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
		else
			ret = PTR_ERR(device);
D
David Woodhouse 已提交
2065
		goto out;
2066
	}
2067

2068 2069 2070 2071 2072 2073 2074 2075
	if (btrfs_pinned_by_swapfile(fs_info, device)) {
		btrfs_warn_in_rcu(fs_info,
		  "cannot remove device %s (devid %llu) due to active swapfile",
				  rcu_str_deref(device->name), device->devid);
		ret = -ETXTBSY;
		goto out;
	}

2076
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2077
		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2078
		goto out;
2079 2080
	}

2081 2082
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    fs_info->fs_devices->rw_devices == 1) {
2083
		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2084
		goto out;
Y
Yan Zheng 已提交
2085 2086
	}

2087
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2088
		mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2089
		list_del_init(&device->dev_alloc_list);
2090
		device->fs_devices->rw_devices--;
2091
		mutex_unlock(&fs_info->chunk_mutex);
2092
	}
2093

2094
	mutex_unlock(&uuid_mutex);
2095
	ret = btrfs_shrink_device(device, 0);
2096 2097
	if (!ret)
		btrfs_reada_remove_dev(device);
2098
	mutex_lock(&uuid_mutex);
2099
	if (ret)
2100
		goto error_undo;
2101

2102 2103 2104 2105 2106
	/*
	 * TODO: the superblock still includes this device in its num_devices
	 * counter although write_all_supers() is not locked out. This
	 * could give a filesystem state which requires a degraded mount.
	 */
2107
	ret = btrfs_rm_dev_item(device);
2108
	if (ret)
2109
		goto error_undo;
2110

2111
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2112
	btrfs_scrub_cancel_dev(device);
2113 2114 2115 2116

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
2117 2118 2119 2120 2121
	 * the device supers. Whoever is writing all supers, should
	 * lock the device list mutex before getting the number of
	 * devices in the super block (super_copy). Conversely,
	 * whoever updates the number of devices in the super block
	 * (super_copy) should hold the device list mutex.
2122
	 */
2123

2124 2125 2126 2127 2128
	/*
	 * In normal cases the cur_devices == fs_devices. But in case
	 * of deleting a seed device, the cur_devices should point to
	 * its own fs_devices listed under the fs_devices->seed.
	 */
2129
	cur_devices = device->fs_devices;
2130
	mutex_lock(&fs_devices->device_list_mutex);
2131
	list_del_rcu(&device->dev_list);
2132

2133 2134
	cur_devices->num_devices--;
	cur_devices->total_devices--;
2135 2136 2137
	/* Update total_devices of the parent fs_devices if it's seed */
	if (cur_devices != fs_devices)
		fs_devices->total_devices--;
Y
Yan Zheng 已提交
2138

2139
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2140
		cur_devices->missing_devices--;
2141

2142
	btrfs_assign_next_active_device(device, NULL);
Y
Yan Zheng 已提交
2143

2144
	if (device->bdev) {
2145
		cur_devices->open_devices--;
2146
		/* remove sysfs entry */
2147
		btrfs_sysfs_remove_device(device);
2148
	}
2149

2150 2151
	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2152
	mutex_unlock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2153

2154 2155 2156 2157 2158
	/*
	 * at this point, the device is zero sized and detached from
	 * the devices list.  All that's left is to zero out the old
	 * supers and free the device.
	 */
2159
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2160 2161
		btrfs_scratch_superblocks(fs_info, device->bdev,
					  device->name->str);
2162 2163

	btrfs_close_bdev(device);
2164 2165
	synchronize_rcu();
	btrfs_free_device(device);
2166

2167
	if (cur_devices->open_devices == 0) {
2168
		list_del_init(&cur_devices->seed_list);
2169
		close_fs_devices(cur_devices);
2170
		free_fs_devices(cur_devices);
Y
Yan Zheng 已提交
2171 2172
	}

2173 2174 2175
out:
	mutex_unlock(&uuid_mutex);
	return ret;
2176

2177
error_undo:
2178
	btrfs_reada_undo_remove_dev(device);
2179
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2180
		mutex_lock(&fs_info->chunk_mutex);
2181
		list_add(&device->dev_alloc_list,
2182
			 &fs_devices->alloc_list);
2183
		device->fs_devices->rw_devices++;
2184
		mutex_unlock(&fs_info->chunk_mutex);
2185
	}
2186
	goto out;
2187 2188
}

2189
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2190
{
2191 2192
	struct btrfs_fs_devices *fs_devices;

2193
	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2194

2195 2196 2197 2198 2199 2200 2201
	/*
	 * in case of fs with no seed, srcdev->fs_devices will point
	 * to fs_devices of fs_info. However when the dev being replaced is
	 * a seed dev it will point to the seed's local fs_devices. In short
	 * srcdev will have its correct fs_devices in both the cases.
	 */
	fs_devices = srcdev->fs_devices;
2202

2203
	list_del_rcu(&srcdev->dev_list);
2204
	list_del(&srcdev->dev_alloc_list);
2205
	fs_devices->num_devices--;
2206
	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2207
		fs_devices->missing_devices--;
2208

2209
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2210
		fs_devices->rw_devices--;
2211

2212
	if (srcdev->bdev)
2213
		fs_devices->open_devices--;
2214 2215
}

2216
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2217 2218
{
	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2219

2220 2221
	mutex_lock(&uuid_mutex);

2222
	btrfs_close_bdev(srcdev);
2223 2224
	synchronize_rcu();
	btrfs_free_device(srcdev);
2225 2226 2227

	/* if this is no devs we rather delete the fs_devices */
	if (!fs_devices->num_devices) {
2228 2229 2230 2231 2232 2233 2234 2235
		/*
		 * On a mounted FS, num_devices can't be zero unless it's a
		 * seed. In case of a seed device being replaced, the replace
		 * target added to the sprout FS, so there will be no more
		 * device left under the seed FS.
		 */
		ASSERT(fs_devices->seeding);

2236
		list_del_init(&fs_devices->seed_list);
2237
		close_fs_devices(fs_devices);
2238
		free_fs_devices(fs_devices);
2239
	}
2240
	mutex_unlock(&uuid_mutex);
2241 2242
}

2243
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2244
{
2245
	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2246 2247

	mutex_lock(&fs_devices->device_list_mutex);
2248

2249
	btrfs_sysfs_remove_device(tgtdev);
2250

2251
	if (tgtdev->bdev)
2252
		fs_devices->open_devices--;
2253

2254
	fs_devices->num_devices--;
2255

2256
	btrfs_assign_next_active_device(tgtdev, NULL);
2257 2258 2259

	list_del_rcu(&tgtdev->dev_list);

2260
	mutex_unlock(&fs_devices->device_list_mutex);
2261 2262 2263 2264 2265 2266 2267 2268

	/*
	 * The update_dev_time() with in btrfs_scratch_superblocks()
	 * may lead to a call to btrfs_show_devname() which will try
	 * to hold device_list_mutex. And here this device
	 * is already out of device list, so we don't have to hold
	 * the device_list_mutex lock.
	 */
2269 2270
	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
				  tgtdev->name->str);
2271 2272

	btrfs_close_bdev(tgtdev);
2273 2274
	synchronize_rcu();
	btrfs_free_device(tgtdev);
2275 2276
}

2277 2278
static struct btrfs_device *btrfs_find_device_by_path(
		struct btrfs_fs_info *fs_info, const char *device_path)
2279 2280 2281 2282 2283 2284
{
	int ret = 0;
	struct btrfs_super_block *disk_super;
	u64 devid;
	u8 *dev_uuid;
	struct block_device *bdev;
2285
	struct btrfs_device *device;
2286 2287

	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2288
				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2289
	if (ret)
2290
		return ERR_PTR(ret);
2291

2292 2293
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	dev_uuid = disk_super->dev_item.uuid;
2294
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2295
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2296
					   disk_super->metadata_uuid, true);
2297
	else
2298
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2299
					   disk_super->fsid, true);
2300

2301
	btrfs_release_disk_super(disk_super);
2302 2303
	if (!device)
		device = ERR_PTR(-ENOENT);
2304
	blkdev_put(bdev, FMODE_READ);
2305
	return device;
2306 2307
}

2308 2309 2310
/*
 * Lookup a device given by device id, or the path if the id is 0.
 */
2311
struct btrfs_device *btrfs_find_device_by_devspec(
2312 2313
		struct btrfs_fs_info *fs_info, u64 devid,
		const char *device_path)
2314
{
2315
	struct btrfs_device *device;
2316

2317
	if (devid) {
2318
		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2319
					   NULL, true);
2320 2321
		if (!device)
			return ERR_PTR(-ENOENT);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		return device;
	}

	if (!device_path || !device_path[0])
		return ERR_PTR(-EINVAL);

	if (strcmp(device_path, "missing") == 0) {
		/* Find first missing device */
		list_for_each_entry(device, &fs_info->fs_devices->devices,
				    dev_list) {
			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				     &device->dev_state) && !device->bdev)
				return device;
2335
		}
2336
		return ERR_PTR(-ENOENT);
2337
	}
2338 2339

	return btrfs_find_device_by_path(fs_info, device_path);
2340 2341
}

Y
Yan Zheng 已提交
2342 2343 2344
/*
 * does all the dirty work required for changing file system's UUID.
 */
2345
static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
2346
{
2347
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2348
	struct btrfs_fs_devices *old_devices;
Y
Yan Zheng 已提交
2349
	struct btrfs_fs_devices *seed_devices;
2350
	struct btrfs_super_block *disk_super = fs_info->super_copy;
Y
Yan Zheng 已提交
2351 2352 2353
	struct btrfs_device *device;
	u64 super_flags;

2354
	lockdep_assert_held(&uuid_mutex);
Y
Yan Zheng 已提交
2355
	if (!fs_devices->seeding)
Y
Yan Zheng 已提交
2356 2357
		return -EINVAL;

2358 2359 2360 2361
	/*
	 * Private copy of the seed devices, anchored at
	 * fs_info->fs_devices->seed_list
	 */
2362
	seed_devices = alloc_fs_devices(NULL, NULL);
2363 2364
	if (IS_ERR(seed_devices))
		return PTR_ERR(seed_devices);
Y
Yan Zheng 已提交
2365

2366 2367 2368 2369 2370 2371
	/*
	 * It's necessary to retain a copy of the original seed fs_devices in
	 * fs_uuids so that filesystems which have been seeded can successfully
	 * reference the seed device from open_seed_devices. This also supports
	 * multiple fs seed.
	 */
Y
Yan Zheng 已提交
2372 2373 2374 2375
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
		return PTR_ERR(old_devices);
Y
Yan Zheng 已提交
2376
	}
Y
Yan Zheng 已提交
2377

2378
	list_add(&old_devices->fs_list, &fs_uuids);
Y
Yan Zheng 已提交
2379

Y
Yan Zheng 已提交
2380 2381 2382 2383
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
2384
	mutex_init(&seed_devices->device_list_mutex);
2385

2386
	mutex_lock(&fs_devices->device_list_mutex);
2387 2388
	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
			      synchronize_rcu);
M
Miao Xie 已提交
2389 2390
	list_for_each_entry(device, &seed_devices->devices, dev_list)
		device->fs_devices = seed_devices;
2391

2392
	fs_devices->seeding = false;
Y
Yan Zheng 已提交
2393 2394
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
2395
	fs_devices->missing_devices = 0;
2396
	fs_devices->rotating = false;
2397
	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
Y
Yan Zheng 已提交
2398 2399

	generate_random_uuid(fs_devices->fsid);
2400
	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
2401
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2402
	mutex_unlock(&fs_devices->device_list_mutex);
2403

Y
Yan Zheng 已提交
2404 2405 2406 2407 2408 2409 2410 2411
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);

	return 0;
}

/*
2412
 * Store the expected generation for seed devices in device items.
Y
Yan Zheng 已提交
2413
 */
2414
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
2415
{
2416
	struct btrfs_fs_info *fs_info = trans->fs_info;
2417
	struct btrfs_root *root = fs_info->chunk_root;
Y
Yan Zheng 已提交
2418 2419 2420 2421 2422
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
2423
	u8 fs_uuid[BTRFS_FSID_SIZE];
Y
Yan Zheng 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	u8 dev_uuid[BTRFS_UUID_SIZE];
	u64 devid;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2451
			btrfs_release_path(path);
Y
Yan Zheng 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
		devid = btrfs_device_id(leaf, dev_item);
2463
		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
Y
Yan Zheng 已提交
2464
				   BTRFS_UUID_SIZE);
2465
		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2466
				   BTRFS_FSID_SIZE);
2467
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2468
					   fs_uuid, true);
2469
		BUG_ON(!device); /* Logic error */
Y
Yan Zheng 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

2486
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2487
{
2488
	struct btrfs_root *root = fs_info->dev_root;
2489
	struct request_queue *q;
2490 2491 2492
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
2493
	struct super_block *sb = fs_info->sb;
2494
	struct rcu_string *name;
2495
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2496 2497
	u64 orig_super_total_bytes;
	u64 orig_super_num_devices;
Y
Yan Zheng 已提交
2498
	int seeding_dev = 0;
2499
	int ret = 0;
2500
	bool locked = false;
2501

2502
	if (sb_rdonly(sb) && !fs_devices->seeding)
2503
		return -EROFS;
2504

2505
	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2506
				  fs_info->bdev_holder);
2507 2508
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
2509

2510
	if (fs_devices->seeding) {
Y
Yan Zheng 已提交
2511 2512 2513
		seeding_dev = 1;
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
2514
		locked = true;
Y
Yan Zheng 已提交
2515 2516
	}

2517
	sync_blockdev(bdev);
2518

2519 2520
	rcu_read_lock();
	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2521 2522
		if (device->bdev == bdev) {
			ret = -EEXIST;
2523
			rcu_read_unlock();
Y
Yan Zheng 已提交
2524
			goto error;
2525 2526
		}
	}
2527
	rcu_read_unlock();
2528

2529
	device = btrfs_alloc_device(fs_info, NULL, NULL);
2530
	if (IS_ERR(device)) {
2531
		/* we can safely leave the fs_devices entry around */
2532
		ret = PTR_ERR(device);
Y
Yan Zheng 已提交
2533
		goto error;
2534 2535
	}

2536
	name = rcu_string_strdup(device_path, GFP_KERNEL);
2537
	if (!name) {
Y
Yan Zheng 已提交
2538
		ret = -ENOMEM;
2539
		goto error_free_device;
2540
	}
2541
	rcu_assign_pointer(device->name, name);
Y
Yan Zheng 已提交
2542

2543
	trans = btrfs_start_transaction(root, 0);
2544 2545
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2546
		goto error_free_device;
2547 2548
	}

2549
	q = bdev_get_queue(bdev);
2550
	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
2551
	device->generation = trans->transid;
2552 2553 2554
	device->io_width = fs_info->sectorsize;
	device->io_align = fs_info->sectorsize;
	device->sector_size = fs_info->sectorsize;
2555 2556
	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
					 fs_info->sectorsize);
2557
	device->disk_total_bytes = device->total_bytes;
2558
	device->commit_total_bytes = device->total_bytes;
2559
	device->fs_info = fs_info;
2560
	device->bdev = bdev;
2561
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2562
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2563
	device->mode = FMODE_EXCL;
2564
	device->dev_stats_valid = 1;
2565
	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2566

Y
Yan Zheng 已提交
2567
	if (seeding_dev) {
2568
		sb->s_flags &= ~SB_RDONLY;
2569
		ret = btrfs_prepare_sprout(fs_info);
2570 2571 2572 2573
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto error_trans;
		}
Y
Yan Zheng 已提交
2574
	}
2575

2576
	device->fs_devices = fs_devices;
2577

2578
	mutex_lock(&fs_devices->device_list_mutex);
2579
	mutex_lock(&fs_info->chunk_mutex);
2580 2581 2582 2583 2584 2585 2586
	list_add_rcu(&device->dev_list, &fs_devices->devices);
	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
	fs_devices->num_devices++;
	fs_devices->open_devices++;
	fs_devices->rw_devices++;
	fs_devices->total_devices++;
	fs_devices->total_rw_bytes += device->total_bytes;
2587

2588
	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2589

2590
	if (!blk_queue_nonrot(q))
2591
		fs_devices->rotating = true;
C
Chris Mason 已提交
2592

2593
	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2594
	btrfs_set_super_total_bytes(fs_info->super_copy,
2595 2596
		round_down(orig_super_total_bytes + device->total_bytes,
			   fs_info->sectorsize));
2597

2598 2599 2600
	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices + 1);
2601

M
Miao Xie 已提交
2602 2603 2604 2605
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
2606
	btrfs_clear_space_info_full(fs_info);
M
Miao Xie 已提交
2607

2608
	mutex_unlock(&fs_info->chunk_mutex);
2609 2610

	/* Add sysfs device entry */
2611
	btrfs_sysfs_add_device(device);
2612

2613
	mutex_unlock(&fs_devices->device_list_mutex);
2614

Y
Yan Zheng 已提交
2615
	if (seeding_dev) {
2616
		mutex_lock(&fs_info->chunk_mutex);
2617
		ret = init_first_rw_device(trans);
2618
		mutex_unlock(&fs_info->chunk_mutex);
2619
		if (ret) {
2620
			btrfs_abort_transaction(trans, ret);
2621
			goto error_sysfs;
2622
		}
M
Miao Xie 已提交
2623 2624
	}

2625
	ret = btrfs_add_dev_item(trans, device);
M
Miao Xie 已提交
2626
	if (ret) {
2627
		btrfs_abort_transaction(trans, ret);
2628
		goto error_sysfs;
M
Miao Xie 已提交
2629 2630 2631
	}

	if (seeding_dev) {
2632
		ret = btrfs_finish_sprout(trans);
2633
		if (ret) {
2634
			btrfs_abort_transaction(trans, ret);
2635
			goto error_sysfs;
2636
		}
2637

2638 2639 2640 2641 2642
		/*
		 * fs_devices now represents the newly sprouted filesystem and
		 * its fsid has been changed by btrfs_prepare_sprout
		 */
		btrfs_sysfs_update_sprout_fsid(fs_devices);
Y
Yan Zheng 已提交
2643 2644
	}

2645
	ret = btrfs_commit_transaction(trans);
2646

Y
Yan Zheng 已提交
2647 2648 2649
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
2650
		locked = false;
2651

2652 2653 2654
		if (ret) /* transaction commit */
			return ret;

2655
		ret = btrfs_relocate_sys_chunks(fs_info);
2656
		if (ret < 0)
2657
			btrfs_handle_fs_error(fs_info, ret,
J
Jeff Mahoney 已提交
2658
				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2659 2660 2661 2662
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) == -ENOENT)
				return 0;
2663 2664 2665
			ret = PTR_ERR(trans);
			trans = NULL;
			goto error_sysfs;
2666
		}
2667
		ret = btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
2668
	}
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	/*
	 * Now that we have written a new super block to this device, check all
	 * other fs_devices list if device_path alienates any other scanned
	 * device.
	 * We can ignore the return value as it typically returns -EINVAL and
	 * only succeeds if the device was an alien.
	 */
	btrfs_forget_devices(device_path);

	/* Update ctime/mtime for blkid or udev */
2680
	update_dev_time(device_path);
2681

Y
Yan Zheng 已提交
2682
	return ret;
2683

2684
error_sysfs:
2685
	btrfs_sysfs_remove_device(device);
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	mutex_lock(&fs_info->chunk_mutex);
	list_del_rcu(&device->dev_list);
	list_del(&device->dev_alloc_list);
	fs_info->fs_devices->num_devices--;
	fs_info->fs_devices->open_devices--;
	fs_info->fs_devices->rw_devices--;
	fs_info->fs_devices->total_devices--;
	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
	btrfs_set_super_total_bytes(fs_info->super_copy,
				    orig_super_total_bytes);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices);
	mutex_unlock(&fs_info->chunk_mutex);
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2702
error_trans:
2703
	if (seeding_dev)
2704
		sb->s_flags |= SB_RDONLY;
2705 2706
	if (trans)
		btrfs_end_transaction(trans);
2707
error_free_device:
2708
	btrfs_free_device(device);
Y
Yan Zheng 已提交
2709
error:
2710
	blkdev_put(bdev, FMODE_EXCL);
2711
	if (locked) {
Y
Yan Zheng 已提交
2712 2713 2714
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
2715
	return ret;
2716 2717
}

C
Chris Mason 已提交
2718 2719
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
2720 2721 2722
{
	int ret;
	struct btrfs_path *path;
2723
	struct btrfs_root *root = device->fs_info->chunk_root;
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2753 2754 2755 2756
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
2757 2758 2759 2760 2761 2762 2763
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

M
Miao Xie 已提交
2764
int btrfs_grow_device(struct btrfs_trans_handle *trans,
2765 2766
		      struct btrfs_device *device, u64 new_size)
{
2767 2768
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_super_block *super_copy = fs_info->super_copy;
M
Miao Xie 已提交
2769 2770
	u64 old_total;
	u64 diff;
2771

2772
	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
Y
Yan Zheng 已提交
2773
		return -EACCES;
M
Miao Xie 已提交
2774

2775 2776
	new_size = round_down(new_size, fs_info->sectorsize);

2777
	mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2778
	old_total = btrfs_super_total_bytes(super_copy);
2779
	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
M
Miao Xie 已提交
2780

2781
	if (new_size <= device->total_bytes ||
2782
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2783
		mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2784
		return -EINVAL;
M
Miao Xie 已提交
2785
	}
Y
Yan Zheng 已提交
2786

2787 2788
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total + diff, fs_info->sectorsize));
Y
Yan Zheng 已提交
2789 2790
	device->fs_devices->total_rw_bytes += diff;

2791 2792
	btrfs_device_set_total_bytes(device, new_size);
	btrfs_device_set_disk_total_bytes(device, new_size);
2793
	btrfs_clear_space_info_full(device->fs_info);
2794 2795 2796
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
2797
	mutex_unlock(&fs_info->chunk_mutex);
2798

2799 2800 2801
	return btrfs_update_device(trans, device);
}

2802
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2803
{
2804
	struct btrfs_fs_info *fs_info = trans->fs_info;
2805
	struct btrfs_root *root = fs_info->chunk_root;
2806 2807 2808 2809 2810 2811 2812 2813
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2814
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2815 2816 2817 2818
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2819 2820 2821
	if (ret < 0)
		goto out;
	else if (ret > 0) { /* Logic error or corruption */
2822 2823
		btrfs_handle_fs_error(fs_info, -ENOENT,
				      "Failed lookup while freeing chunk.");
2824 2825 2826
		ret = -ENOENT;
		goto out;
	}
2827 2828

	ret = btrfs_del_item(trans, root, path);
2829
	if (ret < 0)
2830 2831
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to delete chunk item.");
2832
out:
2833
	btrfs_free_path(path);
2834
	return ret;
2835 2836
}

2837
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2838
{
2839
	struct btrfs_super_block *super_copy = fs_info->super_copy;
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

2850
	mutex_lock(&fs_info->chunk_mutex);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
2870
		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2871 2872 2873 2874 2875 2876 2877 2878 2879
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
2880
	mutex_unlock(&fs_info->chunk_mutex);
2881 2882 2883
	return ret;
}

2884 2885 2886 2887 2888 2889 2890 2891 2892
/*
 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 * @logical: Logical block offset in bytes.
 * @length: Length of extent in bytes.
 *
 * Return: Chunk mapping or ERR_PTR.
 */
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
				       u64 logical, u64 length)
2893 2894 2895 2896
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;

2897
	em_tree = &fs_info->mapping_tree;
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
			   logical, length);
		return ERR_PTR(-EINVAL);
	}

	if (em->start > logical || em->start + em->len < logical) {
		btrfs_crit(fs_info,
			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
			   logical, length, em->start, em->start + em->len);
		free_extent_map(em);
		return ERR_PTR(-EINVAL);
	}

	/* callers are responsible for dropping em's ref. */
	return em;
}

2920
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2921
{
2922
	struct btrfs_fs_info *fs_info = trans->fs_info;
2923 2924
	struct extent_map *em;
	struct map_lookup *map;
M
Miao Xie 已提交
2925
	u64 dev_extent_len = 0;
2926
	int i, ret = 0;
2927
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2928

2929
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2930
	if (IS_ERR(em)) {
2931 2932
		/*
		 * This is a logic error, but we don't want to just rely on the
2933
		 * user having built with ASSERT enabled, so if ASSERT doesn't
2934 2935 2936
		 * do anything we still error out.
		 */
		ASSERT(0);
2937
		return PTR_ERR(em);
2938
	}
2939
	map = em->map_lookup;
2940
	mutex_lock(&fs_info->chunk_mutex);
2941
	check_system_chunk(trans, map->type);
2942
	mutex_unlock(&fs_info->chunk_mutex);
2943

2944 2945 2946 2947 2948 2949
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
	mutex_lock(&fs_devices->device_list_mutex);
2950
	for (i = 0; i < map->num_stripes; i++) {
2951
		struct btrfs_device *device = map->stripes[i].dev;
M
Miao Xie 已提交
2952 2953 2954
		ret = btrfs_free_dev_extent(trans, device,
					    map->stripes[i].physical,
					    &dev_extent_len);
2955
		if (ret) {
2956
			mutex_unlock(&fs_devices->device_list_mutex);
2957
			btrfs_abort_transaction(trans, ret);
2958 2959
			goto out;
		}
2960

M
Miao Xie 已提交
2961
		if (device->bytes_used > 0) {
2962
			mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2963 2964
			btrfs_device_set_bytes_used(device,
					device->bytes_used - dev_extent_len);
2965
			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2966
			btrfs_clear_space_info_full(fs_info);
2967
			mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2968
		}
2969

2970 2971 2972 2973 2974
		ret = btrfs_update_device(trans, device);
		if (ret) {
			mutex_unlock(&fs_devices->device_list_mutex);
			btrfs_abort_transaction(trans, ret);
			goto out;
2975
		}
2976
	}
2977 2978
	mutex_unlock(&fs_devices->device_list_mutex);

2979
	ret = btrfs_free_chunk(trans, chunk_offset);
2980
	if (ret) {
2981
		btrfs_abort_transaction(trans, ret);
2982 2983
		goto out;
	}
2984

2985
	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2986

2987
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2988
		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2989
		if (ret) {
2990
			btrfs_abort_transaction(trans, ret);
2991 2992
			goto out;
		}
2993 2994
	}

2995
	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2996
	if (ret) {
2997
		btrfs_abort_transaction(trans, ret);
2998 2999
		goto out;
	}
Y
Yan Zheng 已提交
3000

3001
out:
Y
Yan Zheng 已提交
3002 3003
	/* once for us */
	free_extent_map(em);
3004 3005
	return ret;
}
Y
Yan Zheng 已提交
3006

3007
static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3008
{
3009
	struct btrfs_root *root = fs_info->chunk_root;
3010
	struct btrfs_trans_handle *trans;
3011
	struct btrfs_block_group *block_group;
3012
	int ret;
Y
Yan Zheng 已提交
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	/*
	 * Prevent races with automatic removal of unused block groups.
	 * After we relocate and before we remove the chunk with offset
	 * chunk_offset, automatic removal of the block group can kick in,
	 * resulting in a failure when calling btrfs_remove_chunk() below.
	 *
	 * Make sure to acquire this mutex before doing a tree search (dev
	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
	 * we release the path used to search the chunk/dev tree and before
	 * the current task acquires this mutex and calls us.
	 */
3026
	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3027

3028
	/* step one, relocate all the extents inside this chunk */
3029
	btrfs_scrub_pause(fs_info);
3030
	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3031
	btrfs_scrub_continue(fs_info);
3032 3033 3034
	if (ret)
		return ret;

3035 3036 3037 3038 3039 3040
	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
	if (!block_group)
		return -ENOENT;
	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
	btrfs_put_block_group(block_group);

3041 3042 3043 3044 3045 3046 3047 3048
	trans = btrfs_start_trans_remove_block_group(root->fs_info,
						     chunk_offset);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		btrfs_handle_fs_error(root->fs_info, ret, NULL);
		return ret;
	}

3049
	/*
3050 3051
	 * step two, delete the device extents and the
	 * chunk tree entries
3052
	 */
3053
	ret = btrfs_remove_chunk(trans, chunk_offset);
3054
	btrfs_end_transaction(trans);
3055
	return ret;
Y
Yan Zheng 已提交
3056 3057
}

3058
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
3059
{
3060
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
3061 3062 3063 3064 3065 3066
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_type;
3067 3068
	bool retried = false;
	int failed = 0;
Y
Yan Zheng 已提交
3069 3070 3071 3072 3073 3074
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3075
again:
Y
Yan Zheng 已提交
3076 3077 3078 3079 3080
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
3081
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3082
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3083
		if (ret < 0) {
3084
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3085
			goto error;
3086
		}
3087
		BUG_ON(ret == 0); /* Corruption */
Y
Yan Zheng 已提交
3088 3089 3090

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
3091
		if (ret)
3092
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3093 3094 3095 3096
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
Z
Zheng Yan 已提交
3097

Y
Yan Zheng 已提交
3098 3099
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
Z
Zheng Yan 已提交
3100

Y
Yan Zheng 已提交
3101 3102 3103
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
3104
		btrfs_release_path(path);
3105

Y
Yan Zheng 已提交
3106
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3107
			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3108 3109
			if (ret == -ENOSPC)
				failed++;
H
HIMANGI SARAOGI 已提交
3110 3111
			else
				BUG_ON(ret);
Y
Yan Zheng 已提交
3112
		}
3113
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3114

Y
Yan Zheng 已提交
3115 3116 3117 3118 3119
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
3120 3121 3122 3123
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
3124
	} else if (WARN_ON(failed && retried)) {
3125 3126
		ret = -ENOSPC;
	}
Y
Yan Zheng 已提交
3127 3128 3129
error:
	btrfs_free_path(path);
	return ret;
3130 3131
}

3132 3133 3134 3135 3136 3137 3138 3139
/*
 * return 1 : allocate a data chunk successfully,
 * return <0: errors during allocating a data chunk,
 * return 0 : no need to allocate a data chunk.
 */
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
				      u64 chunk_offset)
{
3140
	struct btrfs_block_group *cache;
3141 3142 3143 3144 3145 3146 3147 3148
	u64 bytes_used;
	u64 chunk_type;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	ASSERT(cache);
	chunk_type = cache->flags;
	btrfs_put_block_group(cache);

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
		return 0;

	spin_lock(&fs_info->data_sinfo->lock);
	bytes_used = fs_info->data_sinfo->bytes_used;
	spin_unlock(&fs_info->data_sinfo->lock);

	if (!bytes_used) {
		struct btrfs_trans_handle *trans;
		int ret;

		trans =	btrfs_join_transaction(fs_info->tree_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);

		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
		btrfs_end_transaction(trans);
		if (ret < 0)
			return ret;
		return 1;
3169
	}
3170

3171 3172 3173
	return 0;
}

3174
static int insert_balance_item(struct btrfs_fs_info *fs_info,
3175 3176
			       struct btrfs_balance_control *bctl)
{
3177
	struct btrfs_root *root = fs_info->tree_root;
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
	struct btrfs_trans_handle *trans;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3197
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	key.offset = 0;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*item));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

3208
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221

	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
	btrfs_set_balance_data(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
	btrfs_set_balance_meta(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
	btrfs_set_balance_sys(leaf, item, &disk_bargs);

	btrfs_set_balance_flags(leaf, item, bctl->flags);

	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
3222
	err = btrfs_commit_transaction(trans);
3223 3224 3225 3226 3227
	if (err && !ret)
		ret = err;
	return ret;
}

3228
static int del_balance_item(struct btrfs_fs_info *fs_info)
3229
{
3230
	struct btrfs_root *root = fs_info->tree_root;
3231 3232 3233 3234 3235 3236 3237 3238 3239
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3240
	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3241 3242 3243 3244 3245 3246
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3247
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
3261
	err = btrfs_commit_transaction(trans);
3262 3263 3264 3265 3266
	if (err && !ret)
		ret = err;
	return ret;
}

I
Ilya Dryomov 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
/*
 * This is a heuristic used to reduce the number of chunks balanced on
 * resume after balance was interrupted.
 */
static void update_balance_args(struct btrfs_balance_control *bctl)
{
	/*
	 * Turn on soft mode for chunk types that were being converted.
	 */
	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;

	/*
	 * Turn on usage filter if is not already used.  The idea is
	 * that chunks that we have already balanced should be
	 * reasonably full.  Don't do it for chunks that are being
	 * converted - that will keep us from relocating unconverted
	 * (albeit full) chunks.
	 */
	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3291
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3292 3293 3294 3295 3296
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->data.usage = 90;
	}
	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3297
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3298 3299 3300 3301 3302
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->sys.usage = 90;
	}
	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3303
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3304 3305 3306 3307 3308 3309
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->meta.usage = 90;
	}
}

3310 3311 3312 3313
/*
 * Clear the balance status in fs_info and delete the balance item from disk.
 */
static void reset_balance_state(struct btrfs_fs_info *fs_info)
3314 3315
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3316
	int ret;
3317 3318 3319 3320 3321 3322 3323 3324

	BUG_ON(!fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = NULL;
	spin_unlock(&fs_info->balance_lock);

	kfree(bctl);
3325 3326 3327
	ret = del_balance_item(fs_info);
	if (ret)
		btrfs_handle_fs_error(fs_info, ret, NULL);
3328 3329
}

I
Ilya Dryomov 已提交
3330 3331 3332 3333
/*
 * Balance filters.  Return 1 if chunk should be filtered out
 * (should not be balanced).
 */
3334
static int chunk_profiles_filter(u64 chunk_type,
I
Ilya Dryomov 已提交
3335 3336
				 struct btrfs_balance_args *bargs)
{
3337 3338
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
I
Ilya Dryomov 已提交
3339

3340
	if (bargs->profiles & chunk_type)
I
Ilya Dryomov 已提交
3341 3342 3343 3344 3345
		return 0;

	return 1;
}

3346
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
I
Ilya Dryomov 已提交
3347
			      struct btrfs_balance_args *bargs)
3348
{
3349
	struct btrfs_block_group *cache;
3350 3351 3352 3353 3354 3355
	u64 chunk_used;
	u64 user_thresh_min;
	u64 user_thresh_max;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3356
	chunk_used = cache->used;
3357 3358 3359 3360

	if (bargs->usage_min == 0)
		user_thresh_min = 0;
	else
3361 3362
		user_thresh_min = div_factor_fine(cache->length,
						  bargs->usage_min);
3363 3364 3365 3366

	if (bargs->usage_max == 0)
		user_thresh_max = 1;
	else if (bargs->usage_max > 100)
3367
		user_thresh_max = cache->length;
3368
	else
3369 3370
		user_thresh_max = div_factor_fine(cache->length,
						  bargs->usage_max);
3371 3372 3373 3374 3375 3376 3377 3378

	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

3379
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3380
		u64 chunk_offset, struct btrfs_balance_args *bargs)
I
Ilya Dryomov 已提交
3381
{
3382
	struct btrfs_block_group *cache;
I
Ilya Dryomov 已提交
3383 3384 3385 3386
	u64 chunk_used, user_thresh;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3387
	chunk_used = cache->used;
I
Ilya Dryomov 已提交
3388

3389
	if (bargs->usage_min == 0)
3390
		user_thresh = 1;
3391
	else if (bargs->usage > 100)
3392
		user_thresh = cache->length;
3393
	else
3394
		user_thresh = div_factor_fine(cache->length, bargs->usage);
3395

I
Ilya Dryomov 已提交
3396 3397 3398 3399 3400 3401 3402
	if (chunk_used < user_thresh)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

I
Ilya Dryomov 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
static int chunk_devid_filter(struct extent_buffer *leaf,
			      struct btrfs_chunk *chunk,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	int i;

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
			return 0;
	}

	return 1;
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
static u64 calc_data_stripes(u64 type, int num_stripes)
{
	const int index = btrfs_bg_flags_to_raid_index(type);
	const int ncopies = btrfs_raid_array[index].ncopies;
	const int nparity = btrfs_raid_array[index].nparity;

	if (nparity)
		return num_stripes - nparity;
	else
		return num_stripes / ncopies;
}

I
Ilya Dryomov 已提交
3432 3433 3434 3435 3436 3437 3438 3439 3440
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 stripe_offset;
	u64 stripe_length;
3441
	u64 type;
I
Ilya Dryomov 已提交
3442 3443 3444 3445 3446 3447
	int factor;
	int i;

	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
		return 0;

3448 3449
	type = btrfs_chunk_type(leaf, chunk);
	factor = calc_data_stripes(type, num_stripes);
I
Ilya Dryomov 已提交
3450 3451 3452 3453 3454 3455 3456 3457

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
			continue;

		stripe_offset = btrfs_stripe_offset(leaf, stripe);
		stripe_length = btrfs_chunk_length(leaf, chunk);
3458
		stripe_length = div_u64(stripe_length, factor);
I
Ilya Dryomov 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467

		if (stripe_offset < bargs->pend &&
		    stripe_offset + stripe_length > bargs->pstart)
			return 0;
	}

	return 1;
}

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	if (chunk_offset < bargs->vend &&
	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
		/* at least part of the chunk is inside this vrange */
		return 0;

	return 1;
}

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

	if (bargs->stripes_min <= num_stripes
			&& num_stripes <= bargs->stripes_max)
		return 0;

	return 1;
}

3495
static int chunk_soft_convert_filter(u64 chunk_type,
3496 3497 3498 3499 3500
				     struct btrfs_balance_args *bargs)
{
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return 0;

3501 3502
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
3503

3504
	if (bargs->target == chunk_type)
3505 3506 3507 3508 3509
		return 1;

	return 0;
}

3510
static int should_balance_chunk(struct extent_buffer *leaf,
3511 3512
				struct btrfs_chunk *chunk, u64 chunk_offset)
{
3513
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3514
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	struct btrfs_balance_args *bargs = NULL;
	u64 chunk_type = btrfs_chunk_type(leaf, chunk);

	/* type filter */
	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
		return 0;
	}

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
		bargs = &bctl->data;
	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
		bargs = &bctl->sys;
	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
		bargs = &bctl->meta;

I
Ilya Dryomov 已提交
3531 3532 3533 3534
	/* profiles filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
	    chunk_profiles_filter(chunk_type, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3535 3536 3537 3538
	}

	/* usage filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3539
	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
I
Ilya Dryomov 已提交
3540
		return 0;
3541
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3542
	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3543
		return 0;
I
Ilya Dryomov 已提交
3544 3545 3546 3547 3548 3549
	}

	/* devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
	    chunk_devid_filter(leaf, chunk, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3550 3551 3552 3553
	}

	/* drange filter, makes sense only with devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3554
	    chunk_drange_filter(leaf, chunk, bargs)) {
I
Ilya Dryomov 已提交
3555
		return 0;
3556 3557 3558 3559 3560 3561
	}

	/* vrange filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3562 3563
	}

3564 3565 3566 3567 3568 3569
	/* stripes filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
		return 0;
	}

3570 3571 3572 3573 3574 3575
	/* soft profile changing mode */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
	    chunk_soft_convert_filter(chunk_type, bargs)) {
		return 0;
	}

3576 3577 3578 3579 3580 3581 3582 3583
	/*
	 * limited by count, must be the last filter
	 */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
		if (bargs->limit == 0)
			return 0;
		else
			bargs->limit--;
3584 3585 3586
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
		/*
		 * Same logic as the 'limit' filter; the minimum cannot be
3587
		 * determined here because we do not have the global information
3588 3589 3590 3591 3592 3593
		 * about the count of all chunks that satisfy the filters.
		 */
		if (bargs->limit_max == 0)
			return 0;
		else
			bargs->limit_max--;
3594 3595
	}

3596 3597 3598
	return 1;
}

3599
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3600
{
3601
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3602
	struct btrfs_root *chunk_root = fs_info->chunk_root;
3603
	u64 chunk_type;
3604
	struct btrfs_chunk *chunk;
3605
	struct btrfs_path *path = NULL;
3606 3607
	struct btrfs_key key;
	struct btrfs_key found_key;
3608 3609
	struct extent_buffer *leaf;
	int slot;
3610 3611
	int ret;
	int enospc_errors = 0;
3612
	bool counting = true;
3613
	/* The single value limit and min/max limits use the same bytes in the */
3614 3615 3616
	u64 limit_data = bctl->data.limit;
	u64 limit_meta = bctl->meta.limit;
	u64 limit_sys = bctl->sys.limit;
3617 3618 3619
	u32 count_data = 0;
	u32 count_meta = 0;
	u32 count_sys = 0;
3620
	int chunk_reserved = 0;
3621 3622

	path = btrfs_alloc_path();
3623 3624 3625 3626
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
3627 3628 3629 3630 3631 3632

	/* zero out stat counters */
	spin_lock(&fs_info->balance_lock);
	memset(&bctl->stat, 0, sizeof(bctl->stat));
	spin_unlock(&fs_info->balance_lock);
again:
3633
	if (!counting) {
3634 3635 3636 3637
		/*
		 * The single value limit and min/max limits use the same bytes
		 * in the
		 */
3638 3639 3640 3641
		bctl->data.limit = limit_data;
		bctl->meta.limit = limit_meta;
		bctl->sys.limit = limit_sys;
	}
3642 3643 3644 3645
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

C
Chris Mason 已提交
3646
	while (1) {
3647
		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3648
		    atomic_read(&fs_info->balance_cancel_req)) {
3649 3650 3651 3652
			ret = -ECANCELED;
			goto error;
		}

3653
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3654
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3655 3656
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657
			goto error;
3658
		}
3659 3660 3661 3662 3663 3664

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
3665
			BUG(); /* FIXME break ? */
3666 3667 3668

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
3669
		if (ret) {
3670
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3671
			ret = 0;
3672
			break;
3673
		}
3674

3675 3676 3677
		leaf = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3678

3679 3680
		if (found_key.objectid != key.objectid) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3681
			break;
3682
		}
3683

3684
		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3685
		chunk_type = btrfs_chunk_type(leaf, chunk);
3686

3687 3688 3689 3690 3691 3692
		if (!counting) {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.considered++;
			spin_unlock(&fs_info->balance_lock);
		}

3693
		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3694

3695
		btrfs_release_path(path);
3696 3697
		if (!ret) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3698
			goto loop;
3699
		}
3700

3701
		if (counting) {
3702
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3703 3704 3705
			spin_lock(&fs_info->balance_lock);
			bctl->stat.expected++;
			spin_unlock(&fs_info->balance_lock);
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
				count_data++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
				count_sys++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
				count_meta++;

			goto loop;
		}

		/*
		 * Apply limit_min filter, no need to check if the LIMITS
		 * filter is used, limit_min is 0 by default
		 */
		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
					count_data < bctl->data.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
					count_meta < bctl->meta.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
					count_sys < bctl->sys.limit_min)) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3728 3729 3730
			goto loop;
		}

3731 3732 3733 3734 3735 3736 3737 3738 3739
		if (!chunk_reserved) {
			/*
			 * We may be relocating the only data chunk we have,
			 * which could potentially end up with losing data's
			 * raid profile, so lets allocate an empty one in
			 * advance.
			 */
			ret = btrfs_may_alloc_data_chunk(fs_info,
							 found_key.offset);
3740 3741 3742
			if (ret < 0) {
				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
				goto error;
3743 3744
			} else if (ret == 1) {
				chunk_reserved = 1;
3745 3746 3747
			}
		}

3748
		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3749
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3750
		if (ret == -ENOSPC) {
3751
			enospc_errors++;
3752 3753 3754 3755 3756 3757 3758
		} else if (ret == -ETXTBSY) {
			btrfs_info(fs_info,
	   "skipping relocation of block group %llu due to active swapfile",
				   found_key.offset);
			ret = 0;
		} else if (ret) {
			goto error;
3759 3760 3761 3762 3763
		} else {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.completed++;
			spin_unlock(&fs_info->balance_lock);
		}
3764
loop:
3765 3766
		if (found_key.offset == 0)
			break;
3767
		key.offset = found_key.offset - 1;
3768
	}
3769

3770 3771 3772 3773 3774
	if (counting) {
		btrfs_release_path(path);
		counting = false;
		goto again;
	}
3775 3776
error:
	btrfs_free_path(path);
3777
	if (enospc_errors) {
3778
		btrfs_info(fs_info, "%d enospc errors during balance",
J
Jeff Mahoney 已提交
3779
			   enospc_errors);
3780 3781 3782 3783
		if (!ret)
			ret = -ENOSPC;
	}

3784 3785 3786
	return ret;
}

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
/**
 * alloc_profile_is_valid - see if a given profile is valid and reduced
 * @flags: profile to validate
 * @extended: if true @flags is treated as an extended profile
 */
static int alloc_profile_is_valid(u64 flags, int extended)
{
	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
			       BTRFS_BLOCK_GROUP_PROFILE_MASK);

	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;

	/* 1) check that all other bits are zeroed */
	if (flags & ~mask)
		return 0;

	/* 2) see if profile is reduced */
	if (flags == 0)
		return !extended; /* "0" is valid for usual profiles */

3807
	return has_single_bit_set(flags);
3808 3809
}

3810 3811
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
{
3812 3813 3814 3815
	/* cancel requested || normal exit path */
	return atomic_read(&fs_info->balance_cancel_req) ||
		(atomic_read(&fs_info->balance_pause_req) == 0 &&
		 atomic_read(&fs_info->balance_cancel_req) == 0);
3816 3817
}

3818 3819 3820 3821 3822 3823 3824
/*
 * Validate target profile against allowed profiles and return true if it's OK.
 * Otherwise print the error message and return false.
 */
static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
		const struct btrfs_balance_args *bargs,
		u64 allowed, const char *type)
3825
{
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return true;

	/* Profile is valid and does not have bits outside of the allowed set */
	if (alloc_profile_is_valid(bargs->target, 1) &&
	    (bargs->target & ~allowed) == 0)
		return true;

	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
			type, btrfs_bg_type_to_raid_name(bargs->target));
	return false;
3837 3838
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
/*
 * Fill @buf with textual description of balance filter flags @bargs, up to
 * @size_buf including the terminating null. The output may be trimmed if it
 * does not fit into the provided buffer.
 */
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
				 u32 size_buf)
{
	int ret;
	u32 size_bp = size_buf;
	char *bp = buf;
	u64 flags = bargs->flags;
	char tmp_buf[128] = {'\0'};

	if (!flags)
		return;

#define CHECK_APPEND_NOARG(a)						\
	do {								\
		ret = snprintf(bp, size_bp, (a));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_2ARG(a, v1, v2)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

3883 3884 3885
	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
		CHECK_APPEND_1ARG("convert=%s,",
				  btrfs_bg_type_to_raid_name(bargs->target));
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992

	if (flags & BTRFS_BALANCE_ARGS_SOFT)
		CHECK_APPEND_NOARG("soft,");

	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
					    sizeof(tmp_buf));
		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
	}

	if (flags & BTRFS_BALANCE_ARGS_USAGE)
		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);

	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
		CHECK_APPEND_2ARG("usage=%u..%u,",
				  bargs->usage_min, bargs->usage_max);

	if (flags & BTRFS_BALANCE_ARGS_DEVID)
		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);

	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
		CHECK_APPEND_2ARG("drange=%llu..%llu,",
				  bargs->pstart, bargs->pend);

	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
				  bargs->vstart, bargs->vend);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
		CHECK_APPEND_2ARG("limit=%u..%u,",
				bargs->limit_min, bargs->limit_max);

	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
		CHECK_APPEND_2ARG("stripes=%u..%u,",
				  bargs->stripes_min, bargs->stripes_max);

#undef CHECK_APPEND_2ARG
#undef CHECK_APPEND_1ARG
#undef CHECK_APPEND_NOARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
	else
		buf[0] = '\0';
}

static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
{
	u32 size_buf = 1024;
	char tmp_buf[192] = {'\0'};
	char *buf;
	char *bp;
	u32 size_bp = size_buf;
	int ret;
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;

	buf = kzalloc(size_buf, GFP_KERNEL);
	if (!buf)
		return;

	bp = buf;

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

	if (bctl->flags & BTRFS_BALANCE_FORCE)
		CHECK_APPEND_1ARG("%s", "-f ");

	if (bctl->flags & BTRFS_BALANCE_DATA) {
		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_METADATA) {
		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
	}

#undef CHECK_APPEND_1ARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
	btrfs_info(fs_info, "balance: %s %s",
		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
		   "resume" : "start", buf);

	kfree(buf);
}

3993
/*
3994
 * Should be called with balance mutexe held
3995
 */
3996 3997
int btrfs_balance(struct btrfs_fs_info *fs_info,
		  struct btrfs_balance_control *bctl,
3998 3999
		  struct btrfs_ioctl_balance_args *bargs)
{
4000
	u64 meta_target, data_target;
4001
	u64 allowed;
4002
	int mixed = 0;
4003
	int ret;
4004
	u64 num_devices;
4005
	unsigned seq;
4006
	bool reducing_redundancy;
4007
	int i;
4008

4009
	if (btrfs_fs_closing(fs_info) ||
4010
	    atomic_read(&fs_info->balance_pause_req) ||
4011
	    btrfs_should_cancel_balance(fs_info)) {
4012 4013 4014 4015
		ret = -EINVAL;
		goto out;
	}

4016 4017 4018 4019
	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

4020 4021 4022 4023
	/*
	 * In case of mixed groups both data and meta should be picked,
	 * and identical options should be given for both of them.
	 */
4024 4025
	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
	if (mixed && (bctl->flags & allowed)) {
4026 4027 4028
		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
J
Jeff Mahoney 已提交
4029
			btrfs_err(fs_info,
4030
	  "balance: mixed groups data and metadata options must be the same");
4031 4032 4033 4034 4035
			ret = -EINVAL;
			goto out;
		}
	}

4036 4037
	/*
	 * rw_devices will not change at the moment, device add/delete/replace
4038
	 * are exclusive
4039 4040
	 */
	num_devices = fs_info->fs_devices->rw_devices;
4041 4042 4043 4044 4045 4046 4047

	/*
	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
	 * special bit for it, to make it easier to distinguish.  Thus we need
	 * to set it manually, or balance would refuse the profile.
	 */
	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4048 4049 4050
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
		if (num_devices >= btrfs_raid_array[i].devs_min)
			allowed |= btrfs_raid_array[i].bg_flag;
4051

4052 4053 4054
	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4055 4056 4057 4058
		ret = -EINVAL;
		goto out;
	}

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	/*
	 * Allow to reduce metadata or system integrity only if force set for
	 * profiles with redundancy (copies, parity)
	 */
	allowed = 0;
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
		if (btrfs_raid_array[i].ncopies >= 2 ||
		    btrfs_raid_array[i].tolerated_failures >= 1)
			allowed |= btrfs_raid_array[i].bg_flag;
	}
4069 4070 4071 4072 4073 4074 4075 4076
	do {
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_system_alloc_bits & allowed) &&
		     !(bctl->sys.target & allowed)) ||
		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4077
		     !(bctl->meta.target & allowed)))
4078
			reducing_redundancy = true;
4079
		else
4080
			reducing_redundancy = false;
4081 4082 4083 4084 4085 4086

		/* if we're not converting, the target field is uninitialized */
		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->data.target : fs_info->avail_data_alloc_bits;
4087
	} while (read_seqretry(&fs_info->profiles_lock, seq));
4088

4089
	if (reducing_redundancy) {
4090 4091
		if (bctl->flags & BTRFS_BALANCE_FORCE) {
			btrfs_info(fs_info,
4092
			   "balance: force reducing metadata redundancy");
4093 4094
		} else {
			btrfs_err(fs_info,
4095
	"balance: reduces metadata redundancy, use --force if you want this");
4096 4097 4098 4099 4100
			ret = -EINVAL;
			goto out;
		}
	}

4101 4102
	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4103
		btrfs_warn(fs_info,
4104
	"balance: metadata profile %s has lower redundancy than data profile %s",
4105 4106
				btrfs_bg_type_to_raid_name(meta_target),
				btrfs_bg_type_to_raid_name(data_target));
4107 4108
	}

4109 4110 4111 4112 4113 4114 4115 4116
	if (fs_info->send_in_progress) {
		btrfs_warn_rl(fs_info,
"cannot run balance while send operations are in progress (%d in progress)",
			      fs_info->send_in_progress);
		ret = -EAGAIN;
		goto out;
	}

4117
	ret = insert_balance_item(fs_info, bctl);
I
Ilya Dryomov 已提交
4118
	if (ret && ret != -EEXIST)
4119 4120
		goto out;

I
Ilya Dryomov 已提交
4121 4122
	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
		BUG_ON(ret == -EEXIST);
4123 4124 4125 4126
		BUG_ON(fs_info->balance_ctl);
		spin_lock(&fs_info->balance_lock);
		fs_info->balance_ctl = bctl;
		spin_unlock(&fs_info->balance_lock);
I
Ilya Dryomov 已提交
4127 4128 4129 4130 4131 4132
	} else {
		BUG_ON(ret != -EEXIST);
		spin_lock(&fs_info->balance_lock);
		update_balance_args(bctl);
		spin_unlock(&fs_info->balance_lock);
	}
4133

4134 4135
	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4136
	describe_balance_start_or_resume(fs_info);
4137 4138 4139 4140 4141
	mutex_unlock(&fs_info->balance_mutex);

	ret = __btrfs_balance(fs_info);

	mutex_lock(&fs_info->balance_mutex);
4142 4143
	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
		btrfs_info(fs_info, "balance: paused");
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	/*
	 * Balance can be canceled by:
	 *
	 * - Regular cancel request
	 *   Then ret == -ECANCELED and balance_cancel_req > 0
	 *
	 * - Fatal signal to "btrfs" process
	 *   Either the signal caught by wait_reserve_ticket() and callers
	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
	 *   got -ECANCELED.
	 *   Either way, in this case balance_cancel_req = 0, and
	 *   ret == -EINTR or ret == -ECANCELED.
	 *
	 * So here we only check the return value to catch canceled balance.
	 */
	else if (ret == -ECANCELED || ret == -EINTR)
4160 4161 4162 4163
		btrfs_info(fs_info, "balance: canceled");
	else
		btrfs_info(fs_info, "balance: ended with status: %d", ret);

4164
	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4165 4166 4167

	if (bargs) {
		memset(bargs, 0, sizeof(*bargs));
4168
		btrfs_update_ioctl_balance_args(fs_info, bargs);
4169 4170
	}

4171 4172
	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
	    balance_need_close(fs_info)) {
4173
		reset_balance_state(fs_info);
4174
		btrfs_exclop_finish(fs_info);
4175 4176
	}

4177
	wake_up(&fs_info->balance_wait_q);
4178 4179 4180

	return ret;
out:
I
Ilya Dryomov 已提交
4181
	if (bctl->flags & BTRFS_BALANCE_RESUME)
4182
		reset_balance_state(fs_info);
4183
	else
I
Ilya Dryomov 已提交
4184
		kfree(bctl);
4185
	btrfs_exclop_finish(fs_info);
4186

I
Ilya Dryomov 已提交
4187 4188 4189 4190 4191
	return ret;
}

static int balance_kthread(void *data)
{
4192
	struct btrfs_fs_info *fs_info = data;
4193
	int ret = 0;
I
Ilya Dryomov 已提交
4194 4195

	mutex_lock(&fs_info->balance_mutex);
4196
	if (fs_info->balance_ctl)
4197
		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
I
Ilya Dryomov 已提交
4198
	mutex_unlock(&fs_info->balance_mutex);
4199

I
Ilya Dryomov 已提交
4200 4201 4202
	return ret;
}

4203 4204 4205 4206
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
	struct task_struct *tsk;

4207
	mutex_lock(&fs_info->balance_mutex);
4208
	if (!fs_info->balance_ctl) {
4209
		mutex_unlock(&fs_info->balance_mutex);
4210 4211
		return 0;
	}
4212
	mutex_unlock(&fs_info->balance_mutex);
4213

4214
	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4215
		btrfs_info(fs_info, "balance: resume skipped");
4216 4217 4218
		return 0;
	}

4219 4220 4221 4222 4223 4224 4225 4226 4227
	/*
	 * A ro->rw remount sequence should continue with the paused balance
	 * regardless of who pauses it, system or the user as of now, so set
	 * the resume flag.
	 */
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
	spin_unlock(&fs_info->balance_lock);

4228
	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4229
	return PTR_ERR_OR_ZERO(tsk);
4230 4231
}

4232
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
I
Ilya Dryomov 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
{
	struct btrfs_balance_control *bctl;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_BALANCE_OBJECTID;
4247
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
I
Ilya Dryomov 已提交
4248 4249
	key.offset = 0;

4250
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
I
Ilya Dryomov 已提交
4251
	if (ret < 0)
4252
		goto out;
I
Ilya Dryomov 已提交
4253 4254
	if (ret > 0) { /* ret = -ENOENT; */
		ret = 0;
4255 4256 4257 4258 4259 4260 4261
		goto out;
	}

	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
	if (!bctl) {
		ret = -ENOMEM;
		goto out;
I
Ilya Dryomov 已提交
4262 4263 4264 4265 4266
	}

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

4267 4268
	bctl->flags = btrfs_balance_flags(leaf, item);
	bctl->flags |= BTRFS_BALANCE_RESUME;
I
Ilya Dryomov 已提交
4269 4270 4271 4272 4273 4274 4275 4276

	btrfs_balance_data(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
	btrfs_balance_meta(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
	btrfs_balance_sys(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
	/*
	 * This should never happen, as the paused balance state is recovered
	 * during mount without any chance of other exclusive ops to collide.
	 *
	 * This gives the exclusive op status to balance and keeps in paused
	 * state until user intervention (cancel or umount). If the ownership
	 * cannot be assigned, show a message but do not fail. The balance
	 * is in a paused state and must have fs_info::balance_ctl properly
	 * set up.
	 */
4287
	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4288
		btrfs_warn(fs_info,
4289
	"balance: cannot set exclusive op status, resume manually");
4290

4291
	mutex_lock(&fs_info->balance_mutex);
4292 4293 4294 4295
	BUG_ON(fs_info->balance_ctl);
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = bctl;
	spin_unlock(&fs_info->balance_lock);
4296
	mutex_unlock(&fs_info->balance_mutex);
I
Ilya Dryomov 已提交
4297 4298
out:
	btrfs_free_path(path);
4299 4300 4301
	return ret;
}

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
	int ret = 0;

	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4312
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4313 4314 4315 4316
		atomic_inc(&fs_info->balance_pause_req);
		mutex_unlock(&fs_info->balance_mutex);

		wait_event(fs_info->balance_wait_q,
4317
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4318 4319 4320

		mutex_lock(&fs_info->balance_mutex);
		/* we are good with balance_ctl ripped off from under us */
4321
		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4322 4323 4324 4325 4326 4327 4328 4329 4330
		atomic_dec(&fs_info->balance_pause_req);
	} else {
		ret = -ENOTCONN;
	}

	mutex_unlock(&fs_info->balance_mutex);
	return ret;
}

4331 4332 4333 4334 4335 4336 4337 4338
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
	/*
	 * A paused balance with the item stored on disk can be resumed at
	 * mount time if the mount is read-write. Otherwise it's still paused
	 * and we must not allow cancelling as it deletes the item.
	 */
	if (sb_rdonly(fs_info->sb)) {
		mutex_unlock(&fs_info->balance_mutex);
		return -EROFS;
	}

4349 4350 4351 4352 4353
	atomic_inc(&fs_info->balance_cancel_req);
	/*
	 * if we are running just wait and return, balance item is
	 * deleted in btrfs_balance in this case
	 */
4354
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4355 4356
		mutex_unlock(&fs_info->balance_mutex);
		wait_event(fs_info->balance_wait_q,
4357
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4358 4359 4360
		mutex_lock(&fs_info->balance_mutex);
	} else {
		mutex_unlock(&fs_info->balance_mutex);
4361 4362 4363 4364
		/*
		 * Lock released to allow other waiters to continue, we'll
		 * reexamine the status again.
		 */
4365 4366
		mutex_lock(&fs_info->balance_mutex);

4367
		if (fs_info->balance_ctl) {
4368
			reset_balance_state(fs_info);
4369
			btrfs_exclop_finish(fs_info);
4370
			btrfs_info(fs_info, "balance: canceled");
4371
		}
4372 4373
	}

4374 4375
	BUG_ON(fs_info->balance_ctl ||
		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4376 4377 4378 4379 4380
	atomic_dec(&fs_info->balance_cancel_req);
	mutex_unlock(&fs_info->balance_mutex);
	return 0;
}

4381
int btrfs_uuid_scan_kthread(void *data)
S
Stefan Behrens 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
{
	struct btrfs_fs_info *fs_info = data;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	int ret = 0;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_root_item root_item;
	u32 item_size;
4392
	struct btrfs_trans_handle *trans = NULL;
4393
	bool closing = false;
S
Stefan Behrens 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = 0;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;

	while (1) {
4406 4407 4408 4409
		if (btrfs_fs_closing(fs_info)) {
			closing = true;
			break;
		}
4410 4411
		ret = btrfs_search_forward(root, &key, path,
				BTRFS_OLDEST_GENERATION);
S
Stefan Behrens 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
		if (ret) {
			if (ret > 0)
				ret = 0;
			break;
		}

		if (key.type != BTRFS_ROOT_ITEM_KEY ||
		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
			goto skip;

		eb = path->nodes[0];
		slot = path->slots[0];
		item_size = btrfs_item_size_nr(eb, slot);
		if (item_size < sizeof(root_item))
			goto skip;

		read_extent_buffer(eb, &root_item,
				   btrfs_item_ptr_offset(eb, slot),
				   (int)sizeof(root_item));
		if (btrfs_root_refs(&root_item) == 0)
			goto skip;
4435 4436 4437 4438 4439 4440 4441

		if (!btrfs_is_empty_uuid(root_item.uuid) ||
		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
			if (trans)
				goto update_tree;

			btrfs_release_path(path);
S
Stefan Behrens 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450
			/*
			 * 1 - subvol uuid item
			 * 1 - received_subvol uuid item
			 */
			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				break;
			}
4451 4452 4453 4454 4455
			continue;
		} else {
			goto skip;
		}
update_tree:
4456
		btrfs_release_path(path);
4457
		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4458
			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
S
Stefan Behrens 已提交
4459 4460 4461
						  BTRFS_UUID_KEY_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4462
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4463 4464 4465 4466 4467 4468
					ret);
				break;
			}
		}

		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4469
			ret = btrfs_uuid_tree_add(trans,
S
Stefan Behrens 已提交
4470 4471 4472 4473
						  root_item.received_uuid,
						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4474
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4475 4476 4477 4478 4479
					ret);
				break;
			}
		}

4480
skip:
4481
		btrfs_release_path(path);
S
Stefan Behrens 已提交
4482
		if (trans) {
4483
			ret = btrfs_end_transaction(trans);
4484
			trans = NULL;
S
Stefan Behrens 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
			if (ret)
				break;
		}

		if (key.offset < (u64)-1) {
			key.offset++;
		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
		} else if (key.objectid < (u64)-1) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.objectid++;
		} else {
			break;
		}
		cond_resched();
	}

out:
	btrfs_free_path(path);
4506
	if (trans && !IS_ERR(trans))
4507
		btrfs_end_transaction(trans);
S
Stefan Behrens 已提交
4508
	if (ret)
4509
		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4510
	else if (!closing)
4511
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
S
Stefan Behrens 已提交
4512 4513 4514 4515
	up(&fs_info->uuid_tree_rescan_sem);
	return 0;
}

4516 4517 4518 4519 4520
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *uuid_root;
S
Stefan Behrens 已提交
4521 4522
	struct task_struct *task;
	int ret;
4523 4524 4525 4526 4527 4528 4529 4530 4531

	/*
	 * 1 - root node
	 * 1 - root item
	 */
	trans = btrfs_start_transaction(tree_root, 2);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

4532
	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4533
	if (IS_ERR(uuid_root)) {
4534
		ret = PTR_ERR(uuid_root);
4535
		btrfs_abort_transaction(trans, ret);
4536
		btrfs_end_transaction(trans);
4537
		return ret;
4538 4539 4540 4541
	}

	fs_info->uuid_root = uuid_root;

4542
	ret = btrfs_commit_transaction(trans);
S
Stefan Behrens 已提交
4543 4544 4545 4546 4547 4548
	if (ret)
		return ret;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
4549
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4550
		btrfs_warn(fs_info, "failed to start uuid_scan task");
S
Stefan Behrens 已提交
4551 4552 4553 4554 4555
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
4556
}
S
Stefan Behrens 已提交
4557

4558 4559 4560 4561 4562 4563 4564
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
4565 4566
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
4567 4568 4569 4570 4571 4572 4573
	struct btrfs_trans_handle *trans;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_offset;
	int ret;
	int slot;
4574 4575
	int failed = 0;
	bool retried = false;
4576 4577
	struct extent_buffer *l;
	struct btrfs_key key;
4578
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4579
	u64 old_total = btrfs_super_total_bytes(super_copy);
4580
	u64 old_size = btrfs_device_get_total_bytes(device);
4581
	u64 diff;
4582
	u64 start;
4583 4584

	new_size = round_down(new_size, fs_info->sectorsize);
4585
	start = new_size;
4586
	diff = round_down(old_size - new_size, fs_info->sectorsize);
4587

4588
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4589 4590
		return -EINVAL;

4591 4592 4593 4594
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4595
	path->reada = READA_BACK;
4596

4597 4598 4599 4600 4601 4602
	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

4603
	mutex_lock(&fs_info->chunk_mutex);
4604

4605
	btrfs_device_set_total_bytes(device, new_size);
4606
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
4607
		device->fs_devices->total_rw_bytes -= diff;
4608
		atomic64_sub(diff, &fs_info->free_chunk_space);
4609
	}
4610 4611 4612 4613 4614 4615

	/*
	 * Once the device's size has been set to the new size, ensure all
	 * in-memory chunks are synced to disk so that the loop below sees them
	 * and relocates them accordingly.
	 */
4616
	if (contains_pending_extent(device, &start, diff)) {
4617 4618 4619 4620 4621 4622 4623 4624
		mutex_unlock(&fs_info->chunk_mutex);
		ret = btrfs_commit_transaction(trans);
		if (ret)
			goto done;
	} else {
		mutex_unlock(&fs_info->chunk_mutex);
		btrfs_end_transaction(trans);
	}
4625

4626
again:
4627 4628 4629 4630
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

4631
	do {
4632
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4633
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4634
		if (ret < 0) {
4635
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4636
			goto done;
4637
		}
4638 4639

		ret = btrfs_previous_item(root, path, 0, key.type);
4640
		if (ret)
4641
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4642 4643 4644 4645
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
4646
			btrfs_release_path(path);
4647
			break;
4648 4649 4650 4651 4652 4653
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

4654
		if (key.objectid != device->devid) {
4655
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4656
			btrfs_release_path(path);
4657
			break;
4658
		}
4659 4660 4661 4662

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

4663
		if (key.offset + length <= new_size) {
4664
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4665
			btrfs_release_path(path);
4666
			break;
4667
		}
4668 4669

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4670
		btrfs_release_path(path);
4671

4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
		/*
		 * We may be relocating the only data chunk we have,
		 * which could potentially end up with losing data's
		 * raid profile, so lets allocate an empty one in
		 * advance.
		 */
		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
			goto done;
		}

4684 4685
		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4686
		if (ret == -ENOSPC) {
4687
			failed++;
4688 4689 4690 4691 4692 4693 4694 4695
		} else if (ret) {
			if (ret == -ETXTBSY) {
				btrfs_warn(fs_info,
		   "could not shrink block group %llu due to active swapfile",
					   chunk_offset);
			}
			goto done;
		}
4696
	} while (key.offset-- > 0);
4697 4698 4699 4700 4701 4702 4703 4704

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		goto done;
4705 4706
	}

4707
	/* Shrinking succeeded, else we would be at "done". */
4708
	trans = btrfs_start_transaction(root, 0);
4709 4710 4711 4712 4713
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

4714
	mutex_lock(&fs_info->chunk_mutex);
4715 4716 4717 4718
	/* Clear all state bits beyond the shrunk device size */
	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
			  CHUNK_STATE_MASK);

4719
	btrfs_device_set_disk_total_bytes(device, new_size);
4720 4721 4722
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
4723 4724

	WARN_ON(diff > old_total);
4725 4726
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total - diff, fs_info->sectorsize));
4727
	mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
4728 4729 4730

	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
4731 4732 4733 4734 4735 4736
	if (ret < 0) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	} else {
		ret = btrfs_commit_transaction(trans);
	}
4737 4738
done:
	btrfs_free_path(path);
4739
	if (ret) {
4740
		mutex_lock(&fs_info->chunk_mutex);
4741
		btrfs_device_set_total_bytes(device, old_size);
4742
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4743
			device->fs_devices->total_rw_bytes += diff;
4744
		atomic64_add(diff, &fs_info->free_chunk_space);
4745
		mutex_unlock(&fs_info->chunk_mutex);
4746
	}
4747 4748 4749
	return ret;
}

4750
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4751 4752 4753
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
4754
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4755 4756 4757 4758
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

4759
	mutex_lock(&fs_info->chunk_mutex);
4760
	array_size = btrfs_super_sys_array_size(super_copy);
4761
	if (array_size + item_size + sizeof(disk_key)
4762
			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4763
		mutex_unlock(&fs_info->chunk_mutex);
4764
		return -EFBIG;
4765
	}
4766 4767 4768 4769 4770 4771 4772 4773

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4774
	mutex_unlock(&fs_info->chunk_mutex);
4775

4776 4777 4778
	return 0;
}

4779 4780 4781 4782
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
4783
{
4784 4785
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;
4786

4787
	if (di_a->max_avail > di_b->max_avail)
4788
		return -1;
4789
	if (di_a->max_avail < di_b->max_avail)
4790
		return 1;
4791 4792 4793 4794 4795
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
4796
}
4797

D
David Woodhouse 已提交
4798 4799
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
4800
	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
D
David Woodhouse 已提交
4801 4802
		return;

4803
	btrfs_set_fs_incompat(info, RAID56);
D
David Woodhouse 已提交
4804 4805
}

4806 4807 4808 4809 4810 4811 4812 4813
static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
		return;

	btrfs_set_fs_incompat(info, RAID1C34);
}

N
Naohiro Aota 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
/*
 * Structure used internally for __btrfs_alloc_chunk() function.
 * Wraps needed parameters.
 */
struct alloc_chunk_ctl {
	u64 start;
	u64 type;
	/* Total number of stripes to allocate */
	int num_stripes;
	/* sub_stripes info for map */
	int sub_stripes;
	/* Stripes per device */
	int dev_stripes;
	/* Maximum number of devices to use */
	int devs_max;
	/* Minimum number of devices to use */
	int devs_min;
	/* ndevs has to be a multiple of this */
	int devs_increment;
	/* Number of copies */
	int ncopies;
	/* Number of stripes worth of bytes to store parity information */
	int nparity;
	u64 max_stripe_size;
	u64 max_chunk_size;
4839
	u64 dev_extent_min;
N
Naohiro Aota 已提交
4840 4841 4842 4843 4844
	u64 stripe_size;
	u64 chunk_size;
	int ndevs;
};

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
static void init_alloc_chunk_ctl_policy_regular(
				struct btrfs_fs_devices *fs_devices,
				struct alloc_chunk_ctl *ctl)
{
	u64 type = ctl->type;

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		ctl->max_stripe_size = SZ_1G;
		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		/* For larger filesystems, use larger metadata chunks */
		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
			ctl->max_stripe_size = SZ_1G;
		else
			ctl->max_stripe_size = SZ_256M;
		ctl->max_chunk_size = ctl->max_stripe_size;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ctl->max_stripe_size = SZ_32M;
		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
		ctl->devs_max = min_t(int, ctl->devs_max,
				      BTRFS_MAX_DEVS_SYS_CHUNK);
	} else {
		BUG();
	}

	/* We don't want a chunk larger than 10% of writable space */
	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
				  ctl->max_chunk_size);
4873
	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
}

static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
				 struct alloc_chunk_ctl *ctl)
{
	int index = btrfs_bg_flags_to_raid_index(ctl->type);

	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
	ctl->devs_max = btrfs_raid_array[index].devs_max;
	if (!ctl->devs_max)
		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
	ctl->devs_min = btrfs_raid_array[index].devs_min;
	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
	ctl->ncopies = btrfs_raid_array[index].ncopies;
	ctl->nparity = btrfs_raid_array[index].nparity;
	ctl->ndevs = 0;

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
		break;
	default:
		BUG();
	}
}

4901 4902 4903
static int gather_device_info(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
4904
{
4905
	struct btrfs_fs_info *info = fs_devices->fs_info;
4906
	struct btrfs_device *device;
4907
	u64 total_avail;
4908
	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4909
	int ret;
4910 4911 4912
	int ndevs = 0;
	u64 max_avail;
	u64 dev_offset;
4913

4914
	/*
4915 4916
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
4917
	 */
4918
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4919
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
J
Julia Lawall 已提交
4920
			WARN(1, KERN_ERR
4921
			       "BTRFS: read-only device in alloc_list\n");
4922 4923
			continue;
		}
4924

4925 4926
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
					&device->dev_state) ||
4927
		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4928
			continue;
4929

4930 4931 4932 4933
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
4934 4935

		/* If there is no space on this device, skip it. */
4936
		if (total_avail < ctl->dev_extent_min)
4937
			continue;
4938

4939 4940
		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
					   &max_avail);
4941
		if (ret && ret != -ENOSPC)
4942
			return ret;
4943

4944
		if (ret == 0)
4945
			max_avail = dev_extent_want;
4946

4947
		if (max_avail < ctl->dev_extent_min) {
4948 4949
			if (btrfs_test_opt(info, ENOSPC_DEBUG))
				btrfs_debug(info,
4950
			"%s: devid %llu has no free space, have=%llu want=%llu",
4951
					    __func__, device->devid, max_avail,
4952
					    ctl->dev_extent_min);
4953
			continue;
4954
		}
4955

4956 4957 4958 4959 4960
		if (ndevs == fs_devices->rw_devices) {
			WARN(1, "%s: found more than %llu devices\n",
			     __func__, fs_devices->rw_devices);
			break;
		}
4961 4962 4963 4964 4965 4966
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
4967
	ctl->ndevs = ndevs;
4968

4969 4970 4971
	/*
	 * now sort the devices by hole size / available space
	 */
4972
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4973
	     btrfs_cmp_device_info, NULL);
4974

4975 4976 4977
	return 0;
}

4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
				      struct btrfs_device_info *devices_info)
{
	/* Number of stripes that count for block group size */
	int data_stripes;

	/*
	 * The primary goal is to maximize the number of stripes, so use as
	 * many devices as possible, even if the stripes are not maximum sized.
	 *
	 * The DUP profile stores more than one stripe per device, the
	 * max_avail is the total size so we have to adjust.
	 */
	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
				   ctl->dev_stripes);
	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;

	/* This will have to be fixed for RAID1 and RAID10 over more drives */
	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;

	/*
	 * Use the number of data stripes to figure out how big this chunk is
	 * really going to be in terms of logical address space, and compare
	 * that answer with the max chunk size. If it's higher, we try to
	 * reduce stripe_size.
	 */
	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
		/*
		 * Reduce stripe_size, round it up to a 16MB boundary again and
		 * then use it, unless it ends up being even bigger than the
		 * previous value we had already.
		 */
		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
							data_stripes), SZ_16M),
				       ctl->stripe_size);
	}

	/* Align to BTRFS_STRIPE_LEN */
	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
	ctl->chunk_size = ctl->stripe_size * data_stripes;

	return 0;
}

static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
{
	struct btrfs_fs_info *info = fs_devices->fs_info;

	/*
	 * Round down to number of usable stripes, devs_increment can be any
	 * number so we can't use round_down() that requires power of 2, while
	 * rounddown is safe.
	 */
	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);

	if (ctl->ndevs < ctl->devs_min) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
			btrfs_debug(info,
	"%s: not enough devices with free space: have=%d minimum required=%d",
				    __func__, ctl->ndevs, ctl->devs_min);
		}
		return -ENOSPC;
	}

	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		return decide_stripe_size_regular(ctl, devices_info);
	default:
		BUG();
	}
}

N
Naohiro Aota 已提交
5054 5055 5056
static int create_chunk(struct btrfs_trans_handle *trans,
			struct alloc_chunk_ctl *ctl,
			struct btrfs_device_info *devices_info)
5057 5058 5059 5060 5061
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
N
Naohiro Aota 已提交
5062 5063
	u64 start = ctl->start;
	u64 type = ctl->type;
5064 5065 5066 5067
	int ret;
	int i;
	int j;

N
Naohiro Aota 已提交
5068 5069
	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
	if (!map)
5070
		return -ENOMEM;
N
Naohiro Aota 已提交
5071
	map->num_stripes = ctl->num_stripes;
5072

N
Naohiro Aota 已提交
5073 5074 5075
	for (i = 0; i < ctl->ndevs; ++i) {
		for (j = 0; j < ctl->dev_stripes; ++j) {
			int s = i * ctl->dev_stripes + j;
5076 5077
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
N
Naohiro Aota 已提交
5078
						   j * ctl->stripe_size;
5079 5080
		}
	}
5081 5082 5083
	map->stripe_len = BTRFS_STRIPE_LEN;
	map->io_align = BTRFS_STRIPE_LEN;
	map->io_width = BTRFS_STRIPE_LEN;
Y
Yan Zheng 已提交
5084
	map->type = type;
N
Naohiro Aota 已提交
5085
	map->sub_stripes = ctl->sub_stripes;
5086

N
Naohiro Aota 已提交
5087
	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5088

5089
	em = alloc_extent_map();
Y
Yan Zheng 已提交
5090
	if (!em) {
5091
		kfree(map);
N
Naohiro Aota 已提交
5092
		return -ENOMEM;
5093
	}
5094
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5095
	em->map_lookup = map;
Y
Yan Zheng 已提交
5096
	em->start = start;
N
Naohiro Aota 已提交
5097
	em->len = ctl->chunk_size;
Y
Yan Zheng 已提交
5098 5099
	em->block_start = 0;
	em->block_len = em->len;
N
Naohiro Aota 已提交
5100
	em->orig_block_len = ctl->stripe_size;
5101

5102
	em_tree = &info->mapping_tree;
5103
	write_lock(&em_tree->lock);
J
Josef Bacik 已提交
5104
	ret = add_extent_mapping(em_tree, em, 0);
5105
	if (ret) {
5106
		write_unlock(&em_tree->lock);
5107
		free_extent_map(em);
N
Naohiro Aota 已提交
5108
		return ret;
5109
	}
5110 5111
	write_unlock(&em_tree->lock);

N
Naohiro Aota 已提交
5112
	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5113 5114
	if (ret)
		goto error_del_extent;
Y
Yan Zheng 已提交
5115

5116 5117 5118
	for (i = 0; i < map->num_stripes; i++) {
		struct btrfs_device *dev = map->stripes[i].dev;

N
Naohiro Aota 已提交
5119
		btrfs_device_set_bytes_used(dev,
N
Naohiro Aota 已提交
5120
					    dev->bytes_used + ctl->stripe_size);
5121 5122 5123 5124
		if (list_empty(&dev->post_commit_list))
			list_add_tail(&dev->post_commit_list,
				      &trans->transaction->dev_update_list);
	}
5125

N
Naohiro Aota 已提交
5126
	atomic64_sub(ctl->stripe_size * map->num_stripes,
N
Naohiro Aota 已提交
5127
		     &info->free_chunk_space);
5128

5129
	free_extent_map(em);
5130
	check_raid56_incompat_flag(info, type);
5131
	check_raid1c34_incompat_flag(info, type);
D
David Woodhouse 已提交
5132

Y
Yan Zheng 已提交
5133
	return 0;
5134

5135
error_del_extent:
5136 5137 5138 5139 5140 5141 5142 5143
	write_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	write_unlock(&em_tree->lock);

	/* One for our allocation */
	free_extent_map(em);
	/* One for the tree reference */
	free_extent_map(em);
N
Naohiro Aota 已提交
5144 5145 5146 5147

	return ret;
}

5148
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
N
Naohiro Aota 已提交
5149 5150 5151 5152 5153 5154 5155
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
	struct btrfs_device_info *devices_info = NULL;
	struct alloc_chunk_ctl ctl;
	int ret;

5156 5157
	lockdep_assert_held(&info->chunk_mutex);

N
Naohiro Aota 已提交
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
	if (!alloc_profile_is_valid(type, 0)) {
		ASSERT(0);
		return -EINVAL;
	}

	if (list_empty(&fs_devices->alloc_list)) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG))
			btrfs_debug(info, "%s: no writable device", __func__);
		return -ENOSPC;
	}

	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
		ASSERT(0);
		return -EINVAL;
	}

5175
	ctl.start = find_next_chunk(info);
N
Naohiro Aota 已提交
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	ctl.type = type;
	init_alloc_chunk_ctl(fs_devices, &ctl);

	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
			       GFP_NOFS);
	if (!devices_info)
		return -ENOMEM;

	ret = gather_device_info(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = create_chunk(trans, &ctl, devices_info);

out:
5195 5196
	kfree(devices_info);
	return ret;
Y
Yan Zheng 已提交
5197 5198
}

5199 5200 5201 5202 5203 5204 5205
/*
 * Chunk allocation falls into two parts. The first part does work
 * that makes the new allocated chunk usable, but does not do any operation
 * that modifies the chunk tree. The second part does the work that
 * requires modifying the chunk tree. This division is important for the
 * bootstrap process of adding storage to a seed btrfs.
 */
5206
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5207
			     u64 chunk_offset, u64 chunk_size)
Y
Yan Zheng 已提交
5208
{
5209
	struct btrfs_fs_info *fs_info = trans->fs_info;
5210 5211
	struct btrfs_root *extent_root = fs_info->extent_root;
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
5212 5213 5214 5215
	struct btrfs_key key;
	struct btrfs_device *device;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
5216 5217 5218 5219 5220 5221
	struct extent_map *em;
	struct map_lookup *map;
	size_t item_size;
	u64 dev_offset;
	u64 stripe_size;
	int i = 0;
5222
	int ret = 0;
Y
Yan Zheng 已提交
5223

5224
	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5225 5226
	if (IS_ERR(em))
		return PTR_ERR(em);
5227

5228
	map = em->map_lookup;
5229 5230 5231
	item_size = btrfs_chunk_item_size(map->num_stripes);
	stripe_size = em->orig_block_len;

Y
Yan Zheng 已提交
5232
	chunk = kzalloc(item_size, GFP_NOFS);
5233 5234 5235 5236 5237
	if (!chunk) {
		ret = -ENOMEM;
		goto out;
	}

5238 5239 5240 5241 5242 5243 5244
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with the map's stripes, because the device object's id can change
	 * at any time during that final phase of the device replace operation
	 * (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
5245
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5246 5247 5248
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
Y
Yan Zheng 已提交
5249

5250
		ret = btrfs_update_device(trans, device);
5251
		if (ret)
5252
			break;
5253 5254
		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
					     dev_offset, stripe_size);
5255
		if (ret)
5256 5257 5258
			break;
	}
	if (ret) {
5259
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5260
		goto out;
Y
Yan Zheng 已提交
5261 5262 5263
	}

	stripe = &chunk->stripe;
5264 5265 5266
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
5267

5268 5269 5270
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
5271
		stripe++;
5272
	}
5273
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5274

Y
Yan Zheng 已提交
5275
	btrfs_set_stack_chunk_length(chunk, chunk_size);
5276
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
Y
Yan Zheng 已提交
5277 5278 5279 5280 5281
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5282
	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
Y
Yan Zheng 已提交
5283
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5284

Y
Yan Zheng 已提交
5285 5286 5287
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	key.offset = chunk_offset;
5288

Y
Yan Zheng 已提交
5289
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5290 5291 5292 5293 5294
	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		/*
		 * TODO: Cleanup of inserted chunk root in case of
		 * failure.
		 */
5295
		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5296
	}
5297

5298
out:
5299
	kfree(chunk);
5300
	free_extent_map(em);
5301
	return ret;
Y
Yan Zheng 已提交
5302
}
5303

5304
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
5305
{
5306
	struct btrfs_fs_info *fs_info = trans->fs_info;
Y
Yan Zheng 已提交
5307 5308 5309
	u64 alloc_profile;
	int ret;

5310
	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5311
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5312 5313
	if (ret)
		return ret;
Y
Yan Zheng 已提交
5314

5315
	alloc_profile = btrfs_system_alloc_profile(fs_info);
5316
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5317
	return ret;
Y
Yan Zheng 已提交
5318 5319
}

5320 5321
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
5322
	const int index = btrfs_bg_flags_to_raid_index(map->type);
Y
Yan Zheng 已提交
5323

5324
	return btrfs_raid_array[index].tolerated_failures;
Y
Yan Zheng 已提交
5325 5326
}

5327
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
Y
Yan Zheng 已提交
5328 5329 5330 5331
{
	struct extent_map *em;
	struct map_lookup *map;
	int readonly = 0;
5332
	int miss_ndevs = 0;
Y
Yan Zheng 已提交
5333 5334
	int i;

5335
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5336
	if (IS_ERR(em))
Y
Yan Zheng 已提交
5337 5338
		return 1;

5339
	map = em->map_lookup;
Y
Yan Zheng 已提交
5340
	for (i = 0; i < map->num_stripes; i++) {
5341 5342
		if (test_bit(BTRFS_DEV_STATE_MISSING,
					&map->stripes[i].dev->dev_state)) {
5343 5344 5345
			miss_ndevs++;
			continue;
		}
5346 5347
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
					&map->stripes[i].dev->dev_state)) {
Y
Yan Zheng 已提交
5348
			readonly = 1;
5349
			goto end;
Y
Yan Zheng 已提交
5350 5351
		}
	}
5352 5353 5354 5355 5356 5357 5358 5359 5360

	/*
	 * If the number of missing devices is larger than max errors,
	 * we can not write the data into that chunk successfully, so
	 * set it readonly.
	 */
	if (miss_ndevs > btrfs_chunk_max_errors(map))
		readonly = 1;
end:
5361
	free_extent_map(em);
Y
Yan Zheng 已提交
5362
	return readonly;
5363 5364
}

5365
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5366 5367 5368
{
	struct extent_map *em;

C
Chris Mason 已提交
5369
	while (1) {
5370 5371
		write_lock(&tree->lock);
		em = lookup_extent_mapping(tree, 0, (u64)-1);
5372
		if (em)
5373 5374
			remove_extent_mapping(tree, em);
		write_unlock(&tree->lock);
5375 5376 5377 5378 5379 5380 5381 5382 5383
		if (!em)
			break;
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

5384
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5385 5386 5387 5388 5389
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret;

5390
	em = btrfs_get_chunk_map(fs_info, logical, len);
5391 5392 5393 5394 5395 5396 5397
	if (IS_ERR(em))
		/*
		 * We could return errors for these cases, but that could get
		 * ugly and we'd probably do the same thing which is just not do
		 * anything else and exit, so return 1 so the callers don't try
		 * to use other copies.
		 */
5398 5399
		return 1;

5400
	map = em->map_lookup;
5401
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5402
		ret = map->num_stripes;
C
Chris Mason 已提交
5403 5404
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
D
David Woodhouse 已提交
5405 5406 5407
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
L
Liu Bo 已提交
5408 5409 5410
		/*
		 * There could be two corrupted data stripes, we need
		 * to loop retry in order to rebuild the correct data.
5411
		 *
L
Liu Bo 已提交
5412 5413 5414 5415
		 * Fail a stripe at a time on every retry except the
		 * stripe under reconstruction.
		 */
		ret = map->num_stripes;
5416 5417 5418
	else
		ret = 1;
	free_extent_map(em);
5419

5420
	down_read(&fs_info->dev_replace.rwsem);
5421 5422
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
	    fs_info->dev_replace.tgtdev)
5423
		ret++;
5424
	up_read(&fs_info->dev_replace.rwsem);
5425

5426 5427 5428
	return ret;
}

5429
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
D
David Woodhouse 已提交
5430 5431 5432 5433
				    u64 logical)
{
	struct extent_map *em;
	struct map_lookup *map;
5434
	unsigned long len = fs_info->sectorsize;
D
David Woodhouse 已提交
5435

5436
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5437

5438 5439 5440 5441 5442 5443
	if (!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			len = map->stripe_len * nr_data_stripes(map);
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5444 5445 5446
	return len;
}

5447
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
D
David Woodhouse 已提交
5448 5449 5450 5451 5452
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret = 0;

5453
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5454

5455 5456 5457 5458 5459 5460
	if(!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			ret = 1;
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5461 5462 5463
	return ret;
}

5464
static int find_live_mirror(struct btrfs_fs_info *fs_info,
5465
			    struct map_lookup *map, int first,
5466
			    int dev_replace_is_ongoing)
5467 5468
{
	int i;
5469
	int num_stripes;
5470
	int preferred_mirror;
5471 5472 5473
	int tolerance;
	struct btrfs_device *srcdev;

5474
	ASSERT((map->type &
5475
		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5476 5477 5478 5479 5480 5481

	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		num_stripes = map->sub_stripes;
	else
		num_stripes = map->num_stripes;

5482 5483
	preferred_mirror = first + current->pid % num_stripes;

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
	if (dev_replace_is_ongoing &&
	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		srcdev = fs_info->dev_replace.srcdev;
	else
		srcdev = NULL;

	/*
	 * try to avoid the drive that is the source drive for a
	 * dev-replace procedure, only choose it if no other non-missing
	 * mirror is available
	 */
	for (tolerance = 0; tolerance < 2; tolerance++) {
5497 5498 5499
		if (map->stripes[preferred_mirror].dev->bdev &&
		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
			return preferred_mirror;
5500
		for (i = first; i < first + num_stripes; i++) {
5501 5502 5503 5504
			if (map->stripes[i].dev->bdev &&
			    (tolerance || map->stripes[i].dev != srcdev))
				return i;
		}
5505
	}
5506

5507 5508 5509
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
5510
	return preferred_mirror;
5511 5512
}

D
David Woodhouse 已提交
5513
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5514
static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
D
David Woodhouse 已提交
5515 5516 5517 5518 5519 5520
{
	int i;
	int again = 1;

	while (again) {
		again = 0;
5521
		for (i = 0; i < num_stripes - 1; i++) {
5522 5523 5524 5525
			/* Swap if parity is on a smaller index */
			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
				swap(bbio->stripes[i], bbio->stripes[i + 1]);
				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
D
David Woodhouse 已提交
5526 5527 5528 5529 5530 5531
				again = 1;
			}
		}
	}
}

5532 5533 5534
static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
{
	struct btrfs_bio *bbio = kzalloc(
5535
		 /* the size of the btrfs_bio */
5536
		sizeof(struct btrfs_bio) +
5537
		/* plus the variable array for the stripes */
5538
		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5539
		/* plus the variable array for the tgt dev */
5540
		sizeof(int) * (real_stripes) +
5541 5542 5543 5544 5545
		/*
		 * plus the raid_map, which includes both the tgt dev
		 * and the stripes
		 */
		sizeof(u64) * (total_stripes),
5546
		GFP_NOFS|__GFP_NOFAIL);
5547 5548

	atomic_set(&bbio->error, 0);
5549
	refcount_set(&bbio->refs, 1);
5550

5551 5552 5553
	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);

5554 5555 5556 5557 5558
	return bbio;
}

void btrfs_get_bbio(struct btrfs_bio *bbio)
{
5559 5560
	WARN_ON(!refcount_read(&bbio->refs));
	refcount_inc(&bbio->refs);
5561 5562 5563 5564 5565 5566
}

void btrfs_put_bbio(struct btrfs_bio *bbio)
{
	if (!bbio)
		return;
5567
	if (refcount_dec_and_test(&bbio->refs))
5568 5569 5570
		kfree(bbio);
}

5571 5572 5573 5574 5575 5576
/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
/*
 * Please note that, discard won't be sent to target device of device
 * replace.
 */
static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5577
					 u64 logical, u64 *length_ret,
5578 5579 5580 5581 5582
					 struct btrfs_bio **bbio_ret)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_bio *bbio;
5583
	u64 length = *length_ret;
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
	u64 offset;
	u64 stripe_nr;
	u64 stripe_nr_end;
	u64 stripe_end_offset;
	u64 stripe_cnt;
	u64 stripe_len;
	u64 stripe_offset;
	u64 num_stripes;
	u32 stripe_index;
	u32 factor = 0;
	u32 sub_stripes = 0;
	u64 stripes_per_dev = 0;
	u32 remaining_stripes = 0;
	u32 last_stripe = 0;
	int ret = 0;
	int i;

	/* discard always return a bbio */
	ASSERT(bbio_ret);

5604
	em = btrfs_get_chunk_map(fs_info, logical, length);
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* we don't discard raid56 yet */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EOPNOTSUPP;
		goto out;
	}

	offset = logical - em->start;
5616
	length = min_t(u64, em->start + em->len - logical, length);
5617
	*length_ret = length;
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629

	stripe_len = map->stripe_len;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = div64_u64(offset, stripe_len);

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_nr * stripe_len;

	stripe_nr_end = round_up(offset + length, map->stripe_len);
5630
	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
	stripe_cnt = stripe_nr_end - stripe_nr;
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + length);
	/*
	 * after this, stripe_nr is the number of stripes on this
	 * device we have to walk to find the data, and stripe_index is
	 * the number of our device in the stripe array
	 */
	num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			 BTRFS_BLOCK_GROUP_RAID10)) {
		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
			sub_stripes = 1;
		else
			sub_stripes = map->sub_stripes;

		factor = map->num_stripes / sub_stripes;
		num_stripes = min_t(u64, map->num_stripes,
				    sub_stripes * stripe_cnt);
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
		stripe_index *= sub_stripes;
		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
					      &remaining_stripes);
		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
		last_stripe *= sub_stripes;
5657
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
				BTRFS_BLOCK_GROUP_DUP)) {
		num_stripes = map->num_stripes;
	} else {
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
					&stripe_index);
	}

	bbio = alloc_btrfs_bio(num_stripes, 0);
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical =
			map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;

		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
				 BTRFS_BLOCK_GROUP_RAID10)) {
			bbio->stripes[i].length = stripes_per_dev *
				map->stripe_len;

			if (i / sub_stripes < remaining_stripes)
				bbio->stripes[i].length +=
					map->stripe_len;

			/*
			 * Special for the first stripe and
			 * the last stripe:
			 *
			 * |-------|...|-------|
			 *     |----------|
			 *    off     end_off
			 */
			if (i < sub_stripes)
				bbio->stripes[i].length -=
					stripe_offset;

			if (stripe_index >= last_stripe &&
			    stripe_index <= (last_stripe +
					     sub_stripes - 1))
				bbio->stripes[i].length -=
					stripe_end_offset;

			if (i == sub_stripes - 1)
				stripe_offset = 0;
		} else {
			bbio->stripes[i].length = length;
		}

		stripe_index++;
		if (stripe_index == map->num_stripes) {
			stripe_index = 0;
			stripe_nr++;
		}
	}

	*bbio_ret = bbio;
	bbio->map_type = map->type;
	bbio->num_stripes = num_stripes;
out:
	free_extent_map(em);
	return ret;
}

5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
/*
 * In dev-replace case, for repair case (that's the only case where the mirror
 * is selected explicitly when calling btrfs_map_block), blocks left of the
 * left cursor can also be read from the target drive.
 *
 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
 * array of stripes.
 * For READ, it also needs to be supported using the same mirror number.
 *
 * If the requested block is not left of the left cursor, EIO is returned. This
 * can happen because btrfs_num_copies() returns one more in the dev-replace
 * case.
 */
static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
					 u64 logical, u64 length,
					 u64 srcdev_devid, int *mirror_num,
					 u64 *physical)
{
	struct btrfs_bio *bbio = NULL;
	int num_stripes;
	int index_srcdev = 0;
	int found = 0;
	u64 physical_of_found = 0;
	int i;
	int ret = 0;

	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				logical, &length, &bbio, 0, 0);
	if (ret) {
		ASSERT(bbio == NULL);
		return ret;
	}

	num_stripes = bbio->num_stripes;
	if (*mirror_num > num_stripes) {
		/*
		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
		 * that means that the requested area is not left of the left
		 * cursor
		 */
		btrfs_put_bbio(bbio);
		return -EIO;
	}

	/*
	 * process the rest of the function using the mirror_num of the source
	 * drive. Therefore look it up first.  At the end, patch the device
	 * pointer to the one of the target drive.
	 */
	for (i = 0; i < num_stripes; i++) {
		if (bbio->stripes[i].dev->devid != srcdev_devid)
			continue;

		/*
		 * In case of DUP, in order to keep it simple, only add the
		 * mirror with the lowest physical address
		 */
		if (found &&
		    physical_of_found <= bbio->stripes[i].physical)
			continue;

		index_srcdev = i;
		found = 1;
		physical_of_found = bbio->stripes[i].physical;
	}

	btrfs_put_bbio(bbio);

	ASSERT(found);
	if (!found)
		return -EIO;

	*mirror_num = index_srcdev + 1;
	*physical = physical_of_found;
	return ret;
}

5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
				      struct btrfs_bio **bbio_ret,
				      struct btrfs_dev_replace *dev_replace,
				      int *num_stripes_ret, int *max_errors_ret)
{
	struct btrfs_bio *bbio = *bbio_ret;
	u64 srcdev_devid = dev_replace->srcdev->devid;
	int tgtdev_indexes = 0;
	int num_stripes = *num_stripes_ret;
	int max_errors = *max_errors_ret;
	int i;

	if (op == BTRFS_MAP_WRITE) {
		int index_where_to_add;

		/*
		 * duplicate the write operations while the dev replace
		 * procedure is running. Since the copying of the old disk to
		 * the new disk takes place at run time while the filesystem is
		 * mounted writable, the regular write operations to the old
		 * disk have to be duplicated to go to the new disk as well.
		 *
		 * Note that device->missing is handled by the caller, and that
		 * the write to the old disk is already set up in the stripes
		 * array.
		 */
		index_where_to_add = num_stripes;
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/* write to new disk, too */
				struct btrfs_bio_stripe *new =
					bbio->stripes + index_where_to_add;
				struct btrfs_bio_stripe *old =
					bbio->stripes + i;

				new->physical = old->physical;
				new->length = old->length;
				new->dev = dev_replace->tgtdev;
				bbio->tgtdev_map[i] = index_where_to_add;
				index_where_to_add++;
				max_errors++;
				tgtdev_indexes++;
			}
		}
		num_stripes = index_where_to_add;
	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		/*
		 * During the dev-replace procedure, the target drive can also
		 * be used to read data in case it is needed to repair a corrupt
		 * block elsewhere. This is possible if the requested area is
		 * left of the left cursor. In this area, the target drive is a
		 * full copy of the source drive.
		 */
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/*
				 * In case of DUP, in order to keep it simple,
				 * only add the mirror with the lowest physical
				 * address
				 */
				if (found &&
				    physical_of_found <=
				     bbio->stripes[i].physical)
					continue;
				index_srcdev = i;
				found = 1;
				physical_of_found = bbio->stripes[i].physical;
			}
		}
		if (found) {
			struct btrfs_bio_stripe *tgtdev_stripe =
				bbio->stripes + num_stripes;

			tgtdev_stripe->physical = physical_of_found;
			tgtdev_stripe->length =
				bbio->stripes[index_srcdev].length;
			tgtdev_stripe->dev = dev_replace->tgtdev;
			bbio->tgtdev_map[index_srcdev] = num_stripes;

			tgtdev_indexes++;
			num_stripes++;
		}
	}

	*num_stripes_ret = num_stripes;
	*max_errors_ret = max_errors;
	bbio->num_tgtdevs = tgtdev_indexes;
	*bbio_ret = bbio;
}

5896 5897 5898 5899 5900
static bool need_full_stripe(enum btrfs_map_op op)
{
	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
}

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
/*
 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
 *		       tuple. This information is used to calculate how big a
 *		       particular bio can get before it straddles a stripe.
 *
 * @fs_info - the filesystem
 * @logical - address that we want to figure out the geometry of
 * @len	    - the length of IO we are going to perform, starting at @logical
 * @op      - type of operation - write or read
 * @io_geom - pointer used to return values
 *
 * Returns < 0 in case a chunk for the given logical address cannot be found,
 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
 */
int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5916
			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5917 5918 5919 5920 5921 5922 5923 5924 5925
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 offset;
	u64 stripe_offset;
	u64 stripe_nr;
	u64 stripe_len;
	u64 raid56_full_stripe_start = (u64)-1;
	int data_stripes;
5926
	int ret = 0;
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

	ASSERT(op != BTRFS_MAP_DISCARD);

	em = btrfs_get_chunk_map(fs_info, logical, len);
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* Offset of this logical address in the chunk */
	offset = logical - em->start;
	/* Len of a stripe in a chunk */
	stripe_len = map->stripe_len;
	/* Stripe wher this block falls in */
	stripe_nr = div64_u64(offset, stripe_len);
	/* Offset of stripe in the chunk */
	stripe_offset = stripe_nr * stripe_len;
	if (offset < stripe_offset) {
		btrfs_crit(fs_info,
"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
			stripe_offset, offset, em->start, logical, stripe_len);
5947 5948
		ret = -EINVAL;
		goto out;
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
	}

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_offset;
	data_stripes = nr_data_stripes(map);

	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
		u64 max_len = stripe_len - stripe_offset;

		/*
		 * In case of raid56, we need to know the stripe aligned start
		 */
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			unsigned long full_stripe_len = stripe_len * data_stripes;
			raid56_full_stripe_start = offset;

			/*
			 * Allow a write of a full stripe, but make sure we
			 * don't allow straddling of stripes
			 */
			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
					full_stripe_len);
			raid56_full_stripe_start *= full_stripe_len;

			/*
			 * For writes to RAID[56], allow a full stripeset across
			 * all disks. For other RAID types and for RAID[56]
			 * reads, just allow a single stripe (on a single disk).
			 */
			if (op == BTRFS_MAP_WRITE) {
				max_len = stripe_len * data_stripes -
					  (offset - raid56_full_stripe_start);
			}
		}
		len = min_t(u64, em->len - offset, max_len);
	} else {
		len = em->len - offset;
	}

	io_geom->len = len;
	io_geom->offset = offset;
	io_geom->stripe_len = stripe_len;
	io_geom->stripe_nr = stripe_nr;
	io_geom->stripe_offset = stripe_offset;
	io_geom->raid56_stripe_offset = raid56_full_stripe_start;

5995 5996 5997 5998
out:
	/* once for us */
	free_extent_map(em);
	return ret;
5999 6000
}

6001 6002
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
6003
			     u64 logical, u64 *length,
6004
			     struct btrfs_bio **bbio_ret,
6005
			     int mirror_num, int need_raid_map)
6006 6007 6008
{
	struct extent_map *em;
	struct map_lookup *map;
6009 6010
	u64 stripe_offset;
	u64 stripe_nr;
D
David Woodhouse 已提交
6011
	u64 stripe_len;
6012
	u32 stripe_index;
6013
	int data_stripes;
6014
	int i;
L
Li Zefan 已提交
6015
	int ret = 0;
6016
	int num_stripes;
6017
	int max_errors = 0;
6018
	int tgtdev_indexes = 0;
6019
	struct btrfs_bio *bbio = NULL;
6020 6021 6022
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
	int dev_replace_is_ongoing = 0;
	int num_alloc_stripes;
6023 6024
	int patch_the_first_stripe_for_dev_replace = 0;
	u64 physical_to_patch_in_first_stripe = 0;
D
David Woodhouse 已提交
6025
	u64 raid56_full_stripe_start = (u64)-1;
6026 6027 6028
	struct btrfs_io_geometry geom;

	ASSERT(bbio_ret);
6029
	ASSERT(op != BTRFS_MAP_DISCARD);
6030

6031 6032 6033
	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
	if (ret < 0)
		return ret;
6034

6035
	em = btrfs_get_chunk_map(fs_info, logical, *length);
6036
	ASSERT(!IS_ERR(em));
6037
	map = em->map_lookup;
6038

6039 6040 6041 6042 6043
	*length = geom.len;
	stripe_len = geom.stripe_len;
	stripe_nr = geom.stripe_nr;
	stripe_offset = geom.stripe_offset;
	raid56_full_stripe_start = geom.raid56_stripe_offset;
6044
	data_stripes = nr_data_stripes(map);
6045

6046
	down_read(&dev_replace->rwsem);
6047
	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6048 6049 6050 6051
	/*
	 * Hold the semaphore for read during the whole operation, write is
	 * requested at commit time but must wait.
	 */
6052
	if (!dev_replace_is_ongoing)
6053
		up_read(&dev_replace->rwsem);
6054

6055
	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6056
	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6057 6058 6059 6060 6061
		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
						    dev_replace->srcdev->devid,
						    &mirror_num,
					    &physical_to_patch_in_first_stripe);
		if (ret)
6062
			goto out;
6063 6064
		else
			patch_the_first_stripe_for_dev_replace = 1;
6065 6066 6067 6068
	} else if (mirror_num > map->num_stripes) {
		mirror_num = 0;
	}

6069
	num_stripes = 1;
6070
	stripe_index = 0;
6071
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6072 6073
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6074
		if (!need_full_stripe(op))
6075
			mirror_num = 1;
6076
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6077
		if (need_full_stripe(op))
6078
			num_stripes = map->num_stripes;
6079
		else if (mirror_num)
6080
			stripe_index = mirror_num - 1;
6081
		else {
6082 6083
			stripe_index = find_live_mirror(fs_info, map, 0,
					    dev_replace_is_ongoing);
6084
			mirror_num = stripe_index + 1;
6085
		}
6086

6087
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6088
		if (need_full_stripe(op)) {
6089
			num_stripes = map->num_stripes;
6090
		} else if (mirror_num) {
6091
			stripe_index = mirror_num - 1;
6092 6093 6094
		} else {
			mirror_num = 1;
		}
6095

C
Chris Mason 已提交
6096
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6097
		u32 factor = map->num_stripes / map->sub_stripes;
C
Chris Mason 已提交
6098

6099
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
C
Chris Mason 已提交
6100 6101
		stripe_index *= map->sub_stripes;

6102
		if (need_full_stripe(op))
6103
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
6104 6105
		else if (mirror_num)
			stripe_index += mirror_num - 1;
6106
		else {
J
Jan Schmidt 已提交
6107
			int old_stripe_index = stripe_index;
6108 6109 6110
			stripe_index = find_live_mirror(fs_info, map,
					      stripe_index,
					      dev_replace_is_ongoing);
J
Jan Schmidt 已提交
6111
			mirror_num = stripe_index - old_stripe_index + 1;
6112
		}
D
David Woodhouse 已提交
6113

6114
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6115
		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
D
David Woodhouse 已提交
6116
			/* push stripe_nr back to the start of the full stripe */
6117
			stripe_nr = div64_u64(raid56_full_stripe_start,
6118
					stripe_len * data_stripes);
D
David Woodhouse 已提交
6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132

			/* RAID[56] write or recovery. Return all stripes */
			num_stripes = map->num_stripes;
			max_errors = nr_parity_stripes(map);

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
		} else {
			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
6133
			stripe_nr = div_u64_rem(stripe_nr,
6134
					data_stripes, &stripe_index);
D
David Woodhouse 已提交
6135
			if (mirror_num > 1)
6136
				stripe_index = data_stripes + mirror_num - 2;
D
David Woodhouse 已提交
6137 6138

			/* We distribute the parity blocks across stripes */
6139 6140
			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
					&stripe_index);
6141
			if (!need_full_stripe(op) && mirror_num <= 1)
6142
				mirror_num = 1;
D
David Woodhouse 已提交
6143
		}
6144 6145
	} else {
		/*
6146 6147 6148
		 * after this, stripe_nr is the number of stripes on this
		 * device we have to walk to find the data, and stripe_index is
		 * the number of our device in the stripe array
6149
		 */
6150 6151
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6152
		mirror_num = stripe_index + 1;
6153
	}
6154
	if (stripe_index >= map->num_stripes) {
J
Jeff Mahoney 已提交
6155 6156
		btrfs_crit(fs_info,
			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6157 6158 6159 6160
			   stripe_index, map->num_stripes);
		ret = -EINVAL;
		goto out;
	}
6161

6162
	num_alloc_stripes = num_stripes;
6163
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6164
		if (op == BTRFS_MAP_WRITE)
6165
			num_alloc_stripes <<= 1;
6166
		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6167
			num_alloc_stripes++;
6168
		tgtdev_indexes = num_stripes;
6169
	}
6170

6171
	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
L
Li Zefan 已提交
6172 6173 6174 6175
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}
6176 6177 6178 6179 6180 6181 6182

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
		stripe_index++;
	}
L
Li Zefan 已提交
6183

6184
	/* build raid_map */
6185 6186
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
	    (need_full_stripe(op) || mirror_num > 1)) {
6187
		u64 tmp;
6188
		unsigned rot;
6189 6190

		/* Work out the disk rotation on this stripe-set */
6191
		div_u64_rem(stripe_nr, num_stripes, &rot);
6192 6193

		/* Fill in the logical address of each stripe */
6194 6195
		tmp = stripe_nr * data_stripes;
		for (i = 0; i < data_stripes; i++)
6196 6197 6198 6199 6200 6201 6202 6203
			bbio->raid_map[(i+rot) % num_stripes] =
				em->start + (tmp + i) * map->stripe_len;

		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
			bbio->raid_map[(i+rot+1) % num_stripes] =
				RAID6_Q_STRIPE;

6204
		sort_parity_stripes(bbio, num_stripes);
6205
	}
L
Li Zefan 已提交
6206

6207
	if (need_full_stripe(op))
6208
		max_errors = btrfs_chunk_max_errors(map);
L
Li Zefan 已提交
6209

6210
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6211
	    need_full_stripe(op)) {
6212 6213
		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
					  &max_errors);
6214 6215
	}

L
Li Zefan 已提交
6216
	*bbio_ret = bbio;
Z
Zhao Lei 已提交
6217
	bbio->map_type = map->type;
L
Li Zefan 已提交
6218 6219 6220
	bbio->num_stripes = num_stripes;
	bbio->max_errors = max_errors;
	bbio->mirror_num = mirror_num;
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232

	/*
	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
	 * mirror_num == num_stripes + 1 && dev_replace target drive is
	 * available as a mirror
	 */
	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
		WARN_ON(num_stripes > 1);
		bbio->stripes[0].dev = dev_replace->tgtdev;
		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
		bbio->mirror_num = map->num_stripes + 1;
	}
6233
out:
6234
	if (dev_replace_is_ongoing) {
6235 6236
		lockdep_assert_held(&dev_replace->rwsem);
		/* Unlock and let waiting writers proceed */
6237
		up_read(&dev_replace->rwsem);
6238
	}
6239
	free_extent_map(em);
L
Li Zefan 已提交
6240
	return ret;
6241 6242
}

6243
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6244
		      u64 logical, u64 *length,
6245
		      struct btrfs_bio **bbio_ret, int mirror_num)
6246
{
6247 6248 6249 6250
	if (op == BTRFS_MAP_DISCARD)
		return __btrfs_map_block_for_discard(fs_info, logical,
						     length, bbio_ret);

6251
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6252
				 mirror_num, 0);
6253 6254
}

6255
/* For Scrub/replace */
6256
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6257
		     u64 logical, u64 *length,
6258
		     struct btrfs_bio **bbio_ret)
6259
{
6260
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6261 6262
}

6263
static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6264
{
6265 6266
	bio->bi_private = bbio->private;
	bio->bi_end_io = bbio->end_io;
6267
	bio_endio(bio);
6268

6269
	btrfs_put_bbio(bbio);
6270 6271
}

6272
static void btrfs_end_bio(struct bio *bio)
6273
{
6274
	struct btrfs_bio *bbio = bio->bi_private;
6275
	int is_orig_bio = 0;
6276

6277
	if (bio->bi_status) {
6278
		atomic_inc(&bbio->error);
6279 6280
		if (bio->bi_status == BLK_STS_IOERR ||
		    bio->bi_status == BLK_STS_TARGET) {
6281
			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6282

6283 6284 6285
			ASSERT(dev->bdev);
			if (bio_op(bio) == REQ_OP_WRITE)
				btrfs_dev_stat_inc_and_print(dev,
6286
						BTRFS_DEV_STAT_WRITE_ERRS);
6287 6288
			else if (!(bio->bi_opf & REQ_RAHEAD))
				btrfs_dev_stat_inc_and_print(dev,
6289
						BTRFS_DEV_STAT_READ_ERRS);
6290 6291
			if (bio->bi_opf & REQ_PREFLUSH)
				btrfs_dev_stat_inc_and_print(dev,
6292
						BTRFS_DEV_STAT_FLUSH_ERRS);
6293 6294
		}
	}
6295

6296
	if (bio == bbio->orig_bio)
6297 6298
		is_orig_bio = 1;

6299 6300
	btrfs_bio_counter_dec(bbio->fs_info);

6301
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6302 6303
		if (!is_orig_bio) {
			bio_put(bio);
6304
			bio = bbio->orig_bio;
6305
		}
6306

6307
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6308
		/* only send an error to the higher layers if it is
D
David Woodhouse 已提交
6309
		 * beyond the tolerance of the btrfs bio
6310
		 */
6311
		if (atomic_read(&bbio->error) > bbio->max_errors) {
6312
			bio->bi_status = BLK_STS_IOERR;
6313
		} else {
6314 6315 6316 6317
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
6318
			bio->bi_status = BLK_STS_OK;
6319
		}
6320

6321
		btrfs_end_bbio(bbio, bio);
6322
	} else if (!is_orig_bio) {
6323 6324 6325 6326
		bio_put(bio);
	}
}

6327
static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6328
			      u64 physical, struct btrfs_device *dev)
6329
{
6330
	struct btrfs_fs_info *fs_info = bbio->fs_info;
6331 6332

	bio->bi_private = bbio;
6333
	btrfs_io_bio(bio)->device = dev;
6334
	bio->bi_end_io = btrfs_end_bio;
6335
	bio->bi_iter.bi_sector = physical >> 9;
6336 6337 6338
	btrfs_debug_in_rcu(fs_info,
	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6339 6340
		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
		dev->devid, bio->bi_iter.bi_size);
6341
	bio_set_dev(bio, dev->bdev);
6342

6343
	btrfs_bio_counter_inc_noblocked(fs_info);
6344

6345
	btrfsic_submit_bio(bio);
6346 6347 6348 6349 6350 6351
}

static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
{
	atomic_inc(&bbio->error);
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6352
		/* Should be the original bio. */
6353 6354
		WARN_ON(bio != bbio->orig_bio);

6355
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6356
		bio->bi_iter.bi_sector = logical >> 9;
6357 6358 6359 6360
		if (atomic_read(&bbio->error) > bbio->max_errors)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_status = BLK_STS_OK;
6361
		btrfs_end_bbio(bbio, bio);
6362 6363 6364
	}
}

6365
blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6366
			   int mirror_num)
6367 6368
{
	struct btrfs_device *dev;
6369
	struct bio *first_bio = bio;
6370
	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6371 6372 6373
	u64 length = 0;
	u64 map_length;
	int ret;
6374 6375
	int dev_nr;
	int total_devs;
6376
	struct btrfs_bio *bbio = NULL;
6377

6378
	length = bio->bi_iter.bi_size;
6379
	map_length = length;
6380

6381
	btrfs_bio_counter_inc_blocked(fs_info);
6382
	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
M
Mike Christie 已提交
6383
				&map_length, &bbio, mirror_num, 1);
6384
	if (ret) {
6385
		btrfs_bio_counter_dec(fs_info);
6386
		return errno_to_blk_status(ret);
6387
	}
6388

6389
	total_devs = bbio->num_stripes;
D
David Woodhouse 已提交
6390 6391 6392
	bbio->orig_bio = first_bio;
	bbio->private = first_bio->bi_private;
	bbio->end_io = first_bio->bi_end_io;
6393
	bbio->fs_info = fs_info;
D
David Woodhouse 已提交
6394 6395
	atomic_set(&bbio->stripes_pending, bbio->num_stripes);

6396
	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
M
Mike Christie 已提交
6397
	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
D
David Woodhouse 已提交
6398 6399
		/* In this case, map_length has been set to the length of
		   a single stripe; not the whole write */
M
Mike Christie 已提交
6400
		if (bio_op(bio) == REQ_OP_WRITE) {
6401 6402
			ret = raid56_parity_write(fs_info, bio, bbio,
						  map_length);
D
David Woodhouse 已提交
6403
		} else {
6404 6405
			ret = raid56_parity_recover(fs_info, bio, bbio,
						    map_length, mirror_num, 1);
D
David Woodhouse 已提交
6406
		}
6407

6408
		btrfs_bio_counter_dec(fs_info);
6409
		return errno_to_blk_status(ret);
D
David Woodhouse 已提交
6410 6411
	}

6412
	if (map_length < length) {
6413
		btrfs_crit(fs_info,
J
Jeff Mahoney 已提交
6414 6415
			   "mapping failed logical %llu bio len %llu len %llu",
			   logical, length, map_length);
6416 6417
		BUG();
	}
6418

6419
	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6420
		dev = bbio->stripes[dev_nr].dev;
6421 6422
		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
						   &dev->dev_state) ||
6423 6424
		    (bio_op(first_bio) == REQ_OP_WRITE &&
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6425 6426 6427 6428
			bbio_error(bbio, first_bio, logical);
			continue;
		}

6429
		if (dev_nr < total_devs - 1)
6430
			bio = btrfs_bio_clone(first_bio);
6431
		else
6432
			bio = first_bio;
6433

6434
		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6435
	}
6436
	btrfs_bio_counter_dec(fs_info);
6437
	return BLK_STS_OK;
6438 6439
}

6440 6441 6442 6443 6444 6445 6446 6447 6448
/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 *
 * If @seed is true, traverse through the seed devices.
 */
6449
struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6450 6451
				       u64 devid, u8 *uuid, u8 *fsid,
				       bool seed)
6452
{
Y
Yan Zheng 已提交
6453
	struct btrfs_device *device;
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
	struct btrfs_fs_devices *seed_devs;

	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
		list_for_each_entry(device, &fs_devices->devices, dev_list) {
			if (device->devid == devid &&
			    (!uuid || memcmp(device->uuid, uuid,
					     BTRFS_UUID_SIZE) == 0))
				return device;
		}
	}
Y
Yan Zheng 已提交
6464

6465
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
Y
Yan Zheng 已提交
6466
		if (!fsid ||
6467 6468
		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
			list_for_each_entry(device, &seed_devs->devices,
6469 6470 6471 6472 6473 6474
					    dev_list) {
				if (device->devid == devid &&
				    (!uuid || memcmp(device->uuid, uuid,
						     BTRFS_UUID_SIZE) == 0))
					return device;
			}
Y
Yan Zheng 已提交
6475 6476
		}
	}
6477

Y
Yan Zheng 已提交
6478
	return NULL;
6479 6480
}

6481
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6482 6483 6484
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
6485
	unsigned int nofs_flag;
6486

6487 6488 6489 6490 6491 6492 6493
	/*
	 * We call this under the chunk_mutex, so we want to use NOFS for this
	 * allocation, however we don't want to change btrfs_alloc_device() to
	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
	 * places.
	 */
	nofs_flag = memalloc_nofs_save();
6494
	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6495
	memalloc_nofs_restore(nofs_flag);
6496
	if (IS_ERR(device))
6497
		return device;
6498 6499

	list_add(&device->dev_list, &fs_devices->devices);
Y
Yan Zheng 已提交
6500
	device->fs_devices = fs_devices;
6501
	fs_devices->num_devices++;
6502

6503
	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6504
	fs_devices->missing_devices++;
6505

6506 6507 6508
	return device;
}

6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
/**
 * btrfs_alloc_device - allocate struct btrfs_device
 * @fs_info:	used only for generating a new devid, can be NULL if
 *		devid is provided (i.e. @devid != NULL).
 * @devid:	a pointer to devid for this device.  If NULL a new devid
 *		is generated.
 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 *		is generated.
 *
 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6519
 * on error.  Returned struct is not linked onto any lists and must be
6520
 * destroyed with btrfs_free_device.
6521 6522 6523 6524 6525 6526 6527 6528
 */
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
					const u64 *devid,
					const u8 *uuid)
{
	struct btrfs_device *dev;
	u64 tmp;

6529
	if (WARN_ON(!devid && !fs_info))
6530 6531
		return ERR_PTR(-EINVAL);

6532
	dev = __alloc_device(fs_info);
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
	if (IS_ERR(dev))
		return dev;

	if (devid)
		tmp = *devid;
	else {
		int ret;

		ret = find_next_devid(fs_info, &tmp);
		if (ret) {
6543
			btrfs_free_device(dev);
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
			return ERR_PTR(ret);
		}
	}
	dev->devid = tmp;

	if (uuid)
		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
	else
		generate_random_uuid(dev->uuid);

	return dev;
}

6557
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6558
					u64 devid, u8 *uuid, bool error)
6559
{
6560 6561 6562 6563 6564 6565
	if (error)
		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
	else
		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
6566 6567
}

6568 6569 6570 6571
static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
{
	int index = btrfs_bg_flags_to_raid_index(type);
	int ncopies = btrfs_raid_array[index].ncopies;
6572
	const int nparity = btrfs_raid_array[index].nparity;
6573 6574
	int data_stripes;

6575 6576 6577
	if (nparity)
		data_stripes = num_stripes - nparity;
	else
6578
		data_stripes = num_stripes / ncopies;
6579

6580 6581 6582
	return div_u64(chunk_len, data_stripes);
}

6583
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6584 6585
			  struct btrfs_chunk *chunk)
{
6586
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6587
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
	u8 uuid[BTRFS_UUID_SIZE];
	int num_stripes;
	int ret;
	int i;

	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

6602 6603 6604 6605 6606
	/*
	 * Only need to verify chunk item if we're reading from sys chunk array,
	 * as chunk item in tree block is already verified by tree-checker.
	 */
	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6607
		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6608 6609 6610
		if (ret)
			return ret;
	}
6611

6612 6613 6614
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, logical, 1);
	read_unlock(&map_tree->lock);
6615 6616 6617 6618 6619 6620 6621 6622 6623

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

6624
	em = alloc_extent_map();
6625 6626
	if (!em)
		return -ENOMEM;
6627
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6628 6629 6630 6631 6632
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

6633
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6634
	em->map_lookup = map;
6635 6636
	em->start = logical;
	em->len = length;
6637
	em->orig_start = 0;
6638
	em->block_start = 0;
C
Chris Mason 已提交
6639
	em->block_len = em->len;
6640

6641 6642 6643 6644 6645
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
6646
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6647
	map->verified_stripes = 0;
6648 6649
	em->orig_block_len = calc_stripe_length(map->type, em->len,
						map->num_stripes);
6650 6651 6652 6653
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6654 6655 6656
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
6657
		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6658
							devid, uuid, NULL, true);
6659
		if (!map->stripes[i].dev &&
6660
		    !btrfs_test_opt(fs_info, DEGRADED)) {
6661
			free_extent_map(em);
6662
			btrfs_report_missing_device(fs_info, devid, uuid, true);
6663
			return -ENOENT;
6664
		}
6665 6666
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
6667 6668
				add_missing_dev(fs_info->fs_devices, devid,
						uuid);
6669
			if (IS_ERR(map->stripes[i].dev)) {
6670
				free_extent_map(em);
6671 6672 6673 6674
				btrfs_err(fs_info,
					"failed to init missing dev %llu: %ld",
					devid, PTR_ERR(map->stripes[i].dev));
				return PTR_ERR(map->stripes[i].dev);
6675
			}
6676
			btrfs_report_missing_device(fs_info, devid, uuid, false);
6677
		}
6678 6679 6680
		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				&(map->stripes[i].dev->dev_state));

6681 6682
	}

6683 6684 6685
	write_lock(&map_tree->lock);
	ret = add_extent_mapping(map_tree, em, 0);
	write_unlock(&map_tree->lock);
6686 6687 6688 6689 6690
	if (ret < 0) {
		btrfs_err(fs_info,
			  "failed to add chunk map, start=%llu len=%llu: %d",
			  em->start, em->len, ret);
	}
6691 6692
	free_extent_map(em);

6693
	return ret;
6694 6695
}

6696
static void fill_device_from_item(struct extent_buffer *leaf,
6697 6698 6699 6700 6701 6702
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
6703 6704
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
6705
	device->commit_total_bytes = device->disk_total_bytes;
6706
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6707
	device->commit_bytes_used = device->bytes_used;
6708 6709 6710 6711
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6712
	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6713
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6714

6715
	ptr = btrfs_device_uuid(dev_item);
6716
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6717 6718
}

6719
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6720
						  u8 *fsid)
Y
Yan Zheng 已提交
6721 6722 6723 6724
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

6725
	lockdep_assert_held(&uuid_mutex);
D
David Sterba 已提交
6726
	ASSERT(fsid);
Y
Yan Zheng 已提交
6727

6728
	/* This will match only for multi-device seed fs */
6729
	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6730
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6731 6732
			return fs_devices;

Y
Yan Zheng 已提交
6733

6734
	fs_devices = find_fsid(fsid, NULL);
Y
Yan Zheng 已提交
6735
	if (!fs_devices) {
6736
		if (!btrfs_test_opt(fs_info, DEGRADED))
6737 6738
			return ERR_PTR(-ENOENT);

6739
		fs_devices = alloc_fs_devices(fsid, NULL);
6740 6741 6742
		if (IS_ERR(fs_devices))
			return fs_devices;

6743
		fs_devices->seeding = true;
6744 6745
		fs_devices->opened = 1;
		return fs_devices;
Y
Yan Zheng 已提交
6746
	}
Y
Yan Zheng 已提交
6747

6748 6749 6750 6751
	/*
	 * Upon first call for a seed fs fsid, just create a private copy of the
	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
	 */
Y
Yan Zheng 已提交
6752
	fs_devices = clone_fs_devices(fs_devices);
6753 6754
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
6755

6756
	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6757 6758
	if (ret) {
		free_fs_devices(fs_devices);
6759
		return ERR_PTR(ret);
6760
	}
Y
Yan Zheng 已提交
6761 6762

	if (!fs_devices->seeding) {
6763
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
6764
		free_fs_devices(fs_devices);
6765
		return ERR_PTR(-EINVAL);
Y
Yan Zheng 已提交
6766 6767
	}

6768
	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6769

6770
	return fs_devices;
Y
Yan Zheng 已提交
6771 6772
}

6773
static int read_one_dev(struct extent_buffer *leaf,
6774 6775
			struct btrfs_dev_item *dev_item)
{
6776
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6777
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6778 6779 6780
	struct btrfs_device *device;
	u64 devid;
	int ret;
6781
	u8 fs_uuid[BTRFS_FSID_SIZE];
6782 6783
	u8 dev_uuid[BTRFS_UUID_SIZE];

6784
	devid = btrfs_device_id(leaf, dev_item);
6785
	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6786
			   BTRFS_UUID_SIZE);
6787
	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6788
			   BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
6789

6790
	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6791
		fs_devices = open_seed_devices(fs_info, fs_uuid);
6792 6793
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);
Y
Yan Zheng 已提交
6794 6795
	}

6796
	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6797
				   fs_uuid, true);
6798
	if (!device) {
6799
		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6800 6801
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, true);
6802
			return -ENOENT;
6803
		}
Y
Yan Zheng 已提交
6804

6805
		device = add_missing_dev(fs_devices, devid, dev_uuid);
6806 6807 6808 6809 6810 6811
		if (IS_ERR(device)) {
			btrfs_err(fs_info,
				"failed to add missing dev %llu: %ld",
				devid, PTR_ERR(device));
			return PTR_ERR(device);
		}
6812
		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6813
	} else {
6814
		if (!device->bdev) {
6815 6816 6817
			if (!btrfs_test_opt(fs_info, DEGRADED)) {
				btrfs_report_missing_device(fs_info,
						devid, dev_uuid, true);
6818
				return -ENOENT;
6819 6820 6821
			}
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, false);
6822
		}
6823

6824 6825
		if (!device->bdev &&
		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6826 6827 6828 6829 6830 6831
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
6832
			device->fs_devices->missing_devices++;
6833
			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
Y
Yan Zheng 已提交
6834
		}
6835 6836 6837

		/* Move the device to its own fs_devices */
		if (device->fs_devices != fs_devices) {
6838 6839
			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
							&device->dev_state));
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849

			list_move(&device->dev_list, &fs_devices->devices);
			device->fs_devices->num_devices--;
			fs_devices->num_devices++;

			device->fs_devices->missing_devices--;
			fs_devices->missing_devices++;

			device->fs_devices = fs_devices;
		}
Y
Yan Zheng 已提交
6850 6851
	}

6852
	if (device->fs_devices != fs_info->fs_devices) {
6853
		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
Y
Yan Zheng 已提交
6854 6855 6856
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
6857
	}
6858 6859

	fill_device_from_item(leaf, dev_item, device);
6860
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6861
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6862
	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
Y
Yan Zheng 已提交
6863
		device->fs_devices->total_rw_bytes += device->total_bytes;
6864 6865
		atomic64_add(device->total_bytes - device->bytes_used,
				&fs_info->free_chunk_space);
6866
	}
6867 6868 6869 6870
	ret = 0;
	return ret;
}

6871
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6872
{
6873
	struct btrfs_root *root = fs_info->tree_root;
6874
	struct btrfs_super_block *super_copy = fs_info->super_copy;
6875
	struct extent_buffer *sb;
6876 6877
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
6878 6879
	u8 *array_ptr;
	unsigned long sb_array_offset;
6880
	int ret = 0;
6881 6882 6883
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
6884
	u32 cur_offset;
6885
	u64 type;
6886
	struct btrfs_key key;
6887

6888
	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6889 6890 6891 6892 6893
	/*
	 * This will create extent buffer of nodesize, superblock size is
	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
	 * overallocate but we can keep it as-is, only the first page is used.
	 */
6894
	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6895 6896
	if (IS_ERR(sb))
		return PTR_ERR(sb);
6897
	set_extent_buffer_uptodate(sb);
6898
	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6899
	/*
6900
	 * The sb extent buffer is artificial and just used to read the system array.
6901
	 * set_extent_buffer_uptodate() call does not properly mark all it's
6902 6903 6904 6905 6906 6907 6908 6909 6910
	 * pages up-to-date when the page is larger: extent does not cover the
	 * whole page and consequently check_page_uptodate does not find all
	 * the page's extents up-to-date (the hole beyond sb),
	 * write_extent_buffer then triggers a WARN_ON.
	 *
	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
	 * but sb spans only this function. Add an explicit SetPageUptodate call
	 * to silence the warning eg. on PowerPC 64.
	 */
6911
	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6912
		SetPageUptodate(sb->pages[0]);
6913

6914
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6915 6916
	array_size = btrfs_super_sys_array_size(super_copy);

6917 6918 6919
	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;
6920

6921 6922
	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
6923 6924 6925 6926
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

6927 6928
		btrfs_disk_key_to_cpu(&key, disk_key);

6929 6930 6931
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6932

6933 6934 6935 6936 6937 6938 6939
		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
			btrfs_err(fs_info,
			    "unexpected item type %u in sys_array at offset %u",
				  (u32)key.type, cur_offset);
			ret = -EIO;
			break;
		}
6940

6941 6942 6943 6944 6945 6946 6947 6948
		chunk = (struct btrfs_chunk *)sb_array_offset;
		/*
		 * At least one btrfs_chunk with one stripe must be present,
		 * exact stripe count check comes afterwards
		 */
		len = btrfs_chunk_item_size(1);
		if (cur_offset + len > array_size)
			goto out_short_read;
6949

6950 6951 6952 6953 6954 6955 6956 6957
		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
		if (!num_stripes) {
			btrfs_err(fs_info,
			"invalid number of stripes %u in sys_array at offset %u",
				  num_stripes, cur_offset);
			ret = -EIO;
			break;
		}
6958

6959 6960
		type = btrfs_chunk_type(sb, chunk);
		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6961
			btrfs_err(fs_info,
6962 6963
			"invalid chunk type %llu in sys_array at offset %u",
				  type, cur_offset);
6964 6965
			ret = -EIO;
			break;
6966
		}
6967 6968 6969 6970 6971 6972 6973 6974 6975

		len = btrfs_chunk_item_size(num_stripes);
		if (cur_offset + len > array_size)
			goto out_short_read;

		ret = read_one_chunk(&key, sb, chunk);
		if (ret)
			break;

6976 6977 6978
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6979
	}
6980
	clear_extent_buffer_uptodate(sb);
6981
	free_extent_buffer_stale(sb);
6982
	return ret;
6983 6984

out_short_read:
6985
	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6986
			len, cur_offset);
6987
	clear_extent_buffer_uptodate(sb);
6988
	free_extent_buffer_stale(sb);
6989
	return -EIO;
6990 6991
}

6992 6993 6994
/*
 * Check if all chunks in the fs are OK for read-write degraded mount
 *
6995 6996
 * If the @failing_dev is specified, it's accounted as missing.
 *
6997 6998 6999
 * Return true if all chunks meet the minimal RW mount requirements.
 * Return false if any chunk doesn't meet the minimal RW mount requirements.
 */
7000 7001
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
					struct btrfs_device *failing_dev)
7002
{
7003
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7004 7005 7006 7007
	struct extent_map *em;
	u64 next_start = 0;
	bool ret = true;

7008 7009 7010
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
	read_unlock(&map_tree->lock);
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
	/* No chunk at all? Return false anyway */
	if (!em) {
		ret = false;
		goto out;
	}
	while (em) {
		struct map_lookup *map;
		int missing = 0;
		int max_tolerated;
		int i;

		map = em->map_lookup;
		max_tolerated =
			btrfs_get_num_tolerated_disk_barrier_failures(
					map->type);
		for (i = 0; i < map->num_stripes; i++) {
			struct btrfs_device *dev = map->stripes[i].dev;

7029 7030
			if (!dev || !dev->bdev ||
			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7031 7032
			    dev->last_flush_error)
				missing++;
7033 7034
			else if (failing_dev && failing_dev == dev)
				missing++;
7035 7036
		}
		if (missing > max_tolerated) {
7037 7038
			if (!failing_dev)
				btrfs_warn(fs_info,
7039
	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7040 7041 7042 7043 7044 7045 7046 7047
				   em->start, missing, max_tolerated);
			free_extent_map(em);
			ret = false;
			goto out;
		}
		next_start = extent_map_end(em);
		free_extent_map(em);

7048 7049
		read_lock(&map_tree->lock);
		em = lookup_extent_mapping(map_tree, next_start,
7050
					   (u64)(-1) - next_start);
7051
		read_unlock(&map_tree->lock);
7052 7053 7054 7055 7056
	}
out:
	return ret;
}

7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
static void readahead_tree_node_children(struct extent_buffer *node)
{
	int i;
	const int nr_items = btrfs_header_nritems(node);

	for (i = 0; i < nr_items; i++) {
		u64 start;

		start = btrfs_node_blockptr(node, i);
		readahead_tree_block(node->fs_info, start);
	}
}

7070
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7071
{
7072
	struct btrfs_root *root = fs_info->chunk_root;
7073 7074 7075 7076 7077 7078
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;
7079
	u64 total_dev = 0;
7080
	u64 last_ra_node = 0;
7081 7082 7083 7084 7085

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

7086 7087 7088 7089
	/*
	 * uuid_mutex is needed only if we are mounting a sprout FS
	 * otherwise we don't need it.
	 */
7090 7091
	mutex_lock(&uuid_mutex);

7092 7093 7094 7095 7096 7097 7098 7099
	/*
	 * It is possible for mount and umount to race in such a way that
	 * we execute this code path, but open_fs_devices failed to clear
	 * total_rw_bytes. We certainly want it cleared before reading the
	 * device items, so clear it here.
	 */
	fs_info->fs_devices->total_rw_bytes = 0;

7100 7101 7102 7103 7104
	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7105 7106 7107 7108 7109
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7110 7111
	if (ret < 0)
		goto error;
C
Chris Mason 已提交
7112
	while (1) {
7113 7114
		struct extent_buffer *node;

7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
		/*
		 * The nodes on level 1 are not locked but we don't need to do
		 * that during mount time as nothing else can access the tree
		 */
		node = path->nodes[1];
		if (node) {
			if (last_ra_node != node->start) {
				readahead_tree_node_children(node);
				last_ra_node = node->start;
			}
		}
7136
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7137 7138 7139
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
7140
						  struct btrfs_dev_item);
7141
			ret = read_one_dev(leaf, dev_item);
7142 7143
			if (ret)
				goto error;
7144
			total_dev++;
7145 7146 7147
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7148
			mutex_lock(&fs_info->chunk_mutex);
7149
			ret = read_one_chunk(&found_key, leaf, chunk);
7150
			mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
7151 7152
			if (ret)
				goto error;
7153 7154 7155
		}
		path->slots[0]++;
	}
7156 7157 7158 7159 7160

	/*
	 * After loading chunk tree, we've got all device information,
	 * do another round of validation checks.
	 */
7161 7162
	if (total_dev != fs_info->fs_devices->total_devices) {
		btrfs_err(fs_info,
7163
	   "super_num_devices %llu mismatch with num_devices %llu found here",
7164
			  btrfs_super_num_devices(fs_info->super_copy),
7165 7166 7167 7168
			  total_dev);
		ret = -EINVAL;
		goto error;
	}
7169 7170 7171
	if (btrfs_super_total_bytes(fs_info->super_copy) <
	    fs_info->fs_devices->total_rw_bytes) {
		btrfs_err(fs_info,
7172
	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7173 7174
			  btrfs_super_total_bytes(fs_info->super_copy),
			  fs_info->fs_devices->total_rw_bytes);
7175 7176 7177
		ret = -EINVAL;
		goto error;
	}
7178 7179
	ret = 0;
error:
7180 7181
	mutex_unlock(&uuid_mutex);

Y
Yan Zheng 已提交
7182
	btrfs_free_path(path);
7183 7184
	return ret;
}
7185

7186 7187
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
7188
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7189 7190
	struct btrfs_device *device;

7191 7192 7193 7194 7195 7196 7197 7198
	fs_devices->fs_info = fs_info;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list)
		device->fs_info = fs_info;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
		list_for_each_entry(device, &seed_devs->devices, dev_list)
7199
			device->fs_info = fs_info;
7200

7201
		seed_devs->fs_info = fs_info;
7202
	}
7203
	mutex_unlock(&fs_devices->device_list_mutex);
7204 7205
}

7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
				 const struct btrfs_dev_stats_item *ptr,
				 int index)
{
	u64 val;

	read_extent_buffer(eb, &val,
			   offsetof(struct btrfs_dev_stats_item, values) +
			    ((unsigned long)ptr) + (index * sizeof(u64)),
			   sizeof(val));
	return val;
}

static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
				      struct btrfs_dev_stats_item *ptr,
				      int index, u64 val)
{
	write_extent_buffer(eb, &val,
			    offsetof(struct btrfs_dev_stats_item, values) +
			     ((unsigned long)ptr) + (index * sizeof(u64)),
			    sizeof(val));
}

7229 7230
static int btrfs_device_init_dev_stats(struct btrfs_device *device,
				       struct btrfs_path *path)
7231
{
7232
	struct btrfs_dev_stats_item *ptr;
7233
	struct extent_buffer *eb;
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246
	struct btrfs_key key;
	int item_size;
	int i, ret, slot;

	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
	key.offset = device->devid;
	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
	if (ret) {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			btrfs_dev_stat_set(device, i, 0);
		device->dev_stats_valid = 1;
		btrfs_release_path(path);
7247
		return ret < 0 ? ret : 0;
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
	}
	slot = path->slots[0];
	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, slot);

	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
		if (item_size >= (1 + i) * sizeof(__le64))
			btrfs_dev_stat_set(device, i,
					   btrfs_dev_stats_value(eb, ptr, i));
		else
			btrfs_dev_stat_set(device, i, 0);
	}

	device->dev_stats_valid = 1;
	btrfs_dev_stat_print_on_load(device);
	btrfs_release_path(path);
7266 7267

	return 0;
7268 7269 7270 7271 7272
}

int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7273 7274
	struct btrfs_device *device;
	struct btrfs_path *path = NULL;
7275
	int ret = 0;
7276 7277

	path = btrfs_alloc_path();
A
Anand Jain 已提交
7278 7279
	if (!path)
		return -ENOMEM;
7280 7281

	mutex_lock(&fs_devices->device_list_mutex);
7282 7283 7284 7285 7286
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		ret = btrfs_device_init_dev_stats(device, path);
		if (ret)
			goto out;
	}
7287
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7288 7289 7290 7291 7292
		list_for_each_entry(device, &seed_devs->devices, dev_list) {
			ret = btrfs_device_init_dev_stats(device, path);
			if (ret)
				goto out;
		}
7293
	}
7294
out:
7295 7296 7297
	mutex_unlock(&fs_devices->device_list_mutex);

	btrfs_free_path(path);
7298
	return ret;
7299 7300 7301 7302 7303
}

static int update_dev_stat_item(struct btrfs_trans_handle *trans,
				struct btrfs_device *device)
{
7304
	struct btrfs_fs_info *fs_info = trans->fs_info;
7305
	struct btrfs_root *dev_root = fs_info->dev_root;
7306 7307 7308 7309 7310 7311 7312
	struct btrfs_path *path;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_dev_stats_item *ptr;
	int ret;
	int i;

7313 7314
	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7315 7316 7317
	key.offset = device->devid;

	path = btrfs_alloc_path();
7318 7319
	if (!path)
		return -ENOMEM;
7320 7321
	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
	if (ret < 0) {
7322
		btrfs_warn_in_rcu(fs_info,
7323
			"error %d while searching for dev_stats item for device %s",
7324
			      ret, rcu_str_deref(device->name));
7325 7326 7327 7328 7329 7330 7331 7332
		goto out;
	}

	if (ret == 0 &&
	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
		/* need to delete old one and insert a new one */
		ret = btrfs_del_item(trans, dev_root, path);
		if (ret != 0) {
7333
			btrfs_warn_in_rcu(fs_info,
7334
				"delete too small dev_stats item for device %s failed %d",
7335
				      rcu_str_deref(device->name), ret);
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
			goto out;
		}
		ret = 1;
	}

	if (ret == 1) {
		/* need to insert a new item */
		btrfs_release_path(path);
		ret = btrfs_insert_empty_item(trans, dev_root, path,
					      &key, sizeof(*ptr));
		if (ret < 0) {
7347
			btrfs_warn_in_rcu(fs_info,
7348 7349
				"insert dev_stats item for device %s failed %d",
				rcu_str_deref(device->name), ret);
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
			goto out;
		}
	}

	eb = path->nodes[0];
	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_set_dev_stats_value(eb, ptr, i,
					  btrfs_dev_stat_read(device, i));
	btrfs_mark_buffer_dirty(eb);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * called from commit_transaction. Writes all changed device stats to disk.
 */
7369
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7370
{
7371
	struct btrfs_fs_info *fs_info = trans->fs_info;
7372 7373
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
7374
	int stats_cnt;
7375 7376 7377 7378
	int ret = 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7379 7380
		stats_cnt = atomic_read(&device->dev_stats_ccnt);
		if (!device->dev_stats_valid || stats_cnt == 0)
7381 7382
			continue;

7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396

		/*
		 * There is a LOAD-LOAD control dependency between the value of
		 * dev_stats_ccnt and updating the on-disk values which requires
		 * reading the in-memory counters. Such control dependencies
		 * require explicit read memory barriers.
		 *
		 * This memory barriers pairs with smp_mb__before_atomic in
		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
		 * barrier implied by atomic_xchg in
		 * btrfs_dev_stats_read_and_reset
		 */
		smp_rmb();

7397
		ret = update_dev_stat_item(trans, device);
7398
		if (!ret)
7399
			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7400 7401 7402 7403 7404 7405
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

7406 7407 7408 7409 7410 7411
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
	btrfs_dev_stat_inc(dev, index);
	btrfs_dev_stat_print_on_error(dev);
}

7412
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7413
{
7414 7415
	if (!dev->dev_stats_valid)
		return;
7416
	btrfs_err_rl_in_rcu(dev->fs_info,
7417
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7418
			   rcu_str_deref(dev->name),
7419 7420 7421
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7422 7423
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7424
}
7425

7426 7427
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
7428 7429 7430 7431 7432 7433 7434 7435
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		if (btrfs_dev_stat_read(dev, i) != 0)
			break;
	if (i == BTRFS_DEV_STAT_VALUES_MAX)
		return; /* all values == 0, suppress message */

7436
	btrfs_info_in_rcu(dev->fs_info,
7437
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7438
	       rcu_str_deref(dev->name),
7439 7440 7441 7442 7443 7444 7445
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}

7446
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7447
			struct btrfs_ioctl_get_dev_stats *stats)
7448 7449
{
	struct btrfs_device *dev;
7450
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7451 7452 7453
	int i;

	mutex_lock(&fs_devices->device_list_mutex);
7454 7455
	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
				true);
7456 7457 7458
	mutex_unlock(&fs_devices->device_list_mutex);

	if (!dev) {
7459
		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7460
		return -ENODEV;
7461
	} else if (!dev->dev_stats_valid) {
7462
		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7463
		return -ENODEV;
7464
	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7465 7466 7467 7468 7469
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (stats->nr_items > i)
				stats->values[i] =
					btrfs_dev_stat_read_and_reset(dev, i);
			else
7470
				btrfs_dev_stat_set(dev, i, 0);
7471
		}
7472 7473
		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
			   current->comm, task_pid_nr(current));
7474 7475 7476 7477 7478 7479 7480 7481 7482
	} else {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			if (stats->nr_items > i)
				stats->values[i] = btrfs_dev_stat_read(dev, i);
	}
	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
	return 0;
}
7483

7484
/*
7485 7486 7487 7488 7489
 * Update the size and bytes used for each device where it changed.  This is
 * delayed since we would otherwise get errors while writing out the
 * superblocks.
 *
 * Must be invoked during transaction commit.
7490
 */
7491
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7492 7493 7494
{
	struct btrfs_device *curr, *next;

7495
	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7496

7497
	if (list_empty(&trans->dev_update_list))
7498 7499
		return;

7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
	/*
	 * We don't need the device_list_mutex here.  This list is owned by the
	 * transaction and the transaction must complete before the device is
	 * released.
	 */
	mutex_lock(&trans->fs_info->chunk_mutex);
	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&curr->post_commit_list);
		curr->commit_total_bytes = curr->disk_total_bytes;
		curr->commit_bytes_used = curr->bytes_used;
7511
	}
7512
	mutex_unlock(&trans->fs_info->chunk_mutex);
7513
}
7514

7515 7516 7517 7518 7519
/*
 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
 */
int btrfs_bg_type_to_factor(u64 flags)
{
7520 7521 7522
	const int index = btrfs_bg_flags_to_raid_index(flags);

	return btrfs_raid_array[index].ncopies;
7523
}
7524 7525 7526 7527 7528 7529 7530



static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
				 u64 chunk_offset, u64 devid,
				 u64 physical_offset, u64 physical_len)
{
7531
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7532 7533
	struct extent_map *em;
	struct map_lookup *map;
7534
	struct btrfs_device *dev;
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
	u64 stripe_len;
	bool found = false;
	int ret = 0;
	int i;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
			  physical_offset, devid);
		ret = -EUCLEAN;
		goto out;
	}

	map = em->map_lookup;
	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
	if (physical_len != stripe_len) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
			  physical_offset, devid, em->start, physical_len,
			  stripe_len);
		ret = -EUCLEAN;
		goto out;
	}

	for (i = 0; i < map->num_stripes; i++) {
		if (map->stripes[i].dev->devid == devid &&
		    map->stripes[i].physical == physical_offset) {
			found = true;
			if (map->verified_stripes >= map->num_stripes) {
				btrfs_err(fs_info,
				"too many dev extents for chunk %llu found",
					  em->start);
				ret = -EUCLEAN;
				goto out;
			}
			map->verified_stripes++;
			break;
		}
	}
	if (!found) {
		btrfs_err(fs_info,
	"dev extent physical offset %llu devid %llu has no corresponding chunk",
			physical_offset, devid);
		ret = -EUCLEAN;
	}
7584 7585

	/* Make sure no dev extent is beyond device bondary */
7586
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7587 7588 7589 7590 7591
	if (!dev) {
		btrfs_err(fs_info, "failed to find devid %llu", devid);
		ret = -EUCLEAN;
		goto out;
	}
7592 7593 7594

	/* It's possible this device is a dummy for seed device */
	if (dev->disk_total_bytes == 0) {
7595 7596 7597 7598 7599
		struct btrfs_fs_devices *devs;

		devs = list_first_entry(&fs_info->fs_devices->seed_list,
					struct btrfs_fs_devices, seed_list);
		dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7600 7601 7602 7603 7604 7605 7606 7607
		if (!dev) {
			btrfs_err(fs_info, "failed to find seed devid %llu",
				  devid);
			ret = -EUCLEAN;
			goto out;
		}
	}

7608 7609 7610 7611 7612 7613 7614 7615
	if (physical_offset + physical_len > dev->disk_total_bytes) {
		btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
			  devid, physical_offset, physical_len,
			  dev->disk_total_bytes);
		ret = -EUCLEAN;
		goto out;
	}
7616 7617 7618 7619 7620 7621 7622
out:
	free_extent_map(em);
	return ret;
}

static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
{
7623
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7624 7625 7626 7627 7628
	struct extent_map *em;
	struct rb_node *node;
	int ret = 0;

	read_lock(&em_tree->lock);
L
Liu Bo 已提交
7629
	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
		em = rb_entry(node, struct extent_map, rb_node);
		if (em->map_lookup->num_stripes !=
		    em->map_lookup->verified_stripes) {
			btrfs_err(fs_info,
			"chunk %llu has missing dev extent, have %d expect %d",
				  em->start, em->map_lookup->verified_stripes,
				  em->map_lookup->num_stripes);
			ret = -EUCLEAN;
			goto out;
		}
	}
out:
	read_unlock(&em_tree->lock);
	return ret;
}

/*
 * Ensure that all dev extents are mapped to correct chunk, otherwise
 * later chunk allocation/free would cause unexpected behavior.
 *
 * NOTE: This will iterate through the whole device tree, which should be of
 * the same size level as the chunk tree.  This slightly increases mount time.
 */
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
7658 7659
	u64 prev_devid = 0;
	u64 prev_dev_ext_end = 0;
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = READA_FORWARD;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	while (1) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_dev_extent *dext;
		int slot = path->slots[0];
		u64 chunk_offset;
		u64 physical_offset;
		u64 physical_len;
		u64 devid;

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.type != BTRFS_DEV_EXTENT_KEY)
			break;
		devid = key.objectid;
		physical_offset = key.offset;

		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
		physical_len = btrfs_dev_extent_length(leaf, dext);

7704 7705 7706 7707 7708 7709 7710 7711 7712
		/* Check if this dev extent overlaps with the previous one */
		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
			btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
				  devid, physical_offset, prev_dev_ext_end);
			ret = -EUCLEAN;
			goto out;
		}

7713 7714 7715 7716
		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
					    physical_offset, physical_len);
		if (ret < 0)
			goto out;
7717 7718 7719
		prev_devid = devid;
		prev_dev_ext_end = physical_offset + physical_len;

7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}

	/* Ensure all chunks have corresponding dev extents */
	ret = verify_chunk_dev_extent_mapping(fs_info);
out:
	btrfs_free_path(path);
	return ret;
}
7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758

/*
 * Check whether the given block group or device is pinned by any inode being
 * used as a swapfile.
 */
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
{
	struct btrfs_swapfile_pin *sp;
	struct rb_node *node;

	spin_lock(&fs_info->swapfile_pins_lock);
	node = fs_info->swapfile_pins.rb_node;
	while (node) {
		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
		if (ptr < sp->ptr)
			node = node->rb_left;
		else if (ptr > sp->ptr)
			node = node->rb_right;
		else
			break;
	}
	spin_unlock(&fs_info->swapfile_pins_lock);
	return node != NULL;
}