inode.c 170.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/printk.h>
43
#include <linux/slab.h>
44
#include <linux/ratelimit.h>
45

46
#include "ext4_jbd2.h"
47 48
#include "xattr.h"
#include "acl.h"
49
#include "ext4_extents.h"
50

51 52
#include <trace/events/ext4.h>

53 54
#define MPAGE_DA_EXTENT_TAIL 0x01

55 56 57
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
58
	trace_ext4_begin_ordered_truncate(inode, new_size);
59 60 61 62 63 64 65 66 67 68 69
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
70 71
}

72
static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 74 75 76 77 78
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79

80 81 82
/*
 * Test whether an inode is a fast symlink.
 */
83
static int ext4_inode_is_fast_symlink(struct inode *inode)
84
{
85
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 87 88 89 90 91 92 93 94 95 96
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
97
	ext4_lblk_t needed;
98 99 100 101 102 103

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
104
	 * like a regular file for ext4 to try to delete it.  Things
105 106 107 108 109 110 111
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
112 113
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
114

115
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

132
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 134 135
	if (!IS_ERR(result))
		return result;

136
	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 138 139 140 141 142 143 144 145 146 147
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
148 149 150
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151
		return 0;
152
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 154 155 156 157 158 159 160 161
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
162
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163
				 int nblocks)
164
{
165 166 167
	int ret;

	/*
168
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 170 171 172
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
173
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174
	jbd_debug(2, "restarting handle %p\n", handle);
175
	up_write(&EXT4_I(inode)->i_data_sem);
176
	ret = ext4_journal_restart(handle, nblocks);
177
	down_write(&EXT4_I(inode)->i_data_sem);
178
	ext4_discard_preallocations(inode);
179 180

	return ret;
181 182 183 184 185
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
186
void ext4_evict_inode(struct inode *inode)
187 188
{
	handle_t *handle;
189
	int err;
190

191
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
192 193 194 195 196
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

197
	if (!is_bad_inode(inode))
198
		dquot_initialize(inode);
199

200 201
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
202 203 204 205 206
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

207
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208
	if (IS_ERR(handle)) {
209
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 211 212 213 214
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
215
		ext4_orphan_del(NULL, inode);
216 217 218 219
		goto no_delete;
	}

	if (IS_SYNC(inode))
220
		ext4_handle_sync(handle);
221
	inode->i_size = 0;
222 223
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
224
		ext4_warning(inode->i_sb,
225 226 227
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
228
	if (inode->i_blocks)
229
		ext4_truncate(inode);
230 231 232 233 234 235 236

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
237
	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 239 240 241
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
242
			ext4_warning(inode->i_sb,
243 244 245
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
246
			ext4_orphan_del(NULL, inode);
247 248 249 250
			goto no_delete;
		}
	}

251
	/*
252
	 * Kill off the orphan record which ext4_truncate created.
253
	 * AKPM: I think this can be inside the above `if'.
254
	 * Note that ext4_orphan_del() has to be able to cope with the
255
	 * deletion of a non-existent orphan - this is because we don't
256
	 * know if ext4_truncate() actually created an orphan record.
257 258
	 * (Well, we could do this if we need to, but heck - it works)
	 */
259 260
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
261 262 263 264 265 266 267 268

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
269
	if (ext4_mark_inode_dirty(handle, inode))
270
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
271
		ext4_clear_inode(inode);
272
	else
273 274
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
275 276
	return;
no_delete:
A
Al Viro 已提交
277
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
293
 *	ext4_block_to_path - parse the block number into array of offsets
294 295 296
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
297 298
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
299
 *
300
 *	To store the locations of file's data ext4 uses a data structure common
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

323
static int ext4_block_to_path(struct inode *inode,
324 325
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
326
{
327 328 329
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 331 332 333 334
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

335
	if (i_block < direct_blocks) {
336 337
		offsets[n++] = i_block;
		final = direct_blocks;
338
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339
		offsets[n++] = EXT4_IND_BLOCK;
340 341 342
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
343
		offsets[n++] = EXT4_DIND_BLOCK;
344 345 346 347
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348
		offsets[n++] = EXT4_TIND_BLOCK;
349 350 351 352 353
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
354
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 356
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
357 358 359 360 361 362
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

363 364
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
365 366
				 __le32 *p, unsigned int max)
{
367
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368
	__le32 *bref = p;
369 370
	unsigned int blk;

371
	while (bref < p+max) {
372
		blk = le32_to_cpu(*bref++);
373 374
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375
						    blk, 1))) {
376
			es->s_last_error_block = cpu_to_le64(blk);
377 378
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
379 380 381 382
			return -EIO;
		}
	}
	return 0;
383 384 385 386
}


#define ext4_check_indirect_blockref(inode, bh)                         \
387 388
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
389 390 391
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
392 393
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
394 395
			      EXT4_NDIR_BLOCKS)

396
/**
397
 *	ext4_get_branch - read the chain of indirect blocks leading to data
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
422 423
 *
 *      Need to be called with
424
 *      down_read(&EXT4_I(inode)->i_data_sem)
425
 */
426 427
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
428 429 430 431 432 433 434 435
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
436
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 438 439
	if (!p->key)
		goto no_block;
	while (--depth) {
440 441
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
442
			goto failure;
443

444 445 446 447 448 449 450 451 452 453 454
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
455

456
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 458 459 460 461 462 463 464 465 466 467 468 469
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
470
 *	ext4_find_near - find a place for allocation with sufficient locality
471 472 473
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
474
 *	This function returns the preferred place for block allocation.
475 476 477 478 479 480 481 482 483 484 485 486 487 488
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
489
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490
{
491
	struct ext4_inode_info *ei = EXT4_I(inode);
492
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493
	__le32 *p;
494
	ext4_fsblk_t bg_start;
495
	ext4_fsblk_t last_block;
496
	ext4_grpblk_t colour;
497 498
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
514 515 516 517 518 519 520
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 522
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

523 524 525 526 527 528 529
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

530 531
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
532
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 534
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 536 537 538
	return bg_start + colour;
}

/**
539
 *	ext4_find_goal - find a preferred place for allocation.
540 541 542 543
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
544
 *	Normally this function find the preferred place for block allocation,
545
 *	returns it.
546 547
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
548
 */
549
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550
				   Indirect *partial)
551
{
552 553
	ext4_fsblk_t goal;

554
	/*
555
	 * XXX need to get goal block from mballoc's data structures
556 557
	 */

558 559 560
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
561 562 563
}

/**
564
 *	ext4_blks_to_allocate - Look up the block map and count the number
565 566 567 568 569 570 571 572 573 574
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
575
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576
				 int blocks_to_boundary)
577
{
578
	unsigned int count = 0;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
602
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 604 605 606
 *	@handle: handle for this transaction
 *	@inode: inode which needs allocated blocks
 *	@iblock: the logical block to start allocated at
 *	@goal: preferred physical block of allocation
607 608
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
609
 *	@blks: number of desired blocks
610 611
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
612 613 614 615
 *	@err: on return it will store the error code
 *
 *	This function will return the number of blocks allocated as
 *	requested by the passed-in parameters.
616
 */
617
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 619 620
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
621
{
622
	struct ext4_allocation_request ar;
623
	int target, i;
624
	unsigned long count = 0, blk_allocated = 0;
625
	int index = 0;
626
	ext4_fsblk_t current_block = 0;
627 628 629 630 631 632 633 634 635 636
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
637 638 639
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
640 641
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
642 643
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
644 645 646
		if (*err)
			goto failed_out;

647 648 649 650 651 652 653 654
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
655

656 657 658 659 660 661
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
662 663 664 665 666 667 668 669 670
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
671
			break;
672
		}
673 674
	}

675 676 677 678 679
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
680 681 682 683 684 685 686 687 688 689
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
690 691 692 693 694 695 696 697
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
698

699 700 701 702 703 704 705 706 707
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
708 709 710 711
			/*
			 * save the new block number
			 * for the first direct block
			 */
712 713
			new_blocks[index] = current_block;
		}
714
		blk_allocated += ar.len;
715 716
	}
allocated:
717
	/* total number of blocks allocated for direct blocks */
718
	ret = blk_allocated;
719 720 721
	*err = 0;
	return ret;
failed_out:
722
	for (i = 0; i < index; i++)
723
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 725 726 727
	return ret;
}

/**
728
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
729
 *	@handle: handle for this transaction
730 731 732
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
733
 *	@goal: preferred place for allocation
734 735 736 737 738 739 740
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
741
 *	the same format as ext4_get_branch() would do. We are calling it after
742 743
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
744
 *	picture as after the successful ext4_get_block(), except that in one
745 746 747 748 749 750
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
751
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 753
 *	as described above and return 0.
 */
754
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 756 757
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
758 759 760 761 762 763
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
764 765
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
766

767
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 784 785 786 787
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

788 789 790
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
791
		err = ext4_journal_get_create_access(handle, bh);
792
		if (err) {
793 794
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
795 796 797 798 799 800 801 802
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
803
		if (n == indirect_blks) {
804 805 806 807 808 809
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
810
			for (i = 1; i < num; i++)
811 812 813 814 815 816
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

817 818
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
819 820 821 822 823 824 825
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
826
	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827
	for (i = 1; i <= n ; i++) {
828
		/*
829 830 831
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
832
		 */
833
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834
				 EXT4_FREE_BLOCKS_FORGET);
835
	}
836
	for (i = n+1; i < indirect_blks; i++)
837
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838

839
	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840 841 842 843 844

	return err;
}

/**
845
 * ext4_splice_branch - splice the allocated branch onto inode.
846
 * @handle: handle for this transaction
847 848 849
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
850
 *	ext4_alloc_branch)
851 852 853 854 855 856 857 858
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
859
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 861
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
862 863 864
{
	int i;
	int err = 0;
865
	ext4_fsblk_t current_block;
866 867 868 869 870 871 872 873

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
874
		err = ext4_journal_get_write_access(handle, where->bh);
875 876 877 878 879 880 881 882 883 884 885 886 887 888
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
889
			*(where->p + i) = cpu_to_le32(current_block++);
890 891 892 893 894 895 896 897 898 899 900
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
901
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 903
		 */
		jbd_debug(5, "splicing indirect only\n");
904 905
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 907 908 909 910 911
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
912
		ext4_mark_inode_dirty(handle, inode);
913 914 915 916 917 918
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
919
		/*
920 921 922
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
923
		 */
924 925
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
926
	}
927
	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928
			 blks, 0);
929 930 931 932 933

	return err;
}

/*
934
 * The ext4_ind_map_blocks() function handles non-extents inodes
935
 * (i.e., using the traditional indirect/double-indirect i_blocks
936
 * scheme) for ext4_map_blocks().
937
 *
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
954
 *
955 956 957 958 959
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
960
 */
961 962
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
963
			       int flags)
964 965
{
	int err = -EIO;
966
	ext4_lblk_t offsets[4];
967 968
	Indirect chain[4];
	Indirect *partial;
969
	ext4_fsblk_t goal;
970 971 972 973
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
974
	ext4_fsblk_t first_block = 0;
975

976
	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
977
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
978
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
979
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
980
				   &blocks_to_boundary);
981 982 983 984

	if (depth == 0)
		goto out;

985
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
986 987 988 989 990 991

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
992
		while (count < map->m_len && count <= blocks_to_boundary) {
993
			ext4_fsblk_t blk;
994 995 996 997 998 999 1000 1001

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
1002
		goto got_it;
1003 1004 1005
	}

	/* Next simple case - plain lookup or failed read of indirect block */
1006
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1007 1008 1009
		goto cleanup;

	/*
1010
	 * Okay, we need to do block allocation.
1011
	*/
1012
	goal = ext4_find_goal(inode, map->m_lblk, partial);
1013 1014 1015 1016 1017 1018 1019 1020

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1021
	count = ext4_blks_to_allocate(partial, indirect_blks,
1022
				      map->m_len, blocks_to_boundary);
1023
	/*
1024
	 * Block out ext4_truncate while we alter the tree
1025
	 */
1026
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1027 1028
				&count, goal,
				offsets + (partial - chain), partial);
1029 1030

	/*
1031
	 * The ext4_splice_branch call will free and forget any buffers
1032 1033 1034 1035 1036 1037
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1038
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1039
					 partial, indirect_blks, count);
1040
	if (err)
1041 1042
		goto cleanup;

1043
	map->m_flags |= EXT4_MAP_NEW;
1044 1045

	ext4_update_inode_fsync_trans(handle, inode, 1);
1046
got_it:
1047 1048 1049
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1050
	if (count > blocks_to_boundary)
1051
		map->m_flags |= EXT4_MAP_BOUNDARY;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
1062 1063
	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
				map->m_pblk, map->m_len, err);
1064 1065 1066
	return err;
}

1067 1068
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1069
{
1070
	return &EXT4_I(inode)->i_reserved_quota;
1071
}
1072
#endif
1073

1074 1075
/*
 * Calculate the number of metadata blocks need to reserve
1076
 * to allocate a new block at @lblocks for non extent file based file
1077
 */
1078 1079
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1080
{
1081
	struct ext4_inode_info *ei = EXT4_I(inode);
1082
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1083
	int blk_bits;
1084

1085 1086
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1087

1088
	lblock -= EXT4_NDIR_BLOCKS;
1089

1090 1091 1092 1093 1094 1095 1096
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1097
	blk_bits = order_base_2(lblock);
1098
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1099 1100 1101 1102
}

/*
 * Calculate the number of metadata blocks need to reserve
1103
 * to allocate a block located at @lblock
1104
 */
1105
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1106
{
1107
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1108
		return ext4_ext_calc_metadata_amount(inode, lblock);
1109

1110
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1111 1112
}

1113 1114 1115 1116
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1117 1118
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1119 1120
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1121 1122 1123
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1124
	trace_ext4_da_update_reserve_space(inode, used);
1125 1126 1127 1128 1129 1130 1131 1132
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1133

1134 1135 1136
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1137 1138
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1139
	ei->i_allocated_meta_blocks = 0;
1140

1141 1142 1143 1144 1145 1146
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1147 1148
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1149
		ei->i_reserved_meta_blocks = 0;
1150
		ei->i_da_metadata_calc_len = 0;
1151
	}
1152
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1153

1154 1155
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1156
		dquot_claim_block(inode, used);
1157
	else {
1158 1159 1160
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1161
		 * not re-claim the quota for fallocated blocks.
1162
		 */
1163
		dquot_release_reservation_block(inode, used);
1164
	}
1165 1166 1167 1168 1169 1170

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1171 1172
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1173
		ext4_discard_preallocations(inode);
1174 1175
}

1176
static int __check_block_validity(struct inode *inode, const char *func,
1177 1178
				unsigned int line,
				struct ext4_map_blocks *map)
1179
{
1180 1181
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1182 1183 1184 1185
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1186 1187 1188 1189 1190
		return -EIO;
	}
	return 0;
}

1191
#define check_block_validity(inode, map)	\
1192
	__check_block_validity((inode), __func__, __LINE__, (map))
1193

1194
/*
1195 1196
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1230 1231 1232 1233 1234 1235 1236 1237 1238
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1239 1240 1241 1242 1243
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1244 1245
			if (num >= max_pages) {
				done = 1;
1246
				break;
1247
			}
1248 1249 1250 1251 1252 1253
		}
		pagevec_release(&pvec);
	}
	return num;
}

1254
/*
1255
 * The ext4_map_blocks() function tries to look up the requested blocks,
1256
 * and returns if the blocks are already mapped.
1257 1258 1259 1260 1261
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1262 1263
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1276 1277
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1278 1279
{
	int retval;
1280

1281 1282 1283 1284
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1285
	/*
1286 1287
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1288 1289
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1290
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1291
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1292
	} else {
1293
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1294
	}
1295
	up_read((&EXT4_I(inode)->i_data_sem));
1296

1297
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1298
		int ret = check_block_validity(inode, map);
1299 1300 1301 1302
		if (ret != 0)
			return ret;
	}

1303
	/* If it is only a block(s) look up */
1304
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1305 1306 1307 1308 1309 1310 1311 1312 1313
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1314
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1315 1316
		return retval;

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1327
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1328

1329
	/*
1330 1331 1332 1333
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1334 1335
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1336 1337 1338 1339 1340 1341 1342

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1343
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1344
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1345 1346 1347 1348
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1349
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1350
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1351
	} else {
1352
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1353

1354
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1355 1356 1357 1358 1359
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1360
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1361
		}
1362

1363 1364 1365 1366 1367 1368 1369
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1370
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1371 1372
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1373
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1374
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1375

1376
	up_write((&EXT4_I(inode)->i_data_sem));
1377
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1378
		int ret = check_block_validity(inode, map);
1379 1380 1381
		if (ret != 0)
			return ret;
	}
1382 1383 1384
	return retval;
}

1385 1386 1387
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1388 1389
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1390
{
1391
	handle_t *handle = ext4_journal_current_handle();
1392
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1393
	int ret = 0, started = 0;
1394
	int dio_credits;
1395

1396 1397 1398 1399
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1400
		/* Direct IO write... */
1401 1402 1403
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1404
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1405
		if (IS_ERR(handle)) {
1406
			ret = PTR_ERR(handle);
1407
			return ret;
1408
		}
J
Jan Kara 已提交
1409
		started = 1;
1410 1411
	}

1412
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1413
	if (ret > 0) {
1414 1415 1416
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1417
		ret = 0;
1418
	}
J
Jan Kara 已提交
1419 1420
	if (started)
		ext4_journal_stop(handle);
1421 1422 1423
	return ret;
}

1424 1425 1426 1427 1428 1429 1430
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1431 1432 1433
/*
 * `handle' can be NULL if create is zero
 */
1434
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1435
				ext4_lblk_t block, int create, int *errp)
1436
{
1437 1438
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1439 1440 1441 1442
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1443 1444 1445 1446
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1458
	}
1459 1460 1461
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1476
		}
1477 1478 1479 1480 1481 1482 1483
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1484
	}
1485 1486 1487 1488 1489 1490
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1491 1492
}

1493
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1494
			       ext4_lblk_t block, int create, int *err)
1495
{
1496
	struct buffer_head *bh;
1497

1498
	bh = ext4_getblk(handle, inode, block, create, err);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1512 1513 1514 1515 1516 1517 1518
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1519 1520 1521 1522 1523 1524 1525
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1526 1527
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1528
	     block_start = block_end, bh = next) {
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1546
 * close off a transaction and start a new one between the ext4_get_block()
1547
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1548 1549
 * prepare_write() is the right place.
 *
1550 1551
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1552 1553 1554 1555
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1556
 * By accident, ext4 can be reentered when a transaction is open via
1557 1558 1559 1560 1561 1562
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1563
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1564 1565 1566 1567 1568
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1569
				       struct buffer_head *bh)
1570
{
1571 1572 1573
	int dirty = buffer_dirty(bh);
	int ret;

1574 1575
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1576
	/*
1577
	 * __block_write_begin() could have dirtied some buffers. Clean
1578 1579
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
1580
	 * by __block_write_begin() isn't a real problem here as we clear
1581 1582 1583 1584 1585 1586 1587 1588 1589
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1590 1591
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1602 1603
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1604
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1605 1606
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1607
{
1608
	struct inode *inode = mapping->host;
1609
	int ret, needed_blocks;
1610 1611
	handle_t *handle;
	int retries = 0;
1612
	struct page *page;
1613
	pgoff_t index;
1614
	unsigned from, to;
N
Nick Piggin 已提交
1615

1616
	trace_ext4_write_begin(inode, pos, len, flags);
1617 1618 1619 1620 1621
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1622
	index = pos >> PAGE_CACHE_SHIFT;
1623 1624
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1625 1626

retry:
1627 1628 1629 1630
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1631
	}
1632

1633 1634 1635 1636
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1637
	page = grab_cache_page_write_begin(mapping, index, flags);
1638 1639 1640 1641 1642 1643 1644
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1645
	if (ext4_should_dioread_nolock(inode))
1646
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1647
	else
1648
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1649 1650

	if (!ret && ext4_should_journal_data(inode)) {
1651 1652 1653
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1654 1655

	if (ret) {
1656 1657
		unlock_page(page);
		page_cache_release(page);
1658
		/*
1659
		 * __block_write_begin may have instantiated a few blocks
1660 1661
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1662 1663 1664
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1665
		 */
1666
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1667 1668 1669 1670
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1671
			ext4_truncate_failed_write(inode);
1672
			/*
1673
			 * If truncate failed early the inode might
1674 1675 1676 1677 1678 1679 1680
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1681 1682
	}

1683
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1684
		goto retry;
1685
out:
1686 1687 1688
	return ret;
}

N
Nick Piggin 已提交
1689 1690
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1691 1692 1693 1694
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1695
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1696 1697
}

1698
static int ext4_generic_write_end(struct file *file,
1699 1700 1701
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1744 1745 1746 1747
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1748
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1749 1750
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1751
static int ext4_ordered_write_end(struct file *file,
1752 1753 1754
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1755
{
1756
	handle_t *handle = ext4_journal_current_handle();
1757
	struct inode *inode = mapping->host;
1758 1759
	int ret = 0, ret2;

1760
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1761
	ret = ext4_jbd2_file_inode(handle, inode);
1762 1763

	if (ret == 0) {
1764
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1765
							page, fsdata);
1766
		copied = ret2;
1767
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1768 1769 1770 1771 1772
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1773 1774
		if (ret2 < 0)
			ret = ret2;
1775
	}
1776
	ret2 = ext4_journal_stop(handle);
1777 1778
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1779

1780
	if (pos + len > inode->i_size) {
1781
		ext4_truncate_failed_write(inode);
1782
		/*
1783
		 * If truncate failed early the inode might still be
1784 1785 1786 1787 1788 1789 1790 1791
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1792
	return ret ? ret : copied;
1793 1794
}

N
Nick Piggin 已提交
1795
static int ext4_writeback_write_end(struct file *file,
1796 1797 1798
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1799
{
1800
	handle_t *handle = ext4_journal_current_handle();
1801
	struct inode *inode = mapping->host;
1802 1803
	int ret = 0, ret2;

1804
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1805
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1806
							page, fsdata);
1807
	copied = ret2;
1808
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1809 1810 1811 1812 1813 1814
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1815 1816
	if (ret2 < 0)
		ret = ret2;
1817

1818
	ret2 = ext4_journal_stop(handle);
1819 1820
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1821

1822
	if (pos + len > inode->i_size) {
1823
		ext4_truncate_failed_write(inode);
1824
		/*
1825
		 * If truncate failed early the inode might still be
1826 1827 1828 1829 1830 1831 1832
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1833
	return ret ? ret : copied;
1834 1835
}

N
Nick Piggin 已提交
1836
static int ext4_journalled_write_end(struct file *file,
1837 1838 1839
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1840
{
1841
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1842
	struct inode *inode = mapping->host;
1843 1844
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1845
	unsigned from, to;
1846
	loff_t new_i_size;
1847

1848
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1849 1850 1851 1852 1853 1854 1855 1856
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1857 1858

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1859
				to, &partial, write_end_fn);
1860 1861
	if (!partial)
		SetPageUptodate(page);
1862 1863
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1864
		i_size_write(inode, pos+copied);
1865
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1866 1867
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1868
		ret2 = ext4_mark_inode_dirty(handle, inode);
1869 1870 1871
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1872

1873
	unlock_page(page);
1874
	page_cache_release(page);
1875
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1876 1877 1878 1879 1880 1881
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1882
	ret2 = ext4_journal_stop(handle);
1883 1884
	if (!ret)
		ret = ret2;
1885
	if (pos + len > inode->i_size) {
1886
		ext4_truncate_failed_write(inode);
1887
		/*
1888
		 * If truncate failed early the inode might still be
1889 1890 1891 1892 1893 1894
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1895 1896

	return ret ? ret : copied;
1897
}
1898

1899 1900 1901
/*
 * Reserve a single block located at lblock
 */
1902
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1903
{
1904
	int retries = 0;
1905
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1906
	struct ext4_inode_info *ei = EXT4_I(inode);
1907
	unsigned long md_needed;
1908
	int ret;
1909 1910 1911 1912 1913 1914

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
1915
repeat:
1916
	spin_lock(&ei->i_block_reservation_lock);
1917
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1918
	trace_ext4_da_reserve_space(inode, md_needed);
1919
	spin_unlock(&ei->i_block_reservation_lock);
1920

1921
	/*
1922 1923 1924
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1925
	 */
1926
	ret = dquot_reserve_block(inode, 1);
1927 1928
	if (ret)
		return ret;
1929 1930 1931 1932
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1933
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1934
		dquot_release_reservation_block(inode, 1);
1935 1936 1937 1938
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1939 1940
		return -ENOSPC;
	}
1941
	spin_lock(&ei->i_block_reservation_lock);
1942
	ei->i_reserved_data_blocks++;
1943 1944
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1945

1946 1947 1948
	return 0;       /* success */
}

1949
static void ext4_da_release_space(struct inode *inode, int to_free)
1950 1951
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1952
	struct ext4_inode_info *ei = EXT4_I(inode);
1953

1954 1955 1956
	if (!to_free)
		return;		/* Nothing to release, exit */

1957
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1958

L
Li Zefan 已提交
1959
	trace_ext4_da_release_space(inode, to_free);
1960
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1961
		/*
1962 1963 1964 1965
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1966
		 */
1967 1968 1969 1970 1971 1972
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1973
	}
1974
	ei->i_reserved_data_blocks -= to_free;
1975

1976 1977 1978 1979 1980 1981
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1982 1983
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1984
		ei->i_reserved_meta_blocks = 0;
1985
		ei->i_da_metadata_calc_len = 0;
1986
	}
1987

1988
	/* update fs dirty data blocks counter */
1989
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1990 1991

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1992

1993
	dquot_release_reservation_block(inode, to_free);
1994 1995 1996
}

static void ext4_da_page_release_reservation(struct page *page,
1997
					     unsigned long offset)
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
2014
	ext4_da_release_space(page->mapping->host, to_release);
2015
}
2016

2017 2018 2019 2020 2021 2022
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
2023
 * them with writepage() call back
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2034 2035
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2036
{
2037 2038 2039 2040 2041
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2042
	loff_t size = i_size_read(inode);
2043 2044
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2045
	int journal_data = ext4_should_journal_data(inode);
2046
	sector_t pblock = 0, cur_logical = 0;
2047
	struct ext4_io_submit io_submit;
2048 2049

	BUG_ON(mpd->next_page <= mpd->first_page);
2050
	memset(&io_submit, 0, sizeof(io_submit));
2051 2052 2053
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2054
	 * If we look at mpd->b_blocknr we would only be looking
2055 2056
	 * at the currently mapped buffer_heads.
	 */
2057 2058 2059
	index = mpd->first_page;
	end = mpd->next_page - 1;

2060
	pagevec_init(&pvec, 0);
2061
	while (index <= end) {
2062
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2063 2064 2065
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2066
			int commit_write = 0, skip_page = 0;
2067 2068
			struct page *page = pvec.pages[i];

2069 2070 2071
			index = page->index;
			if (index > end)
				break;
2072 2073 2074 2075 2076

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2077 2078 2079 2080 2081 2082
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2083 2084 2085 2086 2087
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2088
			/*
2089 2090
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2091
			 * __block_write_begin.  If this fails,
2092
			 * skip the page and move on.
2093
			 */
2094
			if (!page_has_buffers(page)) {
2095
				if (__block_write_begin(page, 0, len,
2096
						noalloc_get_block_write)) {
2097
				skip_page:
2098 2099 2100 2101 2102
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2103

2104 2105
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2106
			do {
2107
				if (!bh)
2108
					goto skip_page;
2109 2110 2111
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2112 2113 2114 2115
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2116 2117 2118 2119 2120 2121 2122
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2123

2124
				/* skip page if block allocation undone */
2125
				if (buffer_delay(bh) || buffer_unwritten(bh))
2126
					skip_page = 1;
2127 2128
				bh = bh->b_this_page;
				block_start += bh->b_size;
2129 2130
				cur_logical++;
				pblock++;
2131 2132
			} while (bh != page_bufs);

2133 2134
			if (skip_page)
				goto skip_page;
2135 2136 2137 2138 2139

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2140
			clear_page_dirty_for_io(page);
2141 2142 2143 2144 2145 2146
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2147
				err = __ext4_journalled_writepage(page, len);
2148
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2149 2150
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2151 2152 2153
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
2154 2155

			if (!err)
2156
				mpd->pages_written++;
2157 2158 2159 2160 2161 2162 2163 2164 2165
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2166
	ext4_io_submit(&io_submit);
2167 2168 2169
	return ret;
}

2170
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2171 2172 2173 2174 2175 2176 2177
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

2178 2179
	index = mpd->first_page;
	end   = mpd->next_page - 1;
2180 2181 2182 2183 2184 2185
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2186
			if (page->index > end)
2187 2188 2189 2190 2191 2192 2193
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2194 2195
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2196 2197 2198 2199
	}
	return;
}

2200 2201 2202
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2215 2216 2217
	return;
}

2218
/*
2219 2220
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2221
 *
2222
 * @mpd - bh describing space
2223 2224 2225 2226
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2227
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2228
{
2229
	int err, blks, get_blocks_flags;
2230
	struct ext4_map_blocks map, *mapp = NULL;
2231 2232 2233 2234
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2235 2236

	/*
2237 2238
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2239
	 */
2240 2241 2242 2243 2244
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2245 2246 2247 2248

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2249
	/*
2250
	 * Call ext4_map_blocks() to allocate any delayed allocation
2251 2252 2253 2254 2255 2256 2257 2258
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2259
	 * want to change *many* call functions, so ext4_map_blocks()
2260
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 2262 2263 2264 2265
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2266
	 */
2267 2268
	map.m_lblk = next;
	map.m_len = max_blocks;
2269
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270 2271
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272
	if (mpd->b_state & (1 << BH_Delay))
2273 2274
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2275
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276
	if (blks < 0) {
2277 2278
		struct super_block *sb = mpd->inode->i_sb;

2279
		err = blks;
2280
		/*
2281
		 * If get block returns EAGAIN or ENOSPC and there
2282 2283
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
2284 2285
		 */
		if (err == -EAGAIN)
2286
			goto submit_io;
2287 2288

		if (err == -ENOSPC &&
2289
		    ext4_count_free_blocks(sb)) {
2290
			mpd->retval = err;
2291
			goto submit_io;
2292 2293
		}

2294
		/*
2295 2296 2297 2298 2299
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2300
		 */
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
2312
		}
2313
		/* invalidate all the pages */
2314
		ext4_da_block_invalidatepages(mpd);
2315 2316 2317

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
2318
		return;
2319
	}
2320 2321
	BUG_ON(blks == 0);

2322
	mapp = &map;
2323 2324 2325
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2326

2327 2328 2329
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2330

2331 2332 2333
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2334 2335
			/* This only happens if the journal is aborted */
			return;
2336 2337 2338
	}

	/*
2339
	 * Update on-disk size along with block allocation.
2340 2341 2342 2343 2344 2345
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2346 2347 2348 2349 2350
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2351 2352
	}

2353
submit_io:
2354
	mpage_da_submit_io(mpd, mapp);
2355
	mpd->io_done = 1;
2356 2357
}

2358 2359
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2371 2372
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2373 2374
{
	sector_t next;
2375
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2376

2377 2378 2379 2380
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2381
	 * ext4_map_blocks() multiple times in a loop
2382 2383 2384 2385
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2386
	/* check if thereserved journal credits might overflow */
2387
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2408 2409 2410
	/*
	 * First block in the extent
	 */
2411 2412 2413 2414
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2415 2416 2417
		return;
	}

2418
	next = mpd->b_blocknr + nrblocks;
2419 2420 2421
	/*
	 * Can we merge the block to our big extent?
	 */
2422 2423
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2424 2425 2426
		return;
	}

2427
flush_it:
2428 2429 2430 2431
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2432
	mpage_da_map_and_submit(mpd);
2433
	return;
2434 2435
}

2436
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2437
{
2438
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2439 2440
}

2441
/*
2442 2443 2444
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2445 2446 2447 2448 2449 2450 2451
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2452 2453
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2454
				  struct buffer_head *bh, int create)
2455
{
2456
	struct ext4_map_blocks map;
2457
	int ret = 0;
2458 2459 2460 2461
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2462 2463

	BUG_ON(create == 0);
2464 2465 2466 2467
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2468 2469 2470 2471 2472 2473

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2474 2475 2476 2477 2478 2479
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2480
		/*
2481
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2482
		 */
2483
		ret = ext4_da_reserve_space(inode, iblock);
2484 2485 2486 2487
		if (ret)
			/* not enough space to reserve */
			return ret;

2488 2489 2490 2491
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2492 2493
	}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2508
}
2509

2510 2511 2512
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
2513
 * callback function for block_write_begin() and block_write_full_page().
2514
 * These functions should only try to map a single block at a time.
2515 2516 2517 2518 2519
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2520 2521 2522
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2523 2524
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2525 2526
				   struct buffer_head *bh_result, int create)
{
2527
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2528
	return _ext4_get_block(inode, iblock, bh_result, 0);
2529 2530
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2553
	ClearPageChecked(page);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2579
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2580 2581 2582 2583
out:
	return ret;
}

2584 2585 2586
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2587
/*
2588 2589 2590 2591 2592 2593 2594 2595 2596
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2597 2598 2599 2600 2601
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2627
 */
2628
static int ext4_writepage(struct page *page,
2629
			  struct writeback_control *wbc)
2630
{
2631
	int ret = 0, commit_write = 0;
2632
	loff_t size;
2633
	unsigned int len;
2634
	struct buffer_head *page_bufs = NULL;
2635 2636
	struct inode *inode = page->mapping->host;

2637
	trace_ext4_writepage(inode, page);
2638 2639 2640 2641 2642
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2643

2644 2645
	/*
	 * If the page does not have buffers (for whatever reason),
2646
	 * try to create them using __block_write_begin.  If this
2647 2648
	 * fails, redirty the page and move on.
	 */
2649
	if (!page_has_buffers(page)) {
2650
		if (__block_write_begin(page, 0, len,
2651 2652
					noalloc_get_block_write)) {
		redirty_page:
2653 2654 2655 2656
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2657 2658 2659 2660 2661
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2662
		/*
2663 2664 2665 2666
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2667
		 */
2668 2669 2670
		goto redirty_page;
	}
	if (commit_write)
2671
		/* now mark the buffer_heads as dirty and uptodate */
2672
		block_commit_write(page, 0, len);
2673

2674
	if (PageChecked(page) && ext4_should_journal_data(inode))
2675 2676 2677 2678
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2679
		return __ext4_journalled_writepage(page, len);
2680

2681
	if (buffer_uninit(page_bufs)) {
2682 2683 2684 2685
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2686 2687
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2688 2689 2690 2691

	return ret;
}

2692
/*
2693 2694 2695 2696 2697
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2698
 */
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2710
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2711 2712 2713 2714 2715
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2716

2717 2718
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2719
 * address space and accumulate pages that need writing, and call
2720 2721
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2722 2723 2724
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2725 2726
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2727
{
2728
	struct buffer_head	*bh, *head;
2729
	struct inode		*inode = mapping->host;
2730 2731 2732 2733 2734 2735
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2736

2737 2738 2739
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2740 2741 2742 2743
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2744 2745 2746 2747 2748
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2749
	*done_index = index;
2750
	while (index <= end) {
2751
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2752 2753
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2754
			return 0;
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2766 2767
			if (page->index > end)
				goto out;
2768

2769 2770
			*done_index = page->index + 1;

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2781 2782 2783
			lock_page(page);

			/*
2784 2785 2786 2787 2788 2789
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2790
			 */
2791 2792 2793 2794
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2795 2796 2797 2798
				unlock_page(page);
				continue;
			}

2799 2800
			if (PageWriteback(page))
				wait_on_page_writeback(page);
2801 2802 2803

			BUG_ON(PageWriteback(page));

2804
			if (mpd->next_page != page->index)
2805 2806 2807 2808 2809 2810
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2811 2812
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2813
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2814 2815
				if (mpd->io_done)
					goto ret_extent_tail;
2816 2817
			} else {
				/*
2818 2819
				 * Page with regular buffer heads,
				 * just add all dirty ones
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2835 2836
						if (mpd->io_done)
							goto ret_extent_tail;
2837 2838
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2839 2840 2841 2842 2843 2844 2845 2846 2847
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2848 2849 2850 2851 2852 2853
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2854 2855 2856 2857 2858
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2859
				    wbc->sync_mode == WB_SYNC_NONE)
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2870
					goto out;
2871 2872 2873 2874 2875
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2876 2877 2878
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2879 2880 2881 2882
out:
	pagevec_release(&pvec);
	cond_resched();
	return ret;
2883 2884 2885
}


2886
static int ext4_da_writepages(struct address_space *mapping,
2887
			      struct writeback_control *wbc)
2888
{
2889 2890
	pgoff_t	index;
	int range_whole = 0;
2891
	handle_t *handle = NULL;
2892
	struct mpage_da_data mpd;
2893
	struct inode *inode = mapping->host;
2894
	int pages_written = 0;
2895
	unsigned int max_pages;
2896
	int range_cyclic, cycled = 1, io_done = 0;
2897 2898
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2899
	loff_t range_start = wbc->range_start;
2900
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2901
	pgoff_t done_index = 0;
2902
	pgoff_t end;
2903

2904
	trace_ext4_da_writepages(inode, wbc);
2905

2906 2907 2908 2909 2910
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2911
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2912
		return 0;
2913 2914 2915 2916 2917

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2918
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2919 2920 2921 2922 2923
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2924
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2925 2926
		return -EROFS;

2927 2928
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2929

2930 2931
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2932
		index = mapping->writeback_index;
2933 2934 2935 2936 2937
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2938 2939
		end = -1;
	} else {
2940
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2941 2942
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2961 2962 2963 2964 2965 2966
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2977
retry:
2978 2979 2980
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

2981
	while (!ret && wbc->nr_to_write > 0) {
2982 2983 2984 2985 2986 2987 2988 2989

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2990
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2991

2992 2993 2994 2995
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2996
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2997
			       "%ld pages, ino %lu; err %d", __func__,
2998
				wbc->nr_to_write, inode->i_ino, ret);
2999 3000
			goto out_writepages;
		}
3001 3002

		/*
3003
		 * Now call write_cache_pages_da() to find the next
3004
		 * contiguous region of logical blocks that need
3005
		 * blocks to be allocated by ext4 and submit them.
3006
		 */
3007
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3008
		/*
3009
		 * If we have a contiguous extent of pages and we
3010 3011 3012 3013
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3014
			mpage_da_map_and_submit(&mpd);
3015 3016
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3017
		trace_ext4_da_write_pages(inode, &mpd);
3018
		wbc->nr_to_write -= mpd.pages_written;
3019

3020
		ext4_journal_stop(handle);
3021

3022
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3023 3024 3025 3026
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3027
			jbd2_journal_force_commit_nested(sbi->s_journal);
3028 3029
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3030 3031 3032 3033
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3034
			pages_written += mpd.pages_written;
3035
			ret = 0;
3036
			io_done = 1;
3037
		} else if (wbc->nr_to_write)
3038 3039 3040 3041 3042 3043
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3044
	}
3045 3046 3047 3048 3049 3050 3051
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3052 3053

	/* Update index */
3054
	wbc->range_cyclic = range_cyclic;
3055 3056 3057 3058 3059
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
3060
		mapping->writeback_index = done_index;
3061

3062
out_writepages:
3063
	wbc->nr_to_write -= nr_to_writebump;
3064
	wbc->range_start = range_start;
3065
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3066
	return ret;
3067 3068
}

3069 3070 3071 3072 3073 3074 3075 3076 3077
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3078
	 * counters can get slightly wrong with percpu_counter_batch getting
3079 3080 3081 3082 3083 3084 3085 3086 3087
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3088 3089
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3090 3091 3092
		 */
		return 1;
	}
3093 3094 3095 3096 3097 3098 3099
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3100 3101 3102
	return 0;
}

3103
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3104 3105
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3106
{
3107
	int ret, retries = 0;
3108 3109 3110 3111 3112 3113
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3114 3115 3116 3117 3118 3119 3120

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3121
	trace_ext4_da_write_begin(inode, pos, len, flags);
3122
retry:
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3134 3135 3136
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3137

3138
	page = grab_cache_page_write_begin(mapping, index, flags);
3139 3140 3141 3142 3143
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3144 3145
	*pagep = page;

3146
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3147 3148 3149 3150
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3151 3152 3153 3154 3155 3156
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3157
			ext4_truncate_failed_write(inode);
3158 3159
	}

3160 3161
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3162 3163 3164 3165
out:
	return ret;
}

3166 3167 3168 3169 3170
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3171
					    unsigned long offset)
3172 3173 3174 3175 3176 3177 3178 3179 3180
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3181
	for (i = 0; i < idx; i++)
3182 3183
		bh = bh->b_this_page;

3184
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3185 3186 3187 3188
		return 0;
	return 1;
}

3189
static int ext4_da_write_end(struct file *file,
3190 3191 3192
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3193 3194 3195 3196 3197
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3198
	unsigned long start, end;
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3212

3213
	trace_ext4_da_write_end(inode, pos, len, copied);
3214
	start = pos & (PAGE_CACHE_SIZE - 1);
3215
	end = start + copied - 1;
3216 3217 3218 3219 3220 3221 3222 3223

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3235

3236 3237 3238
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3239 3240 3241 3242 3243
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3244
		}
3245
	}
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3267
	ext4_da_page_release_reservation(page, offset);
3268 3269 3270 3271 3272 3273 3274

out:
	ext4_invalidatepage(page, offset);

	return;
}

3275 3276 3277 3278 3279
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3280 3281
	trace_ext4_alloc_da_blocks(inode);

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3292
	 *
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
3305
	 * the pages by calling redirty_page_for_writepage() but that
3306 3307 3308 3309 3310 3311
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3312
	 *
3313 3314 3315 3316 3317 3318
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3319

3320 3321 3322 3323 3324
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3325
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3326 3327 3328 3329 3330 3331 3332 3333
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3334
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3335 3336 3337 3338 3339
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3350 3351
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3363
		 * NB. EXT4_STATE_JDATA is not set on files other than
3364 3365 3366 3367 3368 3369
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3370
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3371
		journal = EXT4_JOURNAL(inode);
3372 3373 3374
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3375 3376 3377 3378 3379

		if (err)
			return 0;
	}

3380
	return generic_block_bmap(mapping, block, ext4_get_block);
3381 3382
}

3383
static int ext4_readpage(struct file *file, struct page *page)
3384
{
3385
	trace_ext4_readpage(page);
3386
	return mpage_readpage(page, ext4_get_block);
3387 3388 3389
}

static int
3390
ext4_readpages(struct file *file, struct address_space *mapping,
3391 3392
		struct list_head *pages, unsigned nr_pages)
{
3393
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3394 3395
}

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3416
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3417
{
3418
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3419

3420 3421
	trace_ext4_invalidatepage(page, offset);

3422 3423 3424 3425 3426
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3427 3428 3429 3430 3431 3432
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3433 3434 3435 3436
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3437 3438
}

3439
static int ext4_releasepage(struct page *page, gfp_t wait)
3440
{
3441
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3442

3443 3444
	trace_ext4_releasepage(page);

3445 3446 3447
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3448 3449 3450 3451
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3452 3453 3454
}

/*
3455 3456
 * O_DIRECT for ext3 (or indirect map) based files
 *
3457 3458 3459 3460 3461
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3462 3463
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3464
 */
3465
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3466 3467
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3468 3469 3470
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3471
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3472
	handle_t *handle;
3473 3474 3475
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3476
	int retries = 0;
3477 3478 3479 3480 3481

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3482 3483 3484 3485 3486 3487
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3488
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3489 3490 3491 3492
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3493 3494
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3495
			ext4_journal_stop(handle);
3496 3497 3498
		}
	}

3499
retry:
3500
	if (rw == READ && ext4_should_dioread_nolock(inode))
3501
		ret = __blockdev_direct_IO(rw, iocb, inode,
3502 3503
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3504 3505
				 ext4_get_block, NULL, NULL, 0);
	else {
3506 3507
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3508
				 offset, nr_segs,
3509
				 ext4_get_block, NULL);
3510 3511 3512 3513 3514 3515 3516 3517 3518

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3519 3520
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3521

J
Jan Kara 已提交
3522
	if (orphan) {
3523 3524
		int err;

J
Jan Kara 已提交
3525 3526 3527 3528 3529 3530 3531
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3532 3533 3534
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3535 3536 3537
			goto out;
		}
		if (inode->i_nlink)
3538
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3539
		if (ret > 0) {
3540 3541 3542 3543 3544 3545 3546 3547
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3548
				 * ext4_mark_inode_dirty() to userspace.  So
3549 3550
				 * ignore it.
				 */
3551
				ext4_mark_inode_dirty(handle, inode);
3552 3553
			}
		}
3554
		err = ext4_journal_stop(handle);
3555 3556 3557 3558 3559 3560 3561
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3562 3563 3564 3565 3566
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3567
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3568 3569
		   struct buffer_head *bh_result, int create)
{
3570
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3571
		   inode->i_ino, create);
3572 3573
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3574 3575 3576
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3577 3578
			    ssize_t size, void *private, int ret,
			    bool is_async)
3579 3580 3581
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3582 3583
	unsigned long flags;
	struct ext4_inode_info *ei;
3584

3585 3586
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3587
		goto out;
3588

3589 3590 3591 3592 3593 3594
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3595
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3596 3597
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3598 3599 3600 3601
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3602 3603
	}

3604 3605
	io_end->offset = offset;
	io_end->size = size;
3606 3607 3608 3609
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3610 3611
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3612
	/* Add the io_end to per-inode completed aio dio list*/
3613 3614 3615 3616
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3617 3618 3619

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3620 3621
	iocb->private = NULL;
}
3622

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3640
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
3668
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3687 3688 3689 3690 3691
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3692
 * For holes, we fallocate those blocks, mark them as uninitialized
3693
 * If those blocks were preallocated, we mark sure they are splited, but
3694
 * still keep the range to write as uninitialized.
3695
 *
3696 3697 3698 3699
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3718 3719 3720
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3721 3722
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3723 3724
		 *
 		 * As to previously fallocated extents, ext4 get_block
3725 3726 3727
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3728 3729 3730 3731 3732 3733 3734 3735
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3736
 		 */
3737 3738 3739
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3740
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3741 3742 3743 3744
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3745
			 * direct IO, so that later ext4_map_blocks()
3746 3747 3748 3749 3750 3751 3752
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3753 3754 3755
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3756
					 ext4_get_block_write,
3757
					 ext4_end_io_dio);
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3777 3778
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3779
			int err;
3780 3781 3782 3783
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3784 3785 3786 3787
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3788
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3789
		}
3790 3791
		return ret;
	}
3792 3793

	/* for write the the end of file case, we fall back to old way */
3794 3795 3796 3797 3798 3799 3800 3801 3802
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3803
	ssize_t ret;
3804

3805
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3806
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3807 3808 3809 3810 3811 3812
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3813 3814
}

3815
/*
3816
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3828
static int ext4_journalled_set_page_dirty(struct page *page)
3829 3830 3831 3832 3833
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3834
static const struct address_space_operations ext4_ordered_aops = {
3835 3836
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3837
	.writepage		= ext4_writepage,
3838 3839 3840 3841 3842 3843 3844 3845 3846
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3847
	.error_remove_page	= generic_error_remove_page,
3848 3849
};

3850
static const struct address_space_operations ext4_writeback_aops = {
3851 3852
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3853
	.writepage		= ext4_writepage,
3854 3855 3856 3857 3858 3859 3860 3861 3862
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3863
	.error_remove_page	= generic_error_remove_page,
3864 3865
};

3866
static const struct address_space_operations ext4_journalled_aops = {
3867 3868
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3869
	.writepage		= ext4_writepage,
3870 3871 3872 3873 3874 3875 3876 3877
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3878
	.error_remove_page	= generic_error_remove_page,
3879 3880
};

3881
static const struct address_space_operations ext4_da_aops = {
3882 3883
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3884
	.writepage		= ext4_writepage,
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3895
	.error_remove_page	= generic_error_remove_page,
3896 3897
};

3898
void ext4_set_aops(struct inode *inode)
3899
{
3900 3901 3902 3903
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3904
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3905 3906 3907
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3908 3909
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3910
	else
3911
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3912 3913 3914
}

/*
3915
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3916 3917 3918 3919
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3920
int ext4_block_truncate_page(handle_t *handle,
3921 3922
		struct address_space *mapping, loff_t from)
{
3923
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3924
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3925 3926
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3927 3928
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3929
	struct page *page;
3930 3931
	int err = 0;

3932 3933
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3934 3935 3936
	if (!page)
		return -EINVAL;

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3961
		ext4_get_block(inode, iblock, bh, 0);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3982
	if (ext4_should_journal_data(inode)) {
3983
		BUFFER_TRACE(bh, "get write access");
3984
		err = ext4_journal_get_write_access(handle, bh);
3985 3986 3987 3988
		if (err)
			goto unlock;
	}

3989
	zero_user(page, offset, length);
3990 3991 3992 3993

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3994
	if (ext4_should_journal_data(inode)) {
3995
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3996
	} else {
3997
		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3998
			err = ext4_jbd2_file_inode(handle, inode);
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4022
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4023 4024
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4025
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4026 4027 4028
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4029
 *	This is a helper function used by ext4_truncate().
4030 4031 4032 4033 4034 4035 4036
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4037
 *	past the truncation point is possible until ext4_truncate()
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4056
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4057 4058
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4059 4060 4061 4062 4063
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4064
	/* Make k index the deepest non-null offset + 1 */
4065 4066
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4067
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4078
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4090
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4091 4092 4093 4094 4095 4096
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4097
	while (partial > p) {
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
4112 4113 4114
 *
 * Return 0 on success, 1 on invalid block range
 * and < 0 on fatal error.
4115
 */
4116 4117 4118 4119 4120
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4121 4122
{
	__le32 *p;
4123
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4124
	int	err;
4125 4126 4127

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4128

4129 4130
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4131 4132 4133
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4134 4135 4136
		return 1;
	}

4137 4138
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4139
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4140
			err = ext4_handle_dirty_metadata(handle, inode, bh);
4141 4142
			if (unlikely(err))
				goto out_err;
4143 4144
		}
		err = ext4_mark_inode_dirty(handle, inode);
4145 4146
		if (unlikely(err))
			goto out_err;
4147 4148
		err = ext4_truncate_restart_trans(handle, inode,
						  blocks_for_truncate(inode));
4149 4150
		if (unlikely(err))
			goto out_err;
4151 4152
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4153 4154 4155
			err = ext4_journal_get_write_access(handle, bh);
			if (unlikely(err))
				goto out_err;
4156 4157 4158
		}
	}

4159 4160
	for (p = first; p < last; p++)
		*p = 0;
4161

4162
	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4163
	return 0;
4164 4165 4166
out_err:
	ext4_std_error(inode->i_sb, err);
	return err;
4167 4168 4169
}

/**
4170
 * ext4_free_data - free a list of data blocks
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4188
static void ext4_free_data(handle_t *handle, struct inode *inode,
4189 4190 4191
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4192
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4193 4194 4195 4196
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4197
	ext4_fsblk_t nr;		    /* Current block # */
4198 4199
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
4200
	int err = 0;
4201 4202 4203

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4204
		err = ext4_journal_get_write_access(handle, this_bh);
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4222 4223 4224 4225
				err = ext4_clear_blocks(handle, inode, this_bh,
						        block_to_free, count,
						        block_to_free_p, p);
				if (err)
4226
					break;
4227 4228 4229 4230 4231 4232 4233
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

4234 4235 4236 4237 4238 4239
	if (!err && count > 0)
		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
					count, block_to_free_p, p);
	if (err < 0)
		/* fatal error */
		return;
4240 4241

	if (this_bh) {
4242
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4243 4244 4245 4246 4247 4248 4249

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4250
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4251
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4252
		else
4253 4254 4255 4256
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4257 4258 4259 4260
	}
}

/**
4261
 *	ext4_free_branches - free an array of branches
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4273
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4274 4275 4276
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4277
	ext4_fsblk_t nr;
4278 4279
	__le32 *p;

4280
	if (ext4_handle_is_aborted(handle))
4281 4282 4283 4284
		return;

	if (depth--) {
		struct buffer_head *bh;
4285
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4286 4287 4288 4289 4290 4291
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4292 4293
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4294 4295 4296 4297
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4298 4299 4300
				break;
			}

4301 4302 4303 4304 4305 4306 4307 4308
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4309 4310
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4311 4312 4313 4314 4315
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4316
			ext4_free_branches(handle, inode, bh,
4317 4318 4319
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4320
			brelse(bh);
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4338
			if (ext4_handle_is_aborted(handle))
4339 4340
				return;
			if (try_to_extend_transaction(handle, inode)) {
4341
				ext4_mark_inode_dirty(handle, inode);
4342 4343
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4344 4345
			}

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4357
			ext4_free_blocks(handle, inode, NULL, nr, 1,
4358 4359
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4360 4361 4362 4363 4364 4365 4366

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4367
				if (!ext4_journal_get_write_access(handle,
4368 4369 4370
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4371 4372 4373 4374
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4375 4376 4377 4378 4379 4380
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4381
		ext4_free_data(handle, inode, parent_bh, first, last);
4382 4383 4384
	}
}

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4398
/*
4399
 * ext4_truncate()
4400
 *
4401 4402
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4419
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4420
 * that this inode's truncate did not complete and it will again call
4421 4422
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4423
 * that's fine - as long as they are linked from the inode, the post-crash
4424
 * ext4_truncate() run will find them and release them.
4425
 */
4426
void ext4_truncate(struct inode *inode)
4427 4428
{
	handle_t *handle;
4429
	struct ext4_inode_info *ei = EXT4_I(inode);
4430
	__le32 *i_data = ei->i_data;
4431
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4432
	struct address_space *mapping = inode->i_mapping;
4433
	ext4_lblk_t offsets[4];
4434 4435 4436 4437
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
4438
	ext4_lblk_t last_block;
4439 4440
	unsigned blocksize = inode->i_sb->s_blocksize;

4441 4442
	trace_ext4_truncate_enter(inode);

4443
	if (!ext4_can_truncate(inode))
4444 4445
		return;

4446
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4447

4448
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4449
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4450

4451
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4452
		ext4_ext_truncate(inode);
4453
		trace_ext4_truncate_exit(inode);
4454 4455
		return;
	}
4456

4457
	handle = start_transaction(inode);
4458
	if (IS_ERR(handle))
4459 4460 4461
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4462
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4463

4464 4465 4466
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4467

4468
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4481
	if (ext4_orphan_add(handle, inode))
4482 4483
		goto out_stop;

4484 4485 4486 4487 4488
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4489

4490
	ext4_discard_preallocations(inode);
4491

4492 4493 4494 4495 4496
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4497
	 * ext4 *really* writes onto the disk inode.
4498 4499 4500 4501
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4502 4503
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4504 4505 4506
		goto do_indirects;
	}

4507
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4508 4509 4510 4511
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4512
			ext4_free_branches(handle, inode, NULL,
4513 4514 4515 4516 4517 4518 4519 4520 4521
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4522
			ext4_free_branches(handle, inode, partial->bh,
4523 4524 4525 4526 4527 4528
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4529
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4530 4531 4532
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4533
		brelse(partial->bh);
4534 4535 4536 4537 4538 4539
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4540
		nr = i_data[EXT4_IND_BLOCK];
4541
		if (nr) {
4542 4543
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4544
		}
4545 4546
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4547
		if (nr) {
4548 4549
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4550
		}
4551 4552
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4553
		if (nr) {
4554 4555
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4556
		}
4557
	case EXT4_TIND_BLOCK:
4558 4559 4560
		;
	}

4561
	up_write(&ei->i_data_sem);
4562
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4563
	ext4_mark_inode_dirty(handle, inode);
4564 4565 4566 4567 4568 4569

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4570
		ext4_handle_sync(handle);
4571 4572 4573 4574 4575
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4576
	 * ext4_delete_inode(), and we allow that function to clean up the
4577 4578 4579
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4580
		ext4_orphan_del(handle, inode);
4581

4582
	ext4_journal_stop(handle);
4583
	trace_ext4_truncate_exit(inode);
4584 4585 4586
}

/*
4587
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4588 4589 4590 4591
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4592 4593
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4594
{
4595 4596 4597 4598 4599 4600
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4601
	iloc->bh = NULL;
4602 4603
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4604

4605 4606 4607
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4608 4609
		return -EIO;

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4620
	if (!bh) {
4621 4622
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4623 4624 4625 4626
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4650
			int i, start;
4651

4652
			start = inode_offset & ~(inodes_per_block - 1);
4653

4654 4655
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4668
			for (i = start; i < start + inodes_per_block; i++) {
4669 4670
				if (i == inode_offset)
					continue;
4671
				if (ext4_test_bit(i, bitmap_bh->b_data))
4672 4673 4674
					break;
			}
			brelse(bitmap_bh);
4675
			if (i == start + inodes_per_block) {
4676 4677 4678 4679 4680 4681 4682 4683 4684
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4685 4686 4687 4688 4689 4690 4691 4692 4693
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
4694
			/* s_inode_readahead_blks is always a power of 2 */
4695 4696 4697 4698 4699 4700 4701
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4702
				num -= ext4_itable_unused_count(sb, gdp);
4703 4704 4705 4706 4707 4708 4709
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4710 4711 4712 4713 4714
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
4715
		trace_ext4_load_inode(inode);
4716 4717 4718 4719 4720
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4721 4722
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4723 4724 4725 4726 4727 4728 4729 4730 4731
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4732
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4733 4734
{
	/* We have all inode data except xattrs in memory here. */
4735
	return __ext4_get_inode_loc(inode, iloc,
4736
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4737 4738
}

4739
void ext4_set_inode_flags(struct inode *inode)
4740
{
4741
	unsigned int flags = EXT4_I(inode)->i_flags;
4742 4743

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4744
	if (flags & EXT4_SYNC_FL)
4745
		inode->i_flags |= S_SYNC;
4746
	if (flags & EXT4_APPEND_FL)
4747
		inode->i_flags |= S_APPEND;
4748
	if (flags & EXT4_IMMUTABLE_FL)
4749
		inode->i_flags |= S_IMMUTABLE;
4750
	if (flags & EXT4_NOATIME_FL)
4751
		inode->i_flags |= S_NOATIME;
4752
	if (flags & EXT4_DIRSYNC_FL)
4753 4754 4755
		inode->i_flags |= S_DIRSYNC;
}

4756 4757 4758
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4779
}
4780

4781
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4782
				  struct ext4_inode_info *ei)
4783 4784
{
	blkcnt_t i_blocks ;
4785 4786
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4787 4788 4789 4790 4791 4792

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4793
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4794 4795 4796 4797 4798
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4799 4800 4801 4802
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4803

4804
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4805
{
4806 4807
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4808 4809
	struct ext4_inode_info *ei;
	struct inode *inode;
4810
	journal_t *journal = EXT4_SB(sb)->s_journal;
4811
	long ret;
4812 4813
	int block;

4814 4815 4816 4817 4818 4819 4820
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4821
	iloc.bh = NULL;
4822

4823 4824
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4825
		goto bad_inode;
4826
	raw_inode = ext4_raw_inode(&iloc);
4827 4828 4829
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4830
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4831 4832 4833 4834 4835
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4836
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4837 4838 4839 4840 4841 4842 4843 4844 4845
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4846
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4847
			/* this inode is deleted */
4848
			ret = -ESTALE;
4849 4850 4851 4852 4853 4854 4855 4856
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4857
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4858
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4859
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4860 4861
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4862
	inode->i_size = ext4_isize(raw_inode);
4863
	ei->i_disksize = inode->i_size;
4864 4865 4866
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4867 4868
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4869
	ei->i_last_alloc_group = ~0;
4870 4871 4872 4873
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4874
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4875 4876 4877
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4889
		read_lock(&journal->j_state_lock);
4890 4891 4892 4893 4894 4895 4896 4897
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4898
		read_unlock(&journal->j_state_lock);
4899 4900 4901 4902
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4903
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4904
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4905
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4906
		    EXT4_INODE_SIZE(inode->i_sb)) {
4907
			ret = -EIO;
4908
			goto bad_inode;
4909
		}
4910 4911
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4912 4913
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4914 4915
		} else {
			__le32 *magic = (void *)raw_inode +
4916
					EXT4_GOOD_OLD_INODE_SIZE +
4917
					ei->i_extra_isize;
4918
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4919
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4920 4921 4922 4923
		}
	} else
		ei->i_extra_isize = 0;

4924 4925 4926 4927 4928
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4929 4930 4931 4932 4933 4934 4935
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4936
	ret = 0;
4937
	if (ei->i_file_acl &&
4938
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4939 4940
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4941 4942
		ret = -EIO;
		goto bad_inode;
4943
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4944 4945 4946 4947 4948
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4949
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4950 4951
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4952
		/* Validate block references which are part of inode */
4953 4954
		ret = ext4_check_inode_blockref(inode);
	}
4955
	if (ret)
4956
		goto bad_inode;
4957

4958
	if (S_ISREG(inode->i_mode)) {
4959 4960 4961
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4962
	} else if (S_ISDIR(inode->i_mode)) {
4963 4964
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4965
	} else if (S_ISLNK(inode->i_mode)) {
4966
		if (ext4_inode_is_fast_symlink(inode)) {
4967
			inode->i_op = &ext4_fast_symlink_inode_operations;
4968 4969 4970
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4971 4972
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4973
		}
4974 4975
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4976
		inode->i_op = &ext4_special_inode_operations;
4977 4978 4979 4980 4981 4982
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4983 4984
	} else {
		ret = -EIO;
4985
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4986
		goto bad_inode;
4987
	}
4988
	brelse(iloc.bh);
4989
	ext4_set_inode_flags(inode);
4990 4991
	unlock_new_inode(inode);
	return inode;
4992 4993

bad_inode:
4994
	brelse(iloc.bh);
4995 4996
	iget_failed(inode);
	return ERR_PTR(ret);
4997 4998
}

4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
5012
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5013
		raw_inode->i_blocks_high = 0;
5014
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5015 5016 5017 5018 5019 5020
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5021 5022 5023 5024
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
5025
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5026
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5027
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5028
	} else {
5029
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5030 5031 5032 5033
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5034
	}
5035
	return 0;
5036 5037
}

5038 5039 5040 5041 5042 5043 5044
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5045
static int ext4_do_update_inode(handle_t *handle,
5046
				struct inode *inode,
5047
				struct ext4_iloc *iloc)
5048
{
5049 5050
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5051 5052 5053 5054 5055
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5056
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5057
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5058

5059
	ext4_get_inode_flags(ei);
5060
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5061
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5062 5063 5064 5065 5066 5067
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5068
		if (!ei->i_dtime) {
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5086 5087 5088 5089 5090 5091

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5092 5093
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5094
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5095
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5096 5097
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
5098 5099
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5100
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5117
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5118
			sb->s_dirt = 1;
5119
			ext4_handle_sync(handle);
5120
			err = ext4_handle_dirty_metadata(handle, NULL,
5121
					EXT4_SB(sb)->s_sbh);
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5136 5137 5138
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5139

5140 5141 5142 5143 5144
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5145
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5146 5147
	}

5148
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5149
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5150 5151
	if (!err)
		err = rc;
5152
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5153

5154
	ext4_update_inode_fsync_trans(handle, inode, 0);
5155
out_brelse:
5156
	brelse(bh);
5157
	ext4_std_error(inode->i_sb, err);
5158 5159 5160 5161
	return err;
}

/*
5162
 * ext4_write_inode()
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5179
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5196
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5197
{
5198 5199
	int err;

5200 5201 5202
	if (current->flags & PF_MEMALLOC)
		return 0;

5203 5204 5205 5206 5207 5208
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5209

5210
		if (wbc->sync_mode != WB_SYNC_ALL)
5211 5212 5213 5214 5215
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5216

5217
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5218 5219
		if (err)
			return err;
5220
		if (wbc->sync_mode == WB_SYNC_ALL)
5221 5222
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5223 5224
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5225 5226
			err = -EIO;
		}
5227
		brelse(iloc.bh);
5228 5229
	}
	return err;
5230 5231 5232
}

/*
5233
 * ext4_setattr()
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5247 5248 5249 5250 5251 5252 5253 5254
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5255
 */
5256
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5257 5258 5259
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5260
	int orphan = 0;
5261 5262 5263 5264 5265 5266
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5267
	if (is_quota_modification(inode, attr))
5268
		dquot_initialize(inode);
5269 5270 5271 5272 5273 5274
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
5275
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5276
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5277 5278 5279 5280
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5281
		error = dquot_transfer(inode, attr);
5282
		if (error) {
5283
			ext4_journal_stop(handle);
5284 5285 5286 5287 5288 5289 5290 5291
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5292 5293
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5294 5295
	}

5296
	if (attr->ia_valid & ATTR_SIZE) {
5297
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5298 5299
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5300 5301
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5302 5303 5304
		}
	}

5305
	if (S_ISREG(inode->i_mode) &&
5306 5307
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5308
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5309 5310
		handle_t *handle;

5311
		handle = ext4_journal_start(inode, 3);
5312 5313 5314 5315
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5316 5317 5318 5319
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5320 5321
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5322 5323
		if (!error)
			error = rc;
5324
		ext4_journal_stop(handle);
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5337
				orphan = 0;
5338 5339 5340 5341
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5342
		/* ext4_truncate will clear the flag */
5343
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5344
			ext4_truncate(inode);
5345 5346
	}

C
Christoph Hellwig 已提交
5347 5348 5349
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5350

C
Christoph Hellwig 已提交
5351 5352 5353 5354 5355 5356 5357 5358 5359
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5360
	if (orphan && inode->i_nlink)
5361
		ext4_orphan_del(NULL, inode);
5362 5363

	if (!rc && (ia_valid & ATTR_MODE))
5364
		rc = ext4_acl_chmod(inode);
5365 5366

err_out:
5367
	ext4_std_error(inode->i_sb, error);
5368 5369 5370 5371 5372
	if (!error)
		error = rc;
	return error;
}

5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5397

5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5425
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5426 5427
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5428
}
5429

5430
/*
5431 5432 5433
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5434
 *
5435
 * If datablocks are discontiguous, they are possible to spread over
5436
 * different block groups too. If they are contiuguous, with flexbg,
5437
 * they could still across block group boundary.
5438
 *
5439 5440
 * Also account for superblock, inode, quota and xattr blocks
 */
5441
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5442
{
5443 5444
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5471 5472
	if (groups > ngroups)
		groups = ngroups;
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5487 5488
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5489
 *
5490
 * This could be called via ext4_write_begin()
5491
 *
5492
 * We need to consider the worse case, when
5493
 * one new block per extent.
5494
 */
5495
int ext4_writepage_trans_blocks(struct inode *inode)
5496
{
5497
	int bpp = ext4_journal_blocks_per_page(inode);
5498 5499
	int ret;

5500
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5501

5502
	/* Account for data blocks for journalled mode */
5503
	if (ext4_should_journal_data(inode))
5504
		ret += bpp;
5505 5506
	return ret;
}
5507 5508 5509 5510 5511

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5512
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5513 5514 5515 5516 5517 5518 5519 5520 5521
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5522
/*
5523
 * The caller must have previously called ext4_reserve_inode_write().
5524 5525
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5526
int ext4_mark_iloc_dirty(handle_t *handle,
5527
			 struct inode *inode, struct ext4_iloc *iloc)
5528 5529 5530
{
	int err = 0;

5531 5532 5533
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5534 5535 5536
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5537
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5538
	err = ext4_do_update_inode(handle, inode, iloc);
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5549 5550
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5551
{
5552 5553 5554 5555 5556 5557 5558 5559 5560
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5561 5562
		}
	}
5563
	ext4_std_error(inode->i_sb, err);
5564 5565 5566
	return err;
}

5567 5568 5569 5570
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
5571 5572 5573 5574
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5587 5588
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5621
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5622
{
5623
	struct ext4_iloc iloc;
5624 5625 5626
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5627 5628

	might_sleep();
5629
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5630
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5631 5632
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5633
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5647 5648
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
5649 5650
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5651
					ext4_warning(inode->i_sb,
5652 5653 5654
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
5655 5656
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5657 5658 5659 5660
				}
			}
		}
	}
5661
	if (!err)
5662
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5663 5664 5665 5666
	return err;
}

/*
5667
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5668 5669 5670 5671 5672
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5673
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5674 5675 5676 5677 5678 5679
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5680
void ext4_dirty_inode(struct inode *inode)
5681 5682 5683
{
	handle_t *handle;

5684
	handle = ext4_journal_start(inode, 2);
5685 5686
	if (IS_ERR(handle))
		goto out;
5687 5688 5689

	ext4_mark_inode_dirty(handle, inode);

5690
	ext4_journal_stop(handle);
5691 5692 5693 5694 5695 5696 5697 5698
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5699
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5700 5701 5702
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5703
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5704
{
5705
	struct ext4_iloc iloc;
5706 5707 5708

	int err = 0;
	if (handle) {
5709
		err = ext4_get_inode_loc(inode, &iloc);
5710 5711
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5712
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5713
			if (!err)
5714
				err = ext4_handle_dirty_metadata(handle,
5715
								 NULL,
5716
								 iloc.bh);
5717 5718 5719
			brelse(iloc.bh);
		}
	}
5720
	ext4_std_error(inode->i_sb, err);
5721 5722 5723 5724
	return err;
}
#endif

5725
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5741
	journal = EXT4_JOURNAL(inode);
5742 5743
	if (!journal)
		return 0;
5744
	if (is_journal_aborted(journal))
5745 5746
		return -EROFS;

5747 5748
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5759
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5760
	else
5761
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5762
	ext4_set_aops(inode);
5763

5764
	jbd2_journal_unlock_updates(journal);
5765 5766 5767

	/* Finally we can mark the inode as dirty. */

5768
	handle = ext4_journal_start(inode, 1);
5769 5770 5771
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5772
	err = ext4_mark_inode_dirty(handle, inode);
5773
	ext4_handle_sync(handle);
5774 5775
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5776 5777 5778

	return err;
}
5779 5780 5781 5782 5783 5784

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5785
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5786
{
5787
	struct page *page = vmf->page;
5788 5789 5790
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5791
	void *fsdata;
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5816 5817 5818 5819 5820 5821 5822
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5823 5824
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5825 5826
					ext4_bh_unmapped)) {
			unlock_page(page);
5827
			goto out_unlock;
5828
		}
5829
	}
5830
	unlock_page(page);
5831 5832 5833 5834 5835 5836 5837 5838
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5839
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5840 5841 5842
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5843
			len, len, page, fsdata);
5844 5845 5846 5847
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5848 5849
	if (ret)
		ret = VM_FAULT_SIGBUS;
5850 5851 5852
	up_read(&inode->i_alloc_sem);
	return ret;
}
反馈
建议
客服 返回
顶部