dib7000p.c 72.1 KB
Newer Older
1 2 3
/*
 * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
 *
4
 * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
5 6 7 8 9 10
 *
 * This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License as
 *	published by the Free Software Foundation, version 2.
 */
#include <linux/kernel.h>
11
#include <linux/slab.h>
12
#include <linux/i2c.h>
13
#include <linux/mutex.h>
14
#include <asm/div64.h>
15

16
#include "dvb_math.h"
17 18 19 20 21 22 23 24
#include "dvb_frontend.h"

#include "dib7000p.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");

25 26
static int buggy_sfn_workaround;
module_param(buggy_sfn_workaround, int, 0644);
27
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
28

29
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
30

31 32 33 34 35
struct i2c_device {
	struct i2c_adapter *i2c_adap;
	u8 i2c_addr;
};

36 37
struct dib7000p_state {
	struct dvb_frontend demod;
38
	struct dib7000p_config cfg;
39 40

	u8 i2c_addr;
41
	struct i2c_adapter *i2c_adap;
42 43 44 45 46

	struct dibx000_i2c_master i2c_master;

	u16 wbd_ref;

47
	u8 current_band;
48
	u32 current_bandwidth;
49 50 51
	struct dibx000_agc_config *current_agc;
	u32 timf;

52 53
	u8 div_force_off:1;
	u8 div_state:1;
54
	u16 div_sync_wait;
55 56 57

	u8 agc_state;

58 59
	u16 gpio_dir;
	u16 gpio_val;
60

61 62 63 64 65 66 67
	u8 sfn_workaround_active:1;

#define SOC7090 0x7090
	u16 version;

	u16 tuner_enable;
	struct i2c_adapter dib7090_tuner_adap;
68 69 70 71 72

	/* for the I2C transfer */
	struct i2c_msg msg[2];
	u8 i2c_write_buffer[4];
	u8 i2c_read_buffer[2];
73
	struct mutex i2c_buffer_lock;
74 75

	u8 input_mode_mpeg;
76 77 78 79 80 81

	/* for DVBv5 stats */
	s64 old_ucb;
	unsigned long per_jiffies_stats;
	unsigned long ber_jiffies_stats;
	unsigned long get_stats_time;
82 83 84 85
};

enum dib7000p_power_mode {
	DIB7000P_POWER_ALL = 0,
86
	DIB7000P_POWER_ANALOG_ADC,
87 88 89
	DIB7000P_POWER_INTERFACE_ONLY,
};

90
/* dib7090 specific fonctions */
91 92
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);
93 94
static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode);
static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode);
95

96 97
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{
98 99 100 101 102 103 104
	u16 ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock");
		return 0;
	}

105 106 107 108 109 110 111 112 113 114 115 116 117 118
	state->i2c_write_buffer[0] = reg >> 8;
	state->i2c_write_buffer[1] = reg & 0xff;

	memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
	state->msg[0].addr = state->i2c_addr >> 1;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 2;
	state->msg[1].addr = state->i2c_addr >> 1;
	state->msg[1].flags = I2C_M_RD;
	state->msg[1].buf = state->i2c_read_buffer;
	state->msg[1].len = 2;

	if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2)
119
		dprintk("i2c read error on %d", reg);
120

121 122 123
	ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
124 125 126 127
}

static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
{
128 129 130 131 132 133 134
	int ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock");
		return -EINVAL;
	}

135 136 137 138 139 140 141 142 143 144 145
	state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
	state->i2c_write_buffer[1] = reg & 0xff;
	state->i2c_write_buffer[2] = (val >> 8) & 0xff;
	state->i2c_write_buffer[3] = val & 0xff;

	memset(&state->msg[0], 0, sizeof(struct i2c_msg));
	state->msg[0].addr = state->i2c_addr >> 1;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 4;

146 147 148 149
	ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ?
			-EREMOTEIO : 0);
	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
150
}
151 152

static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
{
	u16 l = 0, r, *n;
	n = buf;
	l = *n++;
	while (l) {
		r = *n++;

		do {
			dib7000p_write_word(state, r, *n++);
			r++;
		} while (--l);
		l = *n++;
	}
}

168 169
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{
170
	int ret = 0;
171 172 173 174
	u16 outreg, fifo_threshold, smo_mode;

	outreg = 0;
	fifo_threshold = 1792;
175
	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
176

177
	dprintk("setting output mode for demod %p to %d", &state->demod, mode);
178 179

	switch (mode) {
180
	case OUTMODE_MPEG2_PAR_GATED_CLK:
181 182
		outreg = (1 << 10);	/* 0x0400 */
		break;
183
	case OUTMODE_MPEG2_PAR_CONT_CLK:
184 185
		outreg = (1 << 10) | (1 << 6);	/* 0x0440 */
		break;
186
	case OUTMODE_MPEG2_SERIAL:
187 188 189 190 191 192 193 194
		outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0480 */
		break;
	case OUTMODE_DIVERSITY:
		if (state->cfg.hostbus_diversity)
			outreg = (1 << 10) | (4 << 6);	/* 0x0500 */
		else
			outreg = (1 << 11);
		break;
195
	case OUTMODE_MPEG2_FIFO:
196 197 198 199 200 201 202
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		outreg = (1 << 10) | (5 << 6);
		break;
	case OUTMODE_ANALOG_ADC:
		outreg = (1 << 10) | (3 << 6);
		break;
203
	case OUTMODE_HIGH_Z:
204 205 206 207 208
		outreg = 0;
		break;
	default:
		dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod);
		break;
209 210 211
	}

	if (state->cfg.output_mpeg2_in_188_bytes)
212
		smo_mode |= (1 << 5);
213

214 215 216 217
	ret |= dib7000p_write_word(state, 235, smo_mode);
	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
	if (state->version != SOC7090)
		ret |= dib7000p_write_word(state, 1286, outreg);	/* P_Div_active */
218 219 220 221

	return ret;
}

222 223 224 225 226
static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
{
	struct dib7000p_state *state = demod->demodulator_priv;

	if (state->div_force_off) {
227
		dprintk("diversity combination deactivated - forced by COFDM parameters");
228
		onoff = 0;
229 230 231 232
		dib7000p_write_word(state, 207, 0);
	} else
		dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));

233
	state->div_state = (u8) onoff;
234 235 236 237 238 239 240 241 242 243 244 245 246

	if (onoff) {
		dib7000p_write_word(state, 204, 6);
		dib7000p_write_word(state, 205, 16);
		/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
	} else {
		dib7000p_write_word(state, 204, 1);
		dib7000p_write_word(state, 205, 0);
	}

	return 0;
}

247 248 249
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{
	/* by default everything is powered off */
250
	u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
251 252 253 254

	/* now, depending on the requested mode, we power on */
	switch (mode) {
		/* power up everything in the demod */
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	case DIB7000P_POWER_ALL:
		reg_774 = 0x0000;
		reg_775 = 0x0000;
		reg_776 = 0x0;
		reg_899 = 0x0;
		if (state->version == SOC7090)
			reg_1280 &= 0x001f;
		else
			reg_1280 &= 0x01ff;
		break;

	case DIB7000P_POWER_ANALOG_ADC:
		/* dem, cfg, iqc, sad, agc */
		reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
		/* nud */
		reg_776 &= ~((1 << 0));
		/* Dout */
		if (state->version != SOC7090)
273
			reg_1280 &= ~((1 << 11));
274 275
		reg_1280 &= ~(1 << 6);
		/* fall through wanted to enable the interfaces */
276

277
		/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
278 279 280 281
	case DIB7000P_POWER_INTERFACE_ONLY:	/* TODO power up either SDIO or I2C */
		if (state->version == SOC7090)
			reg_1280 &= ~((1 << 7) | (1 << 5));
		else
282
			reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
283
		break;
284

285 286 287
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */
	}

288 289 290
	dib7000p_write_word(state, 774, reg_774);
	dib7000p_write_word(state, 775, reg_775);
	dib7000p_write_word(state, 776, reg_776);
291
	dib7000p_write_word(state, 1280, reg_1280);
292 293
	if (state->version != SOC7090)
		dib7000p_write_word(state, 899, reg_899);
294 295 296 297 298 299

	return 0;
}

static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{
300
	u16 reg_908 = 0, reg_909 = 0;
301
	u16 reg;
302

303 304 305 306 307
	if (state->version != SOC7090) {
		reg_908 = dib7000p_read_word(state, 908);
		reg_909 = dib7000p_read_word(state, 909);
	}

308
	switch (no) {
309 310 311 312 313 314 315 316 317 318 319 320 321
	case DIBX000_SLOW_ADC_ON:
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 1925);

			dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2));	/* en_slowAdc = 1 & reset_sladc = 1 */

			reg = dib7000p_read_word(state, 1925);	/* read acces to make it works... strange ... */
			msleep(200);
			dib7000p_write_word(state, 1925, reg & ~(1 << 4));	/* en_slowAdc = 1 & reset_sladc = 0 */

			reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
			dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524);	/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */
		} else {
322 323 324
			reg_909 |= (1 << 1) | (1 << 0);
			dib7000p_write_word(state, 909, reg_909);
			reg_909 &= ~(1 << 1);
325 326
		}
		break;
327

328 329 330 331 332 333 334
	case DIBX000_SLOW_ADC_OFF:
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 1925);
			dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4));	/* reset_sladc = 1 en_slowAdc = 0 */
		} else
			reg_909 |= (1 << 1) | (1 << 0);
		break;
335

336 337 338 339
	case DIBX000_ADC_ON:
		reg_908 &= 0x0fff;
		reg_909 &= 0x0003;
		break;
340

341
	case DIBX000_ADC_OFF:
342 343 344
		reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
		reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
		break;
345

346 347 348
	case DIBX000_VBG_ENABLE:
		reg_908 &= ~(1 << 15);
		break;
349

350 351 352
	case DIBX000_VBG_DISABLE:
		reg_908 |= (1 << 15);
		break;
353

354 355
	default:
		break;
356 357
	}

358
//	dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
359

360
	reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4;
361 362
	reg_908 |= (state->cfg.enable_current_mirror & 1) << 7;

363 364 365 366
	if (state->version != SOC7090) {
		dib7000p_write_word(state, 908, reg_908);
		dib7000p_write_word(state, 909, reg_909);
	}
367 368
}

369
static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
370 371 372 373
{
	u32 timf;

	// store the current bandwidth for later use
374
	state->current_bandwidth = bw;
375 376

	if (state->timf == 0) {
377
		dprintk("using default timf");
378 379
		timf = state->cfg.bw->timf;
	} else {
380
		dprintk("using updated timf");
381 382 383
		timf = state->timf;
	}

384
	timf = timf * (bw / 50) / 160;
385

386
	dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
387
	dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
388 389 390 391 392 393 394 395

	return 0;
}

static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
	dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
396 397

	if (state->version == SOC7090)
398
		dib7000p_write_word(state, 74, 2048);
399
	else
400
		dib7000p_write_word(state, 74, 776);
401 402 403 404 405 406 407 408 409 410

	/* do the calibration */
	dib7000p_write_word(state, 73, (1 << 0));
	dib7000p_write_word(state, 73, (0 << 0));

	msleep(1);

	return 0;
}

411
static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
412 413 414 415 416 417 418
{
	struct dib7000p_state *state = demod->demodulator_priv;
	if (value > 4095)
		value = 4095;
	state->wbd_ref = value;
	return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
}
419

420
static int dib7000p_get_agc_values(struct dvb_frontend *fe,
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd)
{
	struct dib7000p_state *state = fe->demodulator_priv;

	if (agc_global != NULL)
		*agc_global = dib7000p_read_word(state, 394);
	if (agc1 != NULL)
		*agc1 = dib7000p_read_word(state, 392);
	if (agc2 != NULL)
		*agc2 = dib7000p_read_word(state, 393);
	if (wbd != NULL)
		*wbd = dib7000p_read_word(state, 397);

	return 0;
}

437
static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v)
O
Olivier Grenie 已提交
438 439 440 441 442
{
	struct dib7000p_state *state = fe->demodulator_priv;
	return dib7000p_write_word(state, 108,  v);
}

443 444 445
static void dib7000p_reset_pll(struct dib7000p_state *state)
{
	struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
446 447
	u16 clk_cfg0;

448 449
	if (state->version == SOC7090) {
		dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
450

451 452
		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
			;
453 454 455 456 457 458

		dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
	} else {
		/* force PLL bypass */
		clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
			(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
459

460 461 462 463 464 465 466
		dib7000p_write_word(state, 900, clk_cfg0);

		/* P_pll_cfg */
		dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
		clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
		dib7000p_write_word(state, 900, clk_cfg0);
	}
467

468 469 470 471
	dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
	dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
	dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
	dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
472 473 474 475

	dib7000p_write_word(state, 72, bw->sad_cfg);
}

476 477 478 479 480 481 482 483 484
static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
{
	u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
	internal |= (u32) dib7000p_read_word(state, 19);
	internal /= 1000;

	return internal;
}

485
static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
486 487 488 489 490 491 492 493 494 495 496 497 498 499
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
	u8 loopdiv, prediv;
	u32 internal, xtal;

	/* get back old values */
	prediv = reg_1856 & 0x3f;
	loopdiv = (reg_1856 >> 6) & 0x3f;

	if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
		dprintk("Updating pll (prediv: old =  %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
		reg_1856 &= 0xf000;
		reg_1857 = dib7000p_read_word(state, 1857);
500
		dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));
501 502 503 504 505 506 507 508 509 510

		dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));

		/* write new system clk into P_sec_len */
		internal = dib7000p_get_internal_freq(state);
		xtal = (internal / loopdiv) * prediv;
		internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio;	/* new internal */
		dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
		dib7000p_write_word(state, 19, (u16) (internal & 0xffff));

511
		dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));
512

513
		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
514 515 516 517 518 519 520
			dprintk("Waiting for PLL to lock");

		return 0;
	}
	return -EIO;
}

521 522 523
static int dib7000p_reset_gpio(struct dib7000p_state *st)
{
	/* reset the GPIOs */
524
	dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
525 526 527 528 529 530 531 532 533 534 535 536

	dib7000p_write_word(st, 1029, st->gpio_dir);
	dib7000p_write_word(st, 1030, st->gpio_val);

	/* TODO 1031 is P_gpio_od */

	dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);

	dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
	return 0;
}

537 538 539
static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
{
	st->gpio_dir = dib7000p_read_word(st, 1029);
540 541
	st->gpio_dir &= ~(1 << num);	/* reset the direction bit */
	st->gpio_dir |= (dir & 0x1) << num;	/* set the new direction */
542 543 544
	dib7000p_write_word(st, 1029, st->gpio_dir);

	st->gpio_val = dib7000p_read_word(st, 1030);
545 546
	st->gpio_val &= ~(1 << num);	/* reset the direction bit */
	st->gpio_val |= (val & 0x01) << num;	/* set the new value */
547 548 549 550 551
	dib7000p_write_word(st, 1030, st->gpio_val);

	return 0;
}

552
static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
553 554 555 556
{
	struct dib7000p_state *state = demod->demodulator_priv;
	return dib7000p_cfg_gpio(state, num, dir, val);
}
557

558
static u16 dib7000p_defaults[] = {
559 560
	// auto search configuration
	3, 2,
561
	0x0004,
562
	(1<<3)|(1<<11)|(1<<12)|(1<<13),
563
	0x0814,			/* Equal Lock */
564 565

	12, 6,
566 567 568 569 570 571 572 573 574 575 576 577
	0x001b,
	0x7740,
	0x005b,
	0x8d80,
	0x01c9,
	0xc380,
	0x0000,
	0x0080,
	0x0000,
	0x0090,
	0x0001,
	0xd4c0,
578 579

	1, 26,
580
	0x6680,
581 582 583

	/* set ADC level to -16 */
	11, 79,
584 585 586 587 588 589 590 591 592 593 594
	(1 << 13) - 825 - 117,
	(1 << 13) - 837 - 117,
	(1 << 13) - 811 - 117,
	(1 << 13) - 766 - 117,
	(1 << 13) - 737 - 117,
	(1 << 13) - 693 - 117,
	(1 << 13) - 648 - 117,
	(1 << 13) - 619 - 117,
	(1 << 13) - 575 - 117,
	(1 << 13) - 531 - 117,
	(1 << 13) - 501 - 117,
595 596

	1, 142,
597
	0x0410,
598 599 600

	/* disable power smoothing */
	8, 145,
601 602 603 604 605 606 607 608
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
609 610

	1, 154,
611
	1 << 13,
612 613

	1, 168,
614
	0x0ccd,
615 616

	1, 183,
617
	0x200f,
618 619

	1, 212,
620
		0x169,
621 622

	5, 187,
623 624 625 626 627
	0x023d,
	0x00a4,
	0x00a4,
	0x7ff0,
	0x3ccc,
628 629

	1, 198,
630
	0x800,
631 632

	1, 222,
633
	0x0010,
634 635

	1, 235,
636
	0x0062,
637 638 639 640

	0,
};

641 642
static void dib7000p_reset_stats(struct dvb_frontend *fe);

643 644 645 646
static int dib7000p_demod_reset(struct dib7000p_state *state)
{
	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);

647 648 649
	if (state->version == SOC7090)
		dibx000_reset_i2c_master(&state->i2c_master);

650 651 652
	dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);

	/* restart all parts */
653 654 655 656 657 658 659 660
	dib7000p_write_word(state, 770, 0xffff);
	dib7000p_write_word(state, 771, 0xffff);
	dib7000p_write_word(state, 772, 0x001f);
	dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));

	dib7000p_write_word(state, 770, 0);
	dib7000p_write_word(state, 771, 0);
	dib7000p_write_word(state, 772, 0);
661 662
	dib7000p_write_word(state, 1280, 0);

663 664 665 666 667
	if (state->version != SOC7090) {
		dib7000p_write_word(state,  898, 0x0003);
		dib7000p_write_word(state,  898, 0);
	}

668 669 670 671
	/* default */
	dib7000p_reset_pll(state);

	if (dib7000p_reset_gpio(state) != 0)
672
		dprintk("GPIO reset was not successful.");
673

674 675
	if (state->version == SOC7090) {
		dib7000p_write_word(state, 899, 0);
676

677 678 679 680
		/* impulse noise */
		dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
		dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
		dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
681
		dib7000p_write_word(state, 273, (0<<6) | 30);
682 683 684
	}
	if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
		dprintk("OUTPUT_MODE could not be reset.");
685 686 687 688 689

	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
	dib7000p_sad_calib(state);
	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);

690 691 692 693 694
	/* unforce divstr regardless whether i2c enumeration was done or not */
	dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));

	dib7000p_set_bandwidth(state, 8000);

695
	if (state->version == SOC7090) {
696
		dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
697
	} else {
698 699 700 701 702
		if (state->cfg.tuner_is_baseband)
			dib7000p_write_word(state, 36, 0x0755);
		else
			dib7000p_write_word(state, 36, 0x1f55);
	}
703 704

	dib7000p_write_tab(state, dib7000p_defaults);
705 706 707 708 709
	if (state->version != SOC7090) {
		dib7000p_write_word(state, 901, 0x0006);
		dib7000p_write_word(state, 902, (3 << 10) | (1 << 6));
		dib7000p_write_word(state, 905, 0x2c8e);
	}
710

711 712 713 714 715
	dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);

	return 0;
}

716 717 718 719
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
	u16 tmp = 0;
	tmp = dib7000p_read_word(state, 903);
720
	dib7000p_write_word(state, 903, (tmp | 0x1));
721
	tmp = dib7000p_read_word(state, 900);
722
	dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));
723 724
}

725 726 727
static void dib7000p_restart_agc(struct dib7000p_state *state)
{
	// P_restart_iqc & P_restart_agc
728
	dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
729 730 731
	dib7000p_write_word(state, 770, 0x0000);
}

732
static int dib7000p_update_lna(struct dib7000p_state *state)
733 734 735
{
	u16 dyn_gain;

736
	if (state->cfg.update_lna) {
737
		dyn_gain = dib7000p_read_word(state, 394);
738
		if (state->cfg.update_lna(&state->demod, dyn_gain)) {
739
			dib7000p_restart_agc(state);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
			return 1;
		}
	}

	return 0;
}

static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
{
	struct dibx000_agc_config *agc = NULL;
	int i;
	if (state->current_band == band && state->current_agc != NULL)
		return 0;
	state->current_band = band;

	for (i = 0; i < state->cfg.agc_config_count; i++)
		if (state->cfg.agc[i].band_caps & band) {
			agc = &state->cfg.agc[i];
758
			break;
759 760 761
		}

	if (agc == NULL) {
762
		dprintk("no valid AGC configuration found for band 0x%02x", band);
763
		return -EINVAL;
764
	}
765 766 767 768

	state->current_agc = agc;

	/* AGC */
769 770 771
	dib7000p_write_word(state, 75, agc->setup);
	dib7000p_write_word(state, 76, agc->inv_gain);
	dib7000p_write_word(state, 77, agc->time_stabiliz);
772 773 774 775
	dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);

	// Demod AGC loop configuration
	dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
776
	dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
777 778

	/* AGC continued */
779
	dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
780 781 782 783 784 785 786 787 788
		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);

	if (state->wbd_ref != 0)
		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
	else
		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);

	dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));

789 790 791 792 793 794
	dib7000p_write_word(state, 107, agc->agc1_max);
	dib7000p_write_word(state, 108, agc->agc1_min);
	dib7000p_write_word(state, 109, agc->agc2_max);
	dib7000p_write_word(state, 110, agc->agc2_min);
	dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
	dib7000p_write_word(state, 112, agc->agc1_pt3);
795
	dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
796
	dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
797 798
	dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
	return 0;
799 800
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
{
	u32 internal = dib7000p_get_internal_freq(state);
	s32 unit_khz_dds_val = 67108864 / (internal);	/* 2**26 / Fsampling is the unit 1KHz offset */
	u32 abs_offset_khz = ABS(offset_khz);
	u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
	u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));

	dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert);

	if (offset_khz < 0)
		unit_khz_dds_val *= -1;

	/* IF tuner */
	if (invert)
		dds -= (abs_offset_khz * unit_khz_dds_val);	/* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */
	else
		dds += (abs_offset_khz * unit_khz_dds_val);

	if (abs_offset_khz <= (internal / 2)) {	/* Max dds offset is the half of the demod freq */
		dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
		dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
	}
}

826
static int dib7000p_agc_startup(struct dvb_frontend *demod)
827
{
828
	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
829 830 831 832
	struct dib7000p_state *state = demod->demodulator_priv;
	int ret = -1;
	u8 *agc_state = &state->agc_state;
	u8 agc_split;
833 834
	u16 reg;
	u32 upd_demod_gain_period = 0x1000;
O
Olivier Grenie 已提交
835
	s32 frequency_offset = 0;
836 837

	switch (state->agc_state) {
838 839 840 841 842
	case 0:
		dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 0x79b) & 0xff00;
			dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF);	/* lsb */
843
			dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));
844 845 846 847 848

			/* enable adc i & q */
			reg = dib7000p_read_word(state, 0x780);
			dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
		} else {
849 850
			dib7000p_set_adc_state(state, DIBX000_ADC_ON);
			dib7000p_pll_clk_cfg(state);
851
		}
852

853 854
		if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
			return -1;
855

O
Olivier Grenie 已提交
856 857 858 859 860 861 862 863
		if (demod->ops.tuner_ops.get_frequency) {
			u32 frequency_tuner;

			demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner);
			frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000;
		}

		dib7000p_set_dds(state, frequency_offset);
864 865 866
		ret = 7;
		(*agc_state)++;
		break;
867

868 869 870
	case 1:
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->demod, 1);
871

872 873 874 875 876
		dib7000p_write_word(state, 78, 32768);
		if (!state->current_agc->perform_agc_softsplit) {
			/* we are using the wbd - so slow AGC startup */
			/* force 0 split on WBD and restart AGC */
			dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
877
			(*agc_state)++;
878 879 880 881 882 883 884
			ret = 5;
		} else {
			/* default AGC startup */
			(*agc_state) = 4;
			/* wait AGC rough lock time */
			ret = 7;
		}
885

886 887
		dib7000p_restart_agc(state);
		break;
888

889 890 891 892 893 894
	case 2:		/* fast split search path after 5sec */
		dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4));	/* freeze AGC loop */
		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8));	/* fast split search 0.25kHz */
		(*agc_state)++;
		ret = 14;
		break;
895

896 897 898
	case 3:		/* split search ended */
		agc_split = (u8) dib7000p_read_word(state, 396);	/* store the split value for the next time */
		dib7000p_write_word(state, 78, dib7000p_read_word(state, 394));	/* set AGC gain start value */
899

900 901
		dib7000p_write_word(state, 75, state->current_agc->setup);	/* std AGC loop */
		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split);	/* standard split search */
902

903
		dib7000p_restart_agc(state);
904

905
		dprintk("SPLIT %p: %hd", demod, agc_split);
906

907 908 909
		(*agc_state)++;
		ret = 5;
		break;
910

911 912 913 914 915
	case 4:		/* LNA startup */
		ret = 7;

		if (dib7000p_update_lna(state))
			ret = 5;
916
		else
917
			(*agc_state)++;
918 919 920 921 922 923 924 925 926
		break;

	case 5:
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->demod, 0);
		(*agc_state)++;
		break;
	default:
		break;
927 928
	}
	return ret;
929 930
}

931
static void dib7000p_update_timf(struct dib7000p_state *state)
932 933
{
	u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
934
	state->timf = timf * 160 / (state->current_bandwidth / 50);
935 936
	dib7000p_write_word(state, 23, (u16) (timf >> 16));
	dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
937 938 939
	dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf);

}
940

941
static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
942 943 944 945 946 947 948 949 950 951 952 953 954 955
{
	struct dib7000p_state *state = fe->demodulator_priv;
	switch (op) {
	case DEMOD_TIMF_SET:
		state->timf = timf;
		break;
	case DEMOD_TIMF_UPDATE:
		dib7000p_update_timf(state);
		break;
	case DEMOD_TIMF_GET:
		break;
	}
	dib7000p_set_bandwidth(state, state->current_bandwidth);
	return state->timf;
956 957
}

958 959
static void dib7000p_set_channel(struct dib7000p_state *state,
				 struct dtv_frontend_properties *ch, u8 seq)
960
{
961 962
	u16 value, est[4];

963
	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
964 965

	/* nfft, guard, qam, alpha */
966
	value = 0;
967
	switch (ch->transmission_mode) {
968 969 970
	case TRANSMISSION_MODE_2K:
		value |= (0 << 7);
		break;
971
	case TRANSMISSION_MODE_4K:
972 973 974 975 976 977
		value |= (2 << 7);
		break;
	default:
	case TRANSMISSION_MODE_8K:
		value |= (1 << 7);
		break;
978
	}
979
	switch (ch->guard_interval) {
980 981 982 983 984 985 986 987 988 989 990 991 992
	case GUARD_INTERVAL_1_32:
		value |= (0 << 5);
		break;
	case GUARD_INTERVAL_1_16:
		value |= (1 << 5);
		break;
	case GUARD_INTERVAL_1_4:
		value |= (3 << 5);
		break;
	default:
	case GUARD_INTERVAL_1_8:
		value |= (2 << 5);
		break;
993
	}
994
	switch (ch->modulation) {
995 996 997 998 999 1000 1001 1002 1003 1004
	case QPSK:
		value |= (0 << 3);
		break;
	case QAM_16:
		value |= (1 << 3);
		break;
	default:
	case QAM_64:
		value |= (2 << 3);
		break;
1005 1006
	}
	switch (HIERARCHY_1) {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	case HIERARCHY_2:
		value |= 2;
		break;
	case HIERARCHY_4:
		value |= 4;
		break;
	default:
	case HIERARCHY_1:
		value |= 1;
		break;
1017 1018
	}
	dib7000p_write_word(state, 0, value);
1019
	dib7000p_write_word(state, 5, (seq << 4) | 1);	/* do not force tps, search list 0 */
1020

1021 1022 1023 1024
	/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
	value = 0;
	if (1 != 0)
		value |= (1 << 6);
1025
	if (ch->hierarchy == 1)
1026 1027 1028
		value |= (1 << 4);
	if (1 == 1)
		value |= 1;
1029
	switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	case FEC_2_3:
		value |= (2 << 1);
		break;
	case FEC_3_4:
		value |= (3 << 1);
		break;
	case FEC_5_6:
		value |= (5 << 1);
		break;
	case FEC_7_8:
		value |= (7 << 1);
		break;
	default:
	case FEC_1_2:
		value |= (1 << 1);
		break;
1046 1047 1048 1049
	}
	dib7000p_write_word(state, 208, value);

	/* offset loop parameters */
1050 1051 1052 1053
	dib7000p_write_word(state, 26, 0x6680);
	dib7000p_write_word(state, 32, 0x0003);
	dib7000p_write_word(state, 29, 0x1273);
	dib7000p_write_word(state, 33, 0x0005);
1054 1055

	/* P_dvsy_sync_wait */
1056
	switch (ch->transmission_mode) {
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	case TRANSMISSION_MODE_8K:
		value = 256;
		break;
	case TRANSMISSION_MODE_4K:
		value = 128;
		break;
	case TRANSMISSION_MODE_2K:
	default:
		value = 64;
		break;
1067
	}
1068
	switch (ch->guard_interval) {
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	case GUARD_INTERVAL_1_16:
		value *= 2;
		break;
	case GUARD_INTERVAL_1_8:
		value *= 4;
		break;
	case GUARD_INTERVAL_1_4:
		value *= 8;
		break;
	default:
	case GUARD_INTERVAL_1_32:
		value *= 1;
		break;
1082
	}
1083
	if (state->cfg.diversity_delay == 0)
1084
		state->div_sync_wait = (value * 3) / 2 + 48;
1085
	else
1086
		state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;
1087

1088
	/* deactive the possibility of diversity reception if extended interleaver */
1089
	state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K;
1090
	dib7000p_set_diversity_in(&state->demod, state->div_state);
1091 1092

	/* channel estimation fine configuration */
1093
	switch (ch->modulation) {
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	case QAM_64:
		est[0] = 0x0148;	/* P_adp_regul_cnt 0.04 */
		est[1] = 0xfff0;	/* P_adp_noise_cnt -0.002 */
		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		est[3] = 0xfff8;	/* P_adp_noise_ext -0.001 */
		break;
	case QAM_16:
		est[0] = 0x023d;	/* P_adp_regul_cnt 0.07 */
		est[1] = 0xffdf;	/* P_adp_noise_cnt -0.004 */
		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		est[3] = 0xfff0;	/* P_adp_noise_ext -0.002 */
		break;
	default:
		est[0] = 0x099a;	/* P_adp_regul_cnt 0.3 */
		est[1] = 0xffae;	/* P_adp_noise_cnt -0.01 */
		est[2] = 0x0333;	/* P_adp_regul_ext 0.1 */
		est[3] = 0xfff8;	/* P_adp_noise_ext -0.002 */
		break;
1112
	}
1113 1114
	for (value = 0; value < 4; value++)
		dib7000p_write_word(state, 187 + value, est[value]);
1115 1116
}

1117
static int dib7000p_autosearch_start(struct dvb_frontend *demod)
1118
{
1119
	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
1120
	struct dib7000p_state *state = demod->demodulator_priv;
1121
	struct dtv_frontend_properties schan;
1122
	u32 value, factor;
1123
	u32 internal = dib7000p_get_internal_freq(state);
1124 1125

	schan = *ch;
1126 1127 1128 1129 1130 1131
	schan.modulation = QAM_64;
	schan.guard_interval = GUARD_INTERVAL_1_32;
	schan.transmission_mode = TRANSMISSION_MODE_8K;
	schan.code_rate_HP = FEC_2_3;
	schan.code_rate_LP = FEC_3_4;
	schan.hierarchy = 0;
1132 1133 1134

	dib7000p_set_channel(state, &schan, 7);

1135
	factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz);
1136 1137 1138 1139 1140 1141
	if (factor >= 5000) {
		if (state->version == SOC7090)
			factor = 2;
		else
			factor = 1;
	} else
1142
		factor = 6;
1143

1144
	value = 30 * internal * factor;
1145 1146
	dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 7, (u16) (value & 0xffff));
1147
	value = 100 * internal * factor;
1148 1149
	dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 9, (u16) (value & 0xffff));
1150
	value = 500 * internal * factor;
1151 1152
	dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 11, (u16) (value & 0xffff));
1153 1154

	value = dib7000p_read_word(state, 0);
1155
	dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	dib7000p_read_word(state, 1284);
	dib7000p_write_word(state, 0, (u16) value);

	return 0;
}

static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	u16 irq_pending = dib7000p_read_word(state, 1284);

1167
	if (irq_pending & 0x1)
1168 1169
		return 1;

1170
	if (irq_pending & 0x2)
1171 1172
		return 2;

1173
	return 0;
1174 1175
}

1176 1177
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
	static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
		24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
		53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
		82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
		107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
		128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
		147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
		166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
		183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
		199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
		213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
		225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
		235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
		244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
		250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
		254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
		255, 255, 255, 255, 255, 255
	};
1197 1198

	u32 xtal = state->cfg.bw->xtal_hz / 1000;
1199
	int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
1200
	int k;
1201
	int coef_re[8], coef_im[8];
1202 1203 1204
	int bw_khz = bw;
	u32 pha;

1205
	dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
1206

1207
	if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
1208 1209 1210 1211
		return;

	bw_khz /= 100;

1212
	dib7000p_write_word(state, 142, 0x0610);
1213 1214

	for (k = 0; k < 8; k++) {
1215
		pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
1216

1217
		if (pha == 0) {
1218 1219
			coef_re[k] = 256;
			coef_im[k] = 0;
1220 1221 1222
		} else if (pha < 256) {
			coef_re[k] = sine[256 - (pha & 0xff)];
			coef_im[k] = sine[pha & 0xff];
1223 1224 1225 1226
		} else if (pha == 256) {
			coef_re[k] = 0;
			coef_im[k] = 256;
		} else if (pha < 512) {
1227 1228
			coef_re[k] = -sine[pha & 0xff];
			coef_im[k] = sine[256 - (pha & 0xff)];
1229 1230 1231 1232
		} else if (pha == 512) {
			coef_re[k] = -256;
			coef_im[k] = 0;
		} else if (pha < 768) {
1233 1234
			coef_re[k] = -sine[256 - (pha & 0xff)];
			coef_im[k] = -sine[pha & 0xff];
1235 1236 1237 1238
		} else if (pha == 768) {
			coef_re[k] = 0;
			coef_im[k] = -256;
		} else {
1239 1240
			coef_re[k] = sine[pha & 0xff];
			coef_im[k] = -sine[256 - (pha & 0xff)];
1241 1242 1243
		}

		coef_re[k] *= notch[k];
1244 1245 1246 1247
		coef_re[k] += (1 << 14);
		if (coef_re[k] >= (1 << 24))
			coef_re[k] = (1 << 24) - 1;
		coef_re[k] /= (1 << 15);
1248 1249

		coef_im[k] *= notch[k];
1250 1251 1252 1253
		coef_im[k] += (1 << 14);
		if (coef_im[k] >= (1 << 24))
			coef_im[k] = (1 << 24) - 1;
		coef_im[k] /= (1 << 15);
1254

1255
		dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
1256 1257 1258 1259 1260

		dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
		dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
		dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
	}
1261
	dib7000p_write_word(state, 143, 0);
1262 1263
}

1264
static int dib7000p_tune(struct dvb_frontend *demod)
1265
{
1266
	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	struct dib7000p_state *state = demod->demodulator_priv;
	u16 tmp = 0;

	if (ch != NULL)
		dib7000p_set_channel(state, ch, 0);
	else
		return -EINVAL;

	// restart demod
	dib7000p_write_word(state, 770, 0x4000);
	dib7000p_write_word(state, 770, 0x0000);
	msleep(45);

	/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
1281 1282
	tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
	if (state->sfn_workaround_active) {
1283
		dprintk("SFN workaround is active");
1284
		tmp |= (1 << 9);
1285
		dib7000p_write_word(state, 166, 0x4000);
1286
	} else {
1287
		dib7000p_write_word(state, 166, 0x0000);
1288 1289
	}
	dib7000p_write_word(state, 29, tmp);
1290 1291 1292 1293 1294 1295 1296 1297 1298

	// never achieved a lock with that bandwidth so far - wait for osc-freq to update
	if (state->timf == 0)
		msleep(200);

	/* offset loop parameters */

	/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
	tmp = (6 << 8) | 0x80;
1299
	switch (ch->transmission_mode) {
1300 1301 1302
	case TRANSMISSION_MODE_2K:
		tmp |= (2 << 12);
		break;
1303
	case TRANSMISSION_MODE_4K:
1304 1305 1306 1307 1308 1309
		tmp |= (3 << 12);
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= (4 << 12);
		break;
1310
	}
1311
	dib7000p_write_word(state, 26, tmp);	/* timf_a(6xxx) */
1312 1313 1314

	/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
	tmp = (0 << 4);
1315
	switch (ch->transmission_mode) {
1316 1317 1318
	case TRANSMISSION_MODE_2K:
		tmp |= 0x6;
		break;
1319
	case TRANSMISSION_MODE_4K:
1320 1321 1322 1323 1324 1325
		tmp |= 0x7;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= 0x8;
		break;
1326
	}
1327
	dib7000p_write_word(state, 32, tmp);
1328 1329 1330

	/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
	tmp = (0 << 4);
1331
	switch (ch->transmission_mode) {
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	case TRANSMISSION_MODE_2K:
		tmp |= 0x6;
		break;
	case TRANSMISSION_MODE_4K:
		tmp |= 0x7;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= 0x8;
		break;
1342
	}
1343
	dib7000p_write_word(state, 33, tmp);
1344

1345
	tmp = dib7000p_read_word(state, 509);
1346 1347
	if (!((tmp >> 6) & 0x1)) {
		/* restart the fec */
1348
		tmp = dib7000p_read_word(state, 771);
1349 1350
		dib7000p_write_word(state, 771, tmp | (1 << 1));
		dib7000p_write_word(state, 771, tmp);
1351 1352
		msleep(40);
		tmp = dib7000p_read_word(state, 509);
1353 1354
	}
	// we achieved a lock - it's time to update the osc freq
1355
	if ((tmp >> 6) & 0x1) {
1356
		dib7000p_update_timf(state);
1357 1358 1359 1360
		/* P_timf_alpha += 2 */
		tmp = dib7000p_read_word(state, 26);
		dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
	}
1361 1362

	if (state->cfg.spur_protect)
1363
		dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
1364

1365
	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
1366 1367 1368

	dib7000p_reset_stats(demod);

1369 1370 1371
	return 0;
}

1372
static int dib7000p_wakeup(struct dvb_frontend *demod)
1373 1374 1375 1376
{
	struct dib7000p_state *state = demod->demodulator_priv;
	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
1377 1378
	if (state->version == SOC7090)
		dib7000p_sad_calib(state);
1379
	return 0;
1380 1381 1382 1383 1384
}

static int dib7000p_sleep(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
1385
	if (state->version == SOC7090)
1386
		return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
1387 1388 1389 1390 1391 1392
	return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
}

static int dib7000p_identify(struct dib7000p_state *st)
{
	u16 value;
1393
	dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr);
1394 1395

	if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
1396
		dprintk("wrong Vendor ID (read=0x%x)", value);
1397 1398 1399 1400
		return -EREMOTEIO;
	}

	if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
1401
		dprintk("wrong Device ID (%x)", value);
1402 1403 1404 1405 1406 1407
		return -EREMOTEIO;
	}

	return 0;
}

1408
static int dib7000p_get_frontend(struct dvb_frontend *fe)
1409
{
1410
	struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
1411
	struct dib7000p_state *state = fe->demodulator_priv;
1412
	u16 tps = dib7000p_read_word(state, 463);
1413 1414 1415

	fep->inversion = INVERSION_AUTO;

1416
	fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth);
1417 1418

	switch ((tps >> 8) & 0x3) {
1419
	case 0:
1420
		fep->transmission_mode = TRANSMISSION_MODE_2K;
1421 1422
		break;
	case 1:
1423
		fep->transmission_mode = TRANSMISSION_MODE_8K;
1424
		break;
1425
	/* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */
1426 1427 1428
	}

	switch (tps & 0x3) {
1429
	case 0:
1430
		fep->guard_interval = GUARD_INTERVAL_1_32;
1431 1432
		break;
	case 1:
1433
		fep->guard_interval = GUARD_INTERVAL_1_16;
1434 1435
		break;
	case 2:
1436
		fep->guard_interval = GUARD_INTERVAL_1_8;
1437 1438
		break;
	case 3:
1439
		fep->guard_interval = GUARD_INTERVAL_1_4;
1440
		break;
1441 1442 1443
	}

	switch ((tps >> 14) & 0x3) {
1444
	case 0:
1445
		fep->modulation = QPSK;
1446 1447
		break;
	case 1:
1448
		fep->modulation = QAM_16;
1449 1450 1451
		break;
	case 2:
	default:
1452
		fep->modulation = QAM_64;
1453
		break;
1454 1455 1456 1457 1458
	}

	/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
	/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */

1459
	fep->hierarchy = HIERARCHY_NONE;
1460
	switch ((tps >> 5) & 0x7) {
1461
	case 1:
1462
		fep->code_rate_HP = FEC_1_2;
1463 1464
		break;
	case 2:
1465
		fep->code_rate_HP = FEC_2_3;
1466 1467
		break;
	case 3:
1468
		fep->code_rate_HP = FEC_3_4;
1469 1470
		break;
	case 5:
1471
		fep->code_rate_HP = FEC_5_6;
1472 1473 1474
		break;
	case 7:
	default:
1475
		fep->code_rate_HP = FEC_7_8;
1476
		break;
1477 1478 1479 1480

	}

	switch ((tps >> 2) & 0x7) {
1481
	case 1:
1482
		fep->code_rate_LP = FEC_1_2;
1483 1484
		break;
	case 2:
1485
		fep->code_rate_LP = FEC_2_3;
1486 1487
		break;
	case 3:
1488
		fep->code_rate_LP = FEC_3_4;
1489 1490
		break;
	case 5:
1491
		fep->code_rate_LP = FEC_5_6;
1492 1493 1494
		break;
	case 7:
	default:
1495
		fep->code_rate_LP = FEC_7_8;
1496
		break;
1497 1498 1499 1500 1501 1502 1503
	}

	/* native interleaver: (dib7000p_read_word(state, 464) >>  5) & 0x1 */

	return 0;
}

1504
static int dib7000p_set_frontend(struct dvb_frontend *fe)
1505
{
1506
	struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
1507
	struct dib7000p_state *state = fe->demodulator_priv;
1508
	int time, ret;
1509

1510
	if (state->version == SOC7090)
1511
		dib7090_set_diversity_in(fe, 0);
1512
	else
1513
		dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
1514

1515
	/* maybe the parameter has been changed */
1516 1517
	state->sfn_workaround_active = buggy_sfn_workaround;

1518
	if (fe->ops.tuner_ops.set_params)
1519
		fe->ops.tuner_ops.set_params(fe);
1520

1521 1522 1523
	/* start up the AGC */
	state->agc_state = 0;
	do {
1524
		time = dib7000p_agc_startup(fe);
1525 1526 1527 1528
		if (time != -1)
			msleep(time);
	} while (time != -1);

1529 1530
	if (fep->transmission_mode == TRANSMISSION_MODE_AUTO ||
		fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) {
1531 1532
		int i = 800, found;

1533
		dib7000p_autosearch_start(fe);
1534 1535 1536 1537 1538
		do {
			msleep(1);
			found = dib7000p_autosearch_is_irq(fe);
		} while (found == 0 && i--);

1539
		dprintk("autosearch returns: %d", found);
1540
		if (found == 0 || found == 1)
1541
			return 0;
1542

1543
		dib7000p_get_frontend(fe);
1544 1545
	}

1546
	ret = dib7000p_tune(fe);
1547

1548
	/* make this a config parameter */
1549
	if (state->version == SOC7090) {
1550
		dib7090_set_output_mode(fe, state->cfg.output_mode);
1551 1552 1553 1554 1555
		if (state->cfg.enMpegOutput == 0) {
			dib7090_setDibTxMux(state, MPEG_ON_DIBTX);
			dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
		}
	} else
1556 1557 1558
		dib7000p_set_output_mode(state, state->cfg.output_mode);

	return ret;
1559 1560
}

1561 1562
static int dib7000p_get_stats(struct dvb_frontend *fe, fe_status_t stat);

1563
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t * stat)
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 lock = dib7000p_read_word(state, 509);

	*stat = 0;

	if (lock & 0x8000)
		*stat |= FE_HAS_SIGNAL;
	if (lock & 0x3000)
		*stat |= FE_HAS_CARRIER;
	if (lock & 0x0100)
		*stat |= FE_HAS_VITERBI;
	if (lock & 0x0010)
		*stat |= FE_HAS_SYNC;
1578
	if ((lock & 0x0038) == 0x38)
1579 1580
		*stat |= FE_HAS_LOCK;

1581 1582
	dib7000p_get_stats(fe, *stat);

1583 1584 1585
	return 0;
}

1586
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
1587 1588 1589 1590 1591 1592
{
	struct dib7000p_state *state = fe->demodulator_priv;
	*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
	return 0;
}

1593
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
1594 1595 1596 1597 1598 1599
{
	struct dib7000p_state *state = fe->demodulator_priv;
	*unc = dib7000p_read_word(state, 506);
	return 0;
}

1600
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
1601 1602 1603 1604 1605 1606 1607
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val = dib7000p_read_word(state, 394);
	*strength = 65535 - val;
	return 0;
}

1608
static u32 dib7000p_get_snr(struct dvb_frontend *fe)
1609
{
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val;
	s32 signal_mant, signal_exp, noise_mant, noise_exp;
	u32 result = 0;

	val = dib7000p_read_word(state, 479);
	noise_mant = (val >> 4) & 0xff;
	noise_exp = ((val & 0xf) << 2);
	val = dib7000p_read_word(state, 480);
	noise_exp += ((val >> 14) & 0x3);
	if ((noise_exp & 0x20) != 0)
		noise_exp -= 0x40;

	signal_mant = (val >> 6) & 0xFF;
1624
	signal_exp = (val & 0x3F);
1625 1626 1627 1628
	if ((signal_exp & 0x20) != 0)
		signal_exp -= 0x40;

	if (signal_mant != 0)
1629
		result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
1630 1631 1632 1633
	else
		result = intlog10(2) * 10 * signal_exp - 100;

	if (noise_mant != 0)
1634
		result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
1635 1636 1637
	else
		result -= intlog10(2) * 10 * noise_exp - 100;

1638 1639 1640 1641 1642 1643 1644 1645 1646
	return result;
}

static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr)
{
	u32 result;

	result = dib7000p_get_snr(fe);

1647
	*snr = result / ((1 << 24) / 10);
1648 1649 1650
	return 0;
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
static void dib7000p_reset_stats(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	struct dtv_frontend_properties *c = &demod->dtv_property_cache;
	u32 ucb;

	memset(&c->strength, 0, sizeof(c->strength));
	memset(&c->cnr, 0, sizeof(c->cnr));
	memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
	memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
	memset(&c->block_error, 0, sizeof(c->block_error));

	c->strength.len = 1;
	c->cnr.len = 1;
	c->block_error.len = 1;
	c->block_count.len = 1;
	c->post_bit_error.len = 1;
	c->post_bit_count.len = 1;

	c->strength.stat[0].scale = FE_SCALE_DECIBEL;
	c->strength.stat[0].uvalue = 0;

	c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;

	dib7000p_read_unc_blocks(demod, &ucb);

	state->old_ucb = ucb;
	state->ber_jiffies_stats = 0;
	state->per_jiffies_stats = 0;
}

struct linear_segments {
	unsigned x;
	signed y;
};

/*
 * Table to estimate signal strength in dBm.
 * This table should be empirically determinated by measuring the signal
 * strength generated by a RF generator directly connected into
 * a device.
 */
/* FIXME: Calibrate the table */

#define DB_OFFSET 0

static struct linear_segments strength_to_db_table[] = {
	{ 65535,  65535},
	{     0,      0},
};

static u32 interpolate_value(u32 value, struct linear_segments *segments,
			     unsigned len)
{
	u64 tmp64;
	u32 dx;
	s32 dy;
	int i, ret;

	if (value >= segments[0].x)
		return segments[0].y;
	if (value < segments[len-1].x)
		return segments[len-1].y;

	for (i = 1; i < len - 1; i++) {
		/* If value is identical, no need to interpolate */
		if (value == segments[i].x)
			return segments[i].y;
		if (value > segments[i].x)
			break;
	}

	/* Linear interpolation between the two (x,y) points */
	dy = segments[i - 1].y - segments[i].y;
	dx = segments[i - 1].x - segments[i].x;

	tmp64 = value - segments[i].x;
	tmp64 *= dy;
	do_div(tmp64, dx);
	ret = segments[i].y + tmp64;

	return ret;
}

/* FIXME: may require changes - this one was borrowed from dib8000 */
static u32 dib7000p_get_time_us(struct dvb_frontend *demod, int layer)
{
	struct dtv_frontend_properties *c = &demod->dtv_property_cache;
	u64 time_us, tmp64;
	u32 tmp, denom;
	int guard, rate_num, rate_denum = 1, bits_per_symbol;
	int interleaving = 0, fft_div;

	switch (c->guard_interval) {
	case GUARD_INTERVAL_1_4:
		guard = 4;
		break;
	case GUARD_INTERVAL_1_8:
		guard = 8;
		break;
	case GUARD_INTERVAL_1_16:
		guard = 16;
		break;
	default:
	case GUARD_INTERVAL_1_32:
		guard = 32;
		break;
	}

	switch (c->transmission_mode) {
	case TRANSMISSION_MODE_2K:
		fft_div = 4;
		break;
	case TRANSMISSION_MODE_4K:
		fft_div = 2;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		fft_div = 1;
		break;
	}

	switch (c->modulation) {
	case DQPSK:
	case QPSK:
		bits_per_symbol = 2;
		break;
	case QAM_16:
		bits_per_symbol = 4;
		break;
	default:
	case QAM_64:
		bits_per_symbol = 6;
		break;
	}

	switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) {
	case FEC_1_2:
		rate_num = 1;
		rate_denum = 2;
		break;
	case FEC_2_3:
		rate_num = 2;
		rate_denum = 3;
		break;
	case FEC_3_4:
		rate_num = 3;
		rate_denum = 4;
		break;
	case FEC_5_6:
		rate_num = 5;
		rate_denum = 6;
		break;
	default:
	case FEC_7_8:
		rate_num = 7;
		rate_denum = 8;
		break;
	}

	interleaving = interleaving;

	denom = bits_per_symbol * rate_num * fft_div * 384;

	/* If calculus gets wrong, wait for 1s for the next stats */
	if (!denom)
		return 0;

	/* Estimate the period for the total bit rate */
	time_us = rate_denum * (1008 * 1562500L);
	tmp64 = time_us;
	do_div(tmp64, guard);
	time_us = time_us + tmp64;
	time_us += denom / 2;
	do_div(time_us, denom);

	tmp = 1008 * 96 * interleaving;
	time_us += tmp + tmp / guard;

	return time_us;
}

static int dib7000p_get_stats(struct dvb_frontend *demod, fe_status_t stat)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	struct dtv_frontend_properties *c = &demod->dtv_property_cache;
	int i;
	int show_per_stats = 0;
	u32 time_us = 0, val, snr;
	u64 blocks, ucb;
	s32 db;
	u16 strength;

	/* Get Signal strength */
	dib7000p_read_signal_strength(demod, &strength);
	val = strength;
	db = interpolate_value(val,
			       strength_to_db_table,
			       ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET;
	c->strength.stat[0].svalue = db;

	/* FIXME: Remove this when calibrated to DB */
	c->strength.stat[0].scale = FE_SCALE_COUNTER;

	/* UCB/BER/CNR measures require lock */
	if (!(stat & FE_HAS_LOCK)) {
		c->cnr.len = 1;
		c->block_count.len = 1;
		c->block_error.len = 1;
		c->post_bit_error.len = 1;
		c->post_bit_count.len = 1;
		c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		return 0;
	}

	/* Check if time for stats was elapsed */
	if (time_after(jiffies, state->per_jiffies_stats)) {
		state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);

		/* Get SNR */
		snr = dib7000p_get_snr(demod);
		if (snr)
			snr = (1000L * snr) >> 24;
		else
			snr = 0;
		c->cnr.stat[0].svalue = snr;
		c->cnr.stat[0].scale = FE_SCALE_DECIBEL;

		/* Get UCB measures */
		dib7000p_read_unc_blocks(demod, &val);
		ucb = val - state->old_ucb;
		if (val < state->old_ucb)
			ucb += 0x100000000LL;

		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
		c->block_error.stat[0].uvalue = ucb;

		/* Estimate the number of packets based on bitrate */
		if (!time_us)
			time_us = dib7000p_get_time_us(demod, -1);

		if (time_us) {
			blocks = 1250000ULL * 1000000ULL;
			do_div(blocks, time_us * 8 * 204);
			c->block_count.stat[0].scale = FE_SCALE_COUNTER;
			c->block_count.stat[0].uvalue += blocks;
		}

		show_per_stats = 1;
	}

	/* Get post-BER measures */
	if (time_after(jiffies, state->ber_jiffies_stats)) {
		time_us = dib7000p_get_time_us(demod, -1);
		state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000);

		dprintk("Next all layers stats available in %u us.", time_us);

		dib7000p_read_ber(demod, &val);
		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_error.stat[0].uvalue += val;

		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_count.stat[0].uvalue += 100000000;
	}

	/* Get PER measures */
	if (show_per_stats) {
		dib7000p_read_unc_blocks(demod, &val);

		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
		c->block_error.stat[0].uvalue += val;

		time_us = dib7000p_get_time_us(demod, i);
		if (time_us) {
			blocks = 1250000ULL * 1000000ULL;
			do_div(blocks, time_us * 8 * 204);
			c->block_count.stat[0].scale = FE_SCALE_COUNTER;
			c->block_count.stat[0].uvalue += blocks;
		}
	}
	return 0;
}

1943
static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
1944 1945 1946 1947 1948 1949 1950 1951 1952
{
	tune->min_delay_ms = 1000;
	return 0;
}

static void dib7000p_release(struct dvb_frontend *demod)
{
	struct dib7000p_state *st = demod->demodulator_priv;
	dibx000_exit_i2c_master(&st->i2c_master);
1953
	i2c_del_adapter(&st->dib7090_tuner_adap);
1954 1955 1956
	kfree(st);
}

1957
static int dib7000pc_detection(struct i2c_adapter *i2c_adap)
1958
{
1959
	u8 *tx, *rx;
1960
	struct i2c_msg msg[2] = {
1961 1962
		{.addr = 18 >> 1, .flags = 0, .len = 2},
		{.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2},
1963
	};
1964 1965 1966 1967 1968 1969 1970 1971
	int ret = 0;

	tx = kzalloc(2*sizeof(u8), GFP_KERNEL);
	if (!tx)
		return -ENOMEM;
	rx = kzalloc(2*sizeof(u8), GFP_KERNEL);
	if (!rx) {
		ret = -ENOMEM;
1972
		goto rx_memory_error;
1973 1974 1975 1976
	}

	msg[0].buf = tx;
	msg[1].buf = rx;
1977 1978 1979 1980 1981 1982

	tx[0] = 0x03;
	tx[1] = 0x00;

	if (i2c_transfer(i2c_adap, msg, 2) == 2)
		if (rx[0] == 0x01 && rx[1] == 0xb3) {
1983
			dprintk("-D-  DiB7000PC detected");
1984 1985 1986 1987 1988 1989 1990
			return 1;
		}

	msg[0].addr = msg[1].addr = 0x40;

	if (i2c_transfer(i2c_adap, msg, 2) == 2)
		if (rx[0] == 0x01 && rx[1] == 0xb3) {
1991
			dprintk("-D-  DiB7000PC detected");
1992 1993 1994
			return 1;
		}

1995
	dprintk("-D-  DiB7000PC not detected");
1996 1997 1998 1999 2000

	kfree(rx);
rx_memory_error:
	kfree(tx);
	return ret;
2001 2002
}

2003
static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
2004 2005 2006 2007 2008
{
	struct dib7000p_state *st = demod->demodulator_priv;
	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}

2009
static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
2010
{
2011 2012 2013 2014 2015
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val = dib7000p_read_word(state, 235) & 0xffef;
	val |= (onoff & 0x1) << 4;
	dprintk("PID filter enabled %d", onoff);
	return dib7000p_write_word(state, 235, val);
2016 2017
}

2018
static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
2019
{
2020 2021 2022
	struct dib7000p_state *state = fe->demodulator_priv;
	dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff);
	return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0);
2023 2024
}

2025
static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
2026
{
2027
	struct dib7000p_state *dpst;
2028 2029 2030
	int k = 0;
	u8 new_addr = 0;

2031 2032
	dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
	if (!dpst)
2033
		return -ENOMEM;
2034 2035

	dpst->i2c_adap = i2c;
2036
	mutex_init(&dpst->i2c_buffer_lock);
2037

2038
	for (k = no_of_demods - 1; k >= 0; k--) {
2039
		dpst->cfg = cfg[k];
2040 2041

		/* designated i2c address */
2042 2043 2044 2045
		if (cfg[k].default_i2c_addr != 0)
			new_addr = cfg[k].default_i2c_addr + (k << 1);
		else
			new_addr = (0x40 + k) << 1;
2046
		dpst->i2c_addr = new_addr;
2047
		dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
2048 2049
		if (dib7000p_identify(dpst) != 0) {
			dpst->i2c_addr = default_addr;
2050
			dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
2051
			if (dib7000p_identify(dpst) != 0) {
2052
				dprintk("DiB7000P #%d: not identified\n", k);
2053
				kfree(dpst);
2054 2055 2056 2057 2058
				return -EIO;
			}
		}

		/* start diversity to pull_down div_str - just for i2c-enumeration */
2059
		dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY);
2060 2061

		/* set new i2c address and force divstart */
2062
		dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2);
2063

2064
		dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
2065 2066 2067
	}

	for (k = 0; k < no_of_demods; k++) {
2068
		dpst->cfg = cfg[k];
2069 2070 2071 2072
		if (cfg[k].default_i2c_addr != 0)
			dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
		else
			dpst->i2c_addr = (0x40 + k) << 1;
2073 2074

		// unforce divstr
2075
		dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2);
2076 2077

		/* deactivate div - it was just for i2c-enumeration */
2078
		dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z);
2079 2080
	}

2081
	kfree(dpst);
2082 2083 2084
	return 0;
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
static const s32 lut_1000ln_mant[] = {
	6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
};

static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u32 tmp_val = 0, exp = 0, mant = 0;
	s32 pow_i;
	u16 buf[2];
	u8 ix = 0;

	buf[0] = dib7000p_read_word(state, 0x184);
	buf[1] = dib7000p_read_word(state, 0x185);
	pow_i = (buf[0] << 16) | buf[1];
	dprintk("raw pow_i = %d", pow_i);

	tmp_val = pow_i;
	while (tmp_val >>= 1)
		exp++;

	mant = (pow_i * 1000 / (1 << exp));
	dprintk(" mant = %d exp = %d", mant / 1000, exp);

	ix = (u8) ((mant - 1000) / 100);	/* index of the LUT */
	dprintk(" ix = %d", ix);

	pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
	pow_i = (pow_i << 8) / 1000;
	dprintk(" pow_i = %d", pow_i);

	return pow_i;
}

static int map_addr_to_serpar_number(struct i2c_msg *msg)
{
	if ((msg->buf[0] <= 15))
		msg->buf[0] -= 1;
	else if (msg->buf[0] == 17)
		msg->buf[0] = 15;
	else if (msg->buf[0] == 16)
		msg->buf[0] = 17;
	else if (msg->buf[0] == 19)
		msg->buf[0] = 16;
	else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
		msg->buf[0] -= 3;
	else if (msg->buf[0] == 28)
		msg->buf[0] = 23;
2133
	else
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
		return -EINVAL;
	return 0;
}

static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u8 n_overflow = 1;
	u16 i = 1000;
	u16 serpar_num = msg[0].buf[0];

	while (n_overflow == 1 && i) {
		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
		i--;
		if (i == 0)
			dprintk("Tuner ITF: write busy (overflow)");
	}
	dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
	dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);

	return num;
}

static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u8 n_overflow = 1, n_empty = 1;
	u16 i = 1000;
	u16 serpar_num = msg[0].buf[0];
	u16 read_word;

	while (n_overflow == 1 && i) {
		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
		i--;
		if (i == 0)
			dprintk("TunerITF: read busy (overflow)");
	}
	dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));

	i = 1000;
	while (n_empty == 1 && i) {
		n_empty = dib7000p_read_word(state, 1984) & 0x1;
		i--;
		if (i == 0)
			dprintk("TunerITF: read busy (empty)");
	}
	read_word = dib7000p_read_word(state, 1987);
	msg[1].buf[0] = (read_word >> 8) & 0xff;
	msg[1].buf[1] = (read_word) & 0xff;

	return num;
}

static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	if (map_addr_to_serpar_number(&msg[0]) == 0) {	/* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */
		if (num == 1) {	/* write */
			return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
		} else {	/* read */
			return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
		}
	}
	return num;
}

O
Olivier Grenie 已提交
2199 2200
static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap,
		struct i2c_msg msg[], int num, u16 apb_address)
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u16 word;

	if (num == 1) {		/* write */
		dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
	} else {
		word = dib7000p_read_word(state, apb_address);
		msg[1].buf[0] = (word >> 8) & 0xff;
		msg[1].buf[1] = (word) & 0xff;
	}

	return num;
}

static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);

	u16 apb_address = 0, word;
	int i = 0;
	switch (msg[0].buf[0]) {
	case 0x12:
		apb_address = 1920;
		break;
	case 0x14:
		apb_address = 1921;
		break;
	case 0x24:
		apb_address = 1922;
		break;
	case 0x1a:
		apb_address = 1923;
		break;
	case 0x22:
		apb_address = 1924;
		break;
	case 0x33:
		apb_address = 1926;
		break;
	case 0x34:
		apb_address = 1927;
		break;
	case 0x35:
		apb_address = 1928;
		break;
	case 0x36:
		apb_address = 1929;
		break;
	case 0x37:
		apb_address = 1930;
		break;
	case 0x38:
		apb_address = 1931;
		break;
	case 0x39:
		apb_address = 1932;
		break;
	case 0x2a:
		apb_address = 1935;
		break;
	case 0x2b:
		apb_address = 1936;
		break;
	case 0x2c:
		apb_address = 1937;
		break;
	case 0x2d:
		apb_address = 1938;
		break;
	case 0x2e:
		apb_address = 1939;
		break;
	case 0x2f:
		apb_address = 1940;
		break;
	case 0x30:
		apb_address = 1941;
		break;
	case 0x31:
		apb_address = 1942;
		break;
	case 0x32:
		apb_address = 1943;
		break;
	case 0x3e:
		apb_address = 1944;
		break;
	case 0x3f:
		apb_address = 1945;
		break;
	case 0x40:
		apb_address = 1948;
		break;
	case 0x25:
		apb_address = 914;
		break;
	case 0x26:
		apb_address = 915;
		break;
	case 0x27:
2302
		apb_address = 917;
2303 2304
		break;
	case 0x28:
2305
		apb_address = 916;
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		break;
	case 0x1d:
		i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
		word = dib7000p_read_word(state, 384 + i);
		msg[1].buf[0] = (word >> 8) & 0xff;
		msg[1].buf[1] = (word) & 0xff;
		return num;
	case 0x1f:
		if (num == 1) {	/* write */
			word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
			word &= 0x3;
2317
			word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
			dib7000p_write_word(state, 72, word);	/* Set the proper input */
			return num;
		}
	}

	if (apb_address != 0)	/* R/W acces via APB */
		return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
	else			/* R/W access via SERPAR  */
		return w7090p_tuner_rw_serpar(i2c_adap, msg, num);

	return 0;
}

static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C;
}

static struct i2c_algorithm dib7090_tuner_xfer_algo = {
	.master_xfer = dib7090_tuner_xfer,
	.functionality = dib7000p_i2c_func,
};

2341
static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
{
	struct dib7000p_state *st = fe->demodulator_priv;
	return &st->dib7090_tuner_adap;
}

static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
{
	u16 reg;

	/* drive host bus 2, 3, 4 */
	reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1798, reg);

	/* drive host bus 5,6 */
	reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
	reg |= (drive << 8) | (drive << 2);
	dib7000p_write_word(state, 1799, reg);

	/* drive host bus 7, 8, 9 */
	reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1800, reg);

	/* drive host bus 10, 11 */
	reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
	reg |= (drive << 8) | (drive << 2);
	dib7000p_write_word(state, 1801, reg);

	/* drive host bus 12, 13, 14 */
	reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1802, reg);

	return 0;
}

static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
{
	u32 quantif = 3;
	u32 nom = (insertExtSynchro * P_Kin + syncSize);
	u32 denom = P_Kout;
	u32 syncFreq = ((nom << quantif) / denom);

	if ((syncFreq & ((1 << quantif) - 1)) != 0)
		syncFreq = (syncFreq >> quantif) + 1;
	else
		syncFreq = (syncFreq >> quantif);

	if (syncFreq != 0)
		syncFreq = syncFreq - 1;

	return syncFreq;
}

static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
{
	dprintk("Configure DibStream Tx");

	dib7000p_write_word(state, 1615, 1);
	dib7000p_write_word(state, 1603, P_Kin);
	dib7000p_write_word(state, 1605, P_Kout);
	dib7000p_write_word(state, 1606, insertExtSynchro);
	dib7000p_write_word(state, 1608, synchroMode);
	dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
	dib7000p_write_word(state, 1610, syncWord & 0xffff);
	dib7000p_write_word(state, 1612, syncSize);
	dib7000p_write_word(state, 1615, 0);

	return 0;
}

static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
		u32 dataOutRate)
{
	u32 syncFreq;

	dprintk("Configure DibStream Rx");
2420
	if ((P_Kin != 0) && (P_Kout != 0)) {
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
		dib7000p_write_word(state, 1542, syncFreq);
	}
	dib7000p_write_word(state, 1554, 1);
	dib7000p_write_word(state, 1536, P_Kin);
	dib7000p_write_word(state, 1537, P_Kout);
	dib7000p_write_word(state, 1539, synchroMode);
	dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
	dib7000p_write_word(state, 1541, syncWord & 0xffff);
	dib7000p_write_word(state, 1543, syncSize);
	dib7000p_write_word(state, 1544, dataOutRate);
	dib7000p_write_word(state, 1554, 0);

	return 0;
}

2437
static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff)
2438
{
2439
	u16 reg_1287 = dib7000p_read_word(state, 1287);
2440

2441 2442 2443 2444 2445 2446 2447 2448
	switch (onoff) {
	case 1:
			reg_1287 &= ~(1<<7);
			break;
	case 0:
			reg_1287 |= (1<<7);
			break;
	}
2449

2450
	dib7000p_write_word(state, 1287, reg_1287);
2451 2452
}

2453 2454
static void dib7090_configMpegMux(struct dib7000p_state *state,
		u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
2455 2456 2457
{
	dprintk("Enable Mpeg mux");

2458
	dib7090_enMpegMux(state, 0);
2459

2460 2461 2462
	/* If the input mode is MPEG do not divide the serial clock */
	if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
		enSerialClkDiv2 = 0;
2463

2464 2465 2466 2467 2468
	dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2)
			| ((enSerialMode & 0x1) << 1)
			| (enSerialClkDiv2 & 0x1));

	dib7090_enMpegMux(state, 1);
2469 2470
}

2471
static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode)
2472
{
2473
	u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7);
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	switch (mode) {
	case MPEG_ON_DIBTX:
			dprintk("SET MPEG ON DIBSTREAM TX");
			dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
			reg_1288 |= (1<<9);
			break;
	case DIV_ON_DIBTX:
			dprintk("SET DIV_OUT ON DIBSTREAM TX");
			dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
			reg_1288 |= (1<<8);
			break;
	case ADC_ON_DIBTX:
			dprintk("SET ADC_OUT ON DIBSTREAM TX");
			dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
			reg_1288 |= (1<<7);
			break;
	default:
			break;
	}
	dib7000p_write_word(state, 1288, reg_1288);
2495 2496
}

2497
static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode)
2498
{
2499
	u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4);
2500

2501
	switch (mode) {
2502 2503 2504 2505 2506 2507 2508 2509 2510
	case DEMOUT_ON_HOSTBUS:
			dprintk("SET DEM OUT OLD INTERF ON HOST BUS");
			dib7090_enMpegMux(state, 0);
			reg_1288 |= (1<<6);
			break;
	case DIBTX_ON_HOSTBUS:
			dprintk("SET DIBSTREAM TX ON HOST BUS");
			dib7090_enMpegMux(state, 0);
			reg_1288 |= (1<<5);
2511
			break;
2512 2513 2514
	case MPEG_ON_HOSTBUS:
			dprintk("SET MPEG MUX ON HOST BUS");
			reg_1288 |= (1<<4);
2515
			break;
2516
	default:
2517 2518
			break;
	}
2519
	dib7000p_write_word(state, 1288, reg_1288);
2520 2521
}

2522
int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
2523
{
2524 2525 2526
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 reg_1287;

2527
	switch (onoff) {
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	case 0: /* only use the internal way - not the diversity input */
			dprintk("%s mode OFF : by default Enable Mpeg INPUT", __func__);
			dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);

			/* Do not divide the serial clock of MPEG MUX */
			/* in SERIAL MODE in case input mode MPEG is used */
			reg_1287 = dib7000p_read_word(state, 1287);
			/* enSerialClkDiv2 == 1 ? */
			if ((reg_1287 & 0x1) == 1) {
				/* force enSerialClkDiv2 = 0 */
				reg_1287 &= ~0x1;
				dib7000p_write_word(state, 1287, reg_1287);
			}
			state->input_mode_mpeg = 1;
			break;
	case 1: /* both ways */
	case 2: /* only the diversity input */
			dprintk("%s ON : Enable diversity INPUT", __func__);
			dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
			state->input_mode_mpeg = 0;
			break;
2549 2550
	}

2551
	dib7000p_set_diversity_in(&state->demod, onoff);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	return 0;
}

static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
{
	struct dib7000p_state *state = fe->demodulator_priv;

	u16 outreg, smo_mode, fifo_threshold;
	u8 prefer_mpeg_mux_use = 1;
	int ret = 0;

	dib7090_host_bus_drive(state, 1);

	fifo_threshold = 1792;
	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
	outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));

	switch (mode) {
	case OUTMODE_HIGH_Z:
		outreg = 0;
		break;

	case OUTMODE_MPEG2_SERIAL:
		if (prefer_mpeg_mux_use) {
2576 2577 2578 2579 2580 2581 2582
			dprintk("setting output mode TS_SERIAL using Mpeg Mux");
			dib7090_configMpegMux(state, 3, 1, 1);
			dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
		} else {/* Use Smooth block */
			dprintk("setting output mode TS_SERIAL using Smooth bloc");
			dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
			outreg |= (2<<6) | (0 << 1);
2583 2584 2585 2586 2587
		}
		break;

	case OUTMODE_MPEG2_PAR_GATED_CLK:
		if (prefer_mpeg_mux_use) {
2588 2589 2590 2591 2592 2593 2594
			dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux");
			dib7090_configMpegMux(state, 2, 0, 0);
			dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
		} else { /* Use Smooth block */
			dprintk("setting output mode TS_PARALLEL_GATED using Smooth block");
			dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
			outreg |= (0<<6);
2595 2596 2597 2598
		}
		break;

	case OUTMODE_MPEG2_PAR_CONT_CLK:	/* Using Smooth block only */
2599 2600 2601
		dprintk("setting output mode TS_PARALLEL_CONT using Smooth block");
		dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
		outreg |= (1<<6);
2602 2603 2604
		break;

	case OUTMODE_MPEG2_FIFO:	/* Using Smooth block because not supported by new Mpeg Mux bloc */
2605 2606 2607
		dprintk("setting output mode TS_FIFO using Smooth block");
		dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
		outreg |= (5<<6);
2608 2609 2610 2611 2612
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		break;

	case OUTMODE_DIVERSITY:
2613 2614 2615
		dprintk("setting output mode MODE_DIVERSITY");
		dib7090_setDibTxMux(state, DIV_ON_DIBTX);
		dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
2616 2617 2618
		break;

	case OUTMODE_ANALOG_ADC:
2619 2620 2621
		dprintk("setting output mode MODE_ANALOG_ADC");
		dib7090_setDibTxMux(state, ADC_ON_DIBTX);
		dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
2622 2623
		break;
	}
2624 2625
	if (mode != OUTMODE_HIGH_Z)
		outreg |= (1 << 10);
2626 2627 2628 2629 2630 2631

	if (state->cfg.output_mpeg2_in_188_bytes)
		smo_mode |= (1 << 5);

	ret |= dib7000p_write_word(state, 235, smo_mode);
	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
2632
	ret |= dib7000p_write_word(state, 1286, outreg);
2633 2634 2635 2636

	return ret;
}

2637
static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
2638 2639 2640 2641 2642 2643 2644 2645
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 en_cur_state;

	dprintk("sleep dib7090: %d", onoff);

	en_cur_state = dib7000p_read_word(state, 1922);

2646
	if (en_cur_state > 0xff)
2647 2648 2649
		state->tuner_enable = en_cur_state;

	if (onoff)
2650
		en_cur_state &= 0x00ff;
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
	else {
		if (state->tuner_enable != 0)
			en_cur_state = state->tuner_enable;
	}

	dib7000p_write_word(state, 1922, en_cur_state);

	return 0;
}

2661
static int dib7090_get_adc_power(struct dvb_frontend *fe)
2662 2663 2664 2665
{
	return dib7000p_get_adc_power(fe);
}

2666
static int dib7090_slave_reset(struct dvb_frontend *fe)
2667 2668
{
	struct dib7000p_state *state = fe->demodulator_priv;
2669
	u16 reg;
2670

2671 2672
	reg = dib7000p_read_word(state, 1794);
	dib7000p_write_word(state, 1794, reg | (4 << 12));
2673

2674 2675
	dib7000p_write_word(state, 1032, 0xffff);
	return 0;
2676 2677
}

2678
static struct dvb_frontend_ops dib7000p_ops;
2679
static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
{
	struct dvb_frontend *demod;
	struct dib7000p_state *st;
	st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
	if (st == NULL)
		return NULL;

	memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
	st->i2c_adap = i2c_adap;
	st->i2c_addr = i2c_addr;
	st->gpio_val = cfg->gpio_val;
	st->gpio_dir = cfg->gpio_dir;

2693 2694 2695
	/* Ensure the output mode remains at the previous default if it's
	 * not specifically set by the caller.
	 */
2696
	if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
2697 2698
		st->cfg.output_mode = OUTMODE_MPEG2_FIFO;

2699
	demod = &st->demod;
2700 2701
	demod->demodulator_priv = st;
	memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
2702
	mutex_init(&st->i2c_buffer_lock);
2703

2704
	dib7000p_write_word(st, 1287, 0x0003);	/* sram lead in, rdy */
2705

2706 2707 2708
	if (dib7000p_identify(st) != 0)
		goto error;

2709 2710
	st->version = dib7000p_read_word(st, 897);

2711
	/* FIXME: make sure the dev.parent field is initialized, or else
2712 2713 2714 2715
	   request_firmware() will hit an OOPS (this should be moved somewhere
	   more common) */
	st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent;

2716 2717
	dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);

2718 2719 2720 2721 2722 2723 2724 2725
	/* init 7090 tuner adapter */
	strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name));
	st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
	st->dib7090_tuner_adap.algo_data = NULL;
	st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
	i2c_set_adapdata(&st->dib7090_tuner_adap, st);
	i2c_add_adapter(&st->dib7090_tuner_adap);

2726 2727
	dib7000p_demod_reset(st);

2728 2729
	dib7000p_reset_stats(demod);

2730 2731 2732 2733 2734
	if (st->version == SOC7090) {
		dib7090_set_output_mode(demod, st->cfg.output_mode);
		dib7090_set_diversity_in(demod, 0);
	}

2735 2736
	return demod;

2737
error:
2738 2739 2740
	kfree(st);
	return NULL;
}
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

void *dib7000p_attach(struct dib7000p_ops *ops)
{
	if (!ops)
		return NULL;

	ops->slave_reset = dib7090_slave_reset;
	ops->get_adc_power = dib7090_get_adc_power;
	ops->dib7000pc_detection = dib7000pc_detection;
	ops->get_i2c_tuner = dib7090_get_i2c_tuner;
	ops->tuner_sleep = dib7090_tuner_sleep;
	ops->init = dib7000p_init;
	ops->set_agc1_min = dib7000p_set_agc1_min;
	ops->set_gpio = dib7000p_set_gpio;
	ops->i2c_enumeration = dib7000p_i2c_enumeration;
	ops->pid_filter = dib7000p_pid_filter;
	ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl;
	ops->get_i2c_master = dib7000p_get_i2c_master;
	ops->update_pll = dib7000p_update_pll;
	ops->ctrl_timf = dib7000p_ctrl_timf;
	ops->get_agc_values = dib7000p_get_agc_values;
	ops->set_wbd_ref = dib7000p_set_wbd_ref;

	return ops;
}
EXPORT_SYMBOL(dib7000p_attach);
2767 2768

static struct dvb_frontend_ops dib7000p_ops = {
2769
	.delsys = { SYS_DVBT },
2770
	.info = {
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
		 .name = "DiBcom 7000PC",
		 .frequency_min = 44250000,
		 .frequency_max = 867250000,
		 .frequency_stepsize = 62500,
		 .caps = FE_CAN_INVERSION_AUTO |
		 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
		 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
		 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
		 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
		 },

	.release = dib7000p_release,

	.init = dib7000p_wakeup,
	.sleep = dib7000p_sleep,

2787
	.set_frontend = dib7000p_set_frontend,
2788
	.get_tune_settings = dib7000p_fe_get_tune_settings,
2789
	.get_frontend = dib7000p_get_frontend,
2790 2791 2792

	.read_status = dib7000p_read_status,
	.read_ber = dib7000p_read_ber,
2793
	.read_signal_strength = dib7000p_read_signal_strength,
2794 2795
	.read_snr = dib7000p_read_snr,
	.read_ucblocks = dib7000p_read_unc_blocks,
2796 2797
};

2798
MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>");
2799 2800 2801
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL");