dib7000p.c 64.0 KB
Newer Older
1 2 3
/*
 * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
 *
4
 * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
5 6 7 8 9 10
 *
 * This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License as
 *	published by the Free Software Foundation, version 2.
 */
#include <linux/kernel.h>
11
#include <linux/slab.h>
12
#include <linux/i2c.h>
13
#include <linux/mutex.h>
14

15
#include "dvb_math.h"
16 17 18 19 20 21 22 23
#include "dvb_frontend.h"

#include "dib7000p.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");

24 25
static int buggy_sfn_workaround;
module_param(buggy_sfn_workaround, int, 0644);
26
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
27

28
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
29

30 31 32 33 34
struct i2c_device {
	struct i2c_adapter *i2c_adap;
	u8 i2c_addr;
};

35 36
struct dib7000p_state {
	struct dvb_frontend demod;
37
	struct dib7000p_config cfg;
38 39

	u8 i2c_addr;
40
	struct i2c_adapter *i2c_adap;
41 42 43 44 45

	struct dibx000_i2c_master i2c_master;

	u16 wbd_ref;

46
	u8 current_band;
47
	u32 current_bandwidth;
48 49 50
	struct dibx000_agc_config *current_agc;
	u32 timf;

51 52
	u8 div_force_off:1;
	u8 div_state:1;
53
	u16 div_sync_wait;
54 55 56

	u8 agc_state;

57 58
	u16 gpio_dir;
	u16 gpio_val;
59

60 61 62 63 64 65 66
	u8 sfn_workaround_active:1;

#define SOC7090 0x7090
	u16 version;

	u16 tuner_enable;
	struct i2c_adapter dib7090_tuner_adap;
67 68 69 70 71

	/* for the I2C transfer */
	struct i2c_msg msg[2];
	u8 i2c_write_buffer[4];
	u8 i2c_read_buffer[2];
72
	struct mutex i2c_buffer_lock;
73 74

	u8 input_mode_mpeg;
75 76 77 78
};

enum dib7000p_power_mode {
	DIB7000P_POWER_ALL = 0,
79
	DIB7000P_POWER_ANALOG_ADC,
80 81 82
	DIB7000P_POWER_INTERFACE_ONLY,
};

83
/* dib7090 specific fonctions */
84 85
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);
86 87
static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode);
static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode);
88

89 90
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{
91 92 93 94 95 96 97
	u16 ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock");
		return 0;
	}

98 99 100 101 102 103 104 105 106 107 108 109 110 111
	state->i2c_write_buffer[0] = reg >> 8;
	state->i2c_write_buffer[1] = reg & 0xff;

	memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
	state->msg[0].addr = state->i2c_addr >> 1;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 2;
	state->msg[1].addr = state->i2c_addr >> 1;
	state->msg[1].flags = I2C_M_RD;
	state->msg[1].buf = state->i2c_read_buffer;
	state->msg[1].len = 2;

	if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2)
112
		dprintk("i2c read error on %d", reg);
113

114 115 116
	ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
117 118 119 120
}

static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
{
121 122 123 124 125 126 127
	int ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock");
		return -EINVAL;
	}

128 129 130 131 132 133 134 135 136 137 138
	state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
	state->i2c_write_buffer[1] = reg & 0xff;
	state->i2c_write_buffer[2] = (val >> 8) & 0xff;
	state->i2c_write_buffer[3] = val & 0xff;

	memset(&state->msg[0], 0, sizeof(struct i2c_msg));
	state->msg[0].addr = state->i2c_addr >> 1;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 4;

139 140 141 142
	ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ?
			-EREMOTEIO : 0);
	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
143
}
144 145

static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
{
	u16 l = 0, r, *n;
	n = buf;
	l = *n++;
	while (l) {
		r = *n++;

		do {
			dib7000p_write_word(state, r, *n++);
			r++;
		} while (--l);
		l = *n++;
	}
}

161 162
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{
163
	int ret = 0;
164 165 166 167
	u16 outreg, fifo_threshold, smo_mode;

	outreg = 0;
	fifo_threshold = 1792;
168
	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
169

170
	dprintk("setting output mode for demod %p to %d", &state->demod, mode);
171 172

	switch (mode) {
173
	case OUTMODE_MPEG2_PAR_GATED_CLK:
174 175
		outreg = (1 << 10);	/* 0x0400 */
		break;
176
	case OUTMODE_MPEG2_PAR_CONT_CLK:
177 178
		outreg = (1 << 10) | (1 << 6);	/* 0x0440 */
		break;
179
	case OUTMODE_MPEG2_SERIAL:
180 181 182 183 184 185 186 187
		outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0480 */
		break;
	case OUTMODE_DIVERSITY:
		if (state->cfg.hostbus_diversity)
			outreg = (1 << 10) | (4 << 6);	/* 0x0500 */
		else
			outreg = (1 << 11);
		break;
188
	case OUTMODE_MPEG2_FIFO:
189 190 191 192 193 194 195
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		outreg = (1 << 10) | (5 << 6);
		break;
	case OUTMODE_ANALOG_ADC:
		outreg = (1 << 10) | (3 << 6);
		break;
196
	case OUTMODE_HIGH_Z:
197 198 199 200 201
		outreg = 0;
		break;
	default:
		dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod);
		break;
202 203 204
	}

	if (state->cfg.output_mpeg2_in_188_bytes)
205
		smo_mode |= (1 << 5);
206

207 208 209 210
	ret |= dib7000p_write_word(state, 235, smo_mode);
	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
	if (state->version != SOC7090)
		ret |= dib7000p_write_word(state, 1286, outreg);	/* P_Div_active */
211 212 213 214

	return ret;
}

215 216 217 218 219
static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
{
	struct dib7000p_state *state = demod->demodulator_priv;

	if (state->div_force_off) {
220
		dprintk("diversity combination deactivated - forced by COFDM parameters");
221
		onoff = 0;
222 223 224 225
		dib7000p_write_word(state, 207, 0);
	} else
		dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));

226
	state->div_state = (u8) onoff;
227 228 229 230 231 232 233 234 235 236 237 238 239

	if (onoff) {
		dib7000p_write_word(state, 204, 6);
		dib7000p_write_word(state, 205, 16);
		/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
	} else {
		dib7000p_write_word(state, 204, 1);
		dib7000p_write_word(state, 205, 0);
	}

	return 0;
}

240 241 242
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{
	/* by default everything is powered off */
243
	u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
244 245 246 247

	/* now, depending on the requested mode, we power on */
	switch (mode) {
		/* power up everything in the demod */
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	case DIB7000P_POWER_ALL:
		reg_774 = 0x0000;
		reg_775 = 0x0000;
		reg_776 = 0x0;
		reg_899 = 0x0;
		if (state->version == SOC7090)
			reg_1280 &= 0x001f;
		else
			reg_1280 &= 0x01ff;
		break;

	case DIB7000P_POWER_ANALOG_ADC:
		/* dem, cfg, iqc, sad, agc */
		reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
		/* nud */
		reg_776 &= ~((1 << 0));
		/* Dout */
		if (state->version != SOC7090)
266
			reg_1280 &= ~((1 << 11));
267 268
		reg_1280 &= ~(1 << 6);
		/* fall through wanted to enable the interfaces */
269

270
		/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
271 272 273 274
	case DIB7000P_POWER_INTERFACE_ONLY:	/* TODO power up either SDIO or I2C */
		if (state->version == SOC7090)
			reg_1280 &= ~((1 << 7) | (1 << 5));
		else
275
			reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
276
		break;
277

278 279 280
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */
	}

281 282 283
	dib7000p_write_word(state, 774, reg_774);
	dib7000p_write_word(state, 775, reg_775);
	dib7000p_write_word(state, 776, reg_776);
284
	dib7000p_write_word(state, 1280, reg_1280);
285 286
	if (state->version != SOC7090)
		dib7000p_write_word(state, 899, reg_899);
287 288 289 290 291 292

	return 0;
}

static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{
293
	u16 reg_908 = 0, reg_909 = 0;
294
	u16 reg;
295

296 297 298 299 300
	if (state->version != SOC7090) {
		reg_908 = dib7000p_read_word(state, 908);
		reg_909 = dib7000p_read_word(state, 909);
	}

301
	switch (no) {
302 303 304 305 306 307 308 309 310 311 312 313 314
	case DIBX000_SLOW_ADC_ON:
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 1925);

			dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2));	/* en_slowAdc = 1 & reset_sladc = 1 */

			reg = dib7000p_read_word(state, 1925);	/* read acces to make it works... strange ... */
			msleep(200);
			dib7000p_write_word(state, 1925, reg & ~(1 << 4));	/* en_slowAdc = 1 & reset_sladc = 0 */

			reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
			dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524);	/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */
		} else {
315 316 317
			reg_909 |= (1 << 1) | (1 << 0);
			dib7000p_write_word(state, 909, reg_909);
			reg_909 &= ~(1 << 1);
318 319
		}
		break;
320

321 322 323 324 325 326 327
	case DIBX000_SLOW_ADC_OFF:
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 1925);
			dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4));	/* reset_sladc = 1 en_slowAdc = 0 */
		} else
			reg_909 |= (1 << 1) | (1 << 0);
		break;
328

329 330 331 332
	case DIBX000_ADC_ON:
		reg_908 &= 0x0fff;
		reg_909 &= 0x0003;
		break;
333

334
	case DIBX000_ADC_OFF:
335 336 337
		reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
		reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
		break;
338

339 340 341
	case DIBX000_VBG_ENABLE:
		reg_908 &= ~(1 << 15);
		break;
342

343 344 345
	case DIBX000_VBG_DISABLE:
		reg_908 |= (1 << 15);
		break;
346

347 348
	default:
		break;
349 350
	}

351
//	dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
352

353
	reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4;
354 355
	reg_908 |= (state->cfg.enable_current_mirror & 1) << 7;

356 357 358 359
	if (state->version != SOC7090) {
		dib7000p_write_word(state, 908, reg_908);
		dib7000p_write_word(state, 909, reg_909);
	}
360 361
}

362
static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
363 364 365 366
{
	u32 timf;

	// store the current bandwidth for later use
367
	state->current_bandwidth = bw;
368 369

	if (state->timf == 0) {
370
		dprintk("using default timf");
371 372
		timf = state->cfg.bw->timf;
	} else {
373
		dprintk("using updated timf");
374 375 376
		timf = state->timf;
	}

377
	timf = timf * (bw / 50) / 160;
378

379
	dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
380
	dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
381 382 383 384 385 386 387 388

	return 0;
}

static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
	dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
389 390

	if (state->version == SOC7090)
391
		dib7000p_write_word(state, 74, 2048);
392
	else
393
		dib7000p_write_word(state, 74, 776);
394 395 396 397 398 399 400 401 402 403

	/* do the calibration */
	dib7000p_write_word(state, 73, (1 << 0));
	dib7000p_write_word(state, 73, (0 << 0));

	msleep(1);

	return 0;
}

404 405 406 407 408 409 410 411 412
int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	if (value > 4095)
		value = 4095;
	state->wbd_ref = value;
	return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
}
EXPORT_SYMBOL(dib7000p_set_wbd_ref);
413

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
int dib7000p_get_agc_values(struct dvb_frontend *fe,
		u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd)
{
	struct dib7000p_state *state = fe->demodulator_priv;

	if (agc_global != NULL)
		*agc_global = dib7000p_read_word(state, 394);
	if (agc1 != NULL)
		*agc1 = dib7000p_read_word(state, 392);
	if (agc2 != NULL)
		*agc2 = dib7000p_read_word(state, 393);
	if (wbd != NULL)
		*wbd = dib7000p_read_word(state, 397);

	return 0;
}
EXPORT_SYMBOL(dib7000p_get_agc_values);

432 433 434
static void dib7000p_reset_pll(struct dib7000p_state *state)
{
	struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
435 436
	u16 clk_cfg0;

437 438
	if (state->version == SOC7090) {
		dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
439

440 441
		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
			;
442 443 444 445 446 447

		dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
	} else {
		/* force PLL bypass */
		clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
			(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
448

449 450 451 452 453 454 455
		dib7000p_write_word(state, 900, clk_cfg0);

		/* P_pll_cfg */
		dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
		clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
		dib7000p_write_word(state, 900, clk_cfg0);
	}
456

457 458 459 460
	dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
	dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
	dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
	dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
461 462 463 464

	dib7000p_write_word(state, 72, bw->sad_cfg);
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
{
	u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
	internal |= (u32) dib7000p_read_word(state, 19);
	internal /= 1000;

	return internal;
}

int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
	u8 loopdiv, prediv;
	u32 internal, xtal;

	/* get back old values */
	prediv = reg_1856 & 0x3f;
	loopdiv = (reg_1856 >> 6) & 0x3f;

	if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
		dprintk("Updating pll (prediv: old =  %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
		reg_1856 &= 0xf000;
		reg_1857 = dib7000p_read_word(state, 1857);
489
		dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));
490 491 492 493 494 495 496 497 498 499

		dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));

		/* write new system clk into P_sec_len */
		internal = dib7000p_get_internal_freq(state);
		xtal = (internal / loopdiv) * prediv;
		internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio;	/* new internal */
		dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
		dib7000p_write_word(state, 19, (u16) (internal & 0xffff));

500
		dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));
501

502
		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
503 504 505 506 507 508 509 510
			dprintk("Waiting for PLL to lock");

		return 0;
	}
	return -EIO;
}
EXPORT_SYMBOL(dib7000p_update_pll);

511 512 513
static int dib7000p_reset_gpio(struct dib7000p_state *st)
{
	/* reset the GPIOs */
514
	dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
515 516 517 518 519 520 521 522 523 524 525 526

	dib7000p_write_word(st, 1029, st->gpio_dir);
	dib7000p_write_word(st, 1030, st->gpio_val);

	/* TODO 1031 is P_gpio_od */

	dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);

	dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
	return 0;
}

527 528 529
static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
{
	st->gpio_dir = dib7000p_read_word(st, 1029);
530 531
	st->gpio_dir &= ~(1 << num);	/* reset the direction bit */
	st->gpio_dir |= (dir & 0x1) << num;	/* set the new direction */
532 533 534
	dib7000p_write_word(st, 1029, st->gpio_dir);

	st->gpio_val = dib7000p_read_word(st, 1030);
535 536
	st->gpio_val &= ~(1 << num);	/* reset the direction bit */
	st->gpio_val |= (val & 0x01) << num;	/* set the new value */
537 538 539 540 541 542 543 544 545 546 547
	dib7000p_write_word(st, 1030, st->gpio_val);

	return 0;
}

int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	return dib7000p_cfg_gpio(state, num, dir, val);
}
EXPORT_SYMBOL(dib7000p_set_gpio);
548

549
static u16 dib7000p_defaults[] = {
550 551
	// auto search configuration
	3, 2,
552
	0x0004,
553
	(1<<3)|(1<<11)|(1<<12)|(1<<13),
554
	0x0814,			/* Equal Lock */
555 556

	12, 6,
557 558 559 560 561 562 563 564 565 566 567 568
	0x001b,
	0x7740,
	0x005b,
	0x8d80,
	0x01c9,
	0xc380,
	0x0000,
	0x0080,
	0x0000,
	0x0090,
	0x0001,
	0xd4c0,
569 570

	1, 26,
571
	0x6680,
572 573 574

	/* set ADC level to -16 */
	11, 79,
575 576 577 578 579 580 581 582 583 584 585
	(1 << 13) - 825 - 117,
	(1 << 13) - 837 - 117,
	(1 << 13) - 811 - 117,
	(1 << 13) - 766 - 117,
	(1 << 13) - 737 - 117,
	(1 << 13) - 693 - 117,
	(1 << 13) - 648 - 117,
	(1 << 13) - 619 - 117,
	(1 << 13) - 575 - 117,
	(1 << 13) - 531 - 117,
	(1 << 13) - 501 - 117,
586 587

	1, 142,
588
	0x0410,
589 590 591

	/* disable power smoothing */
	8, 145,
592 593 594 595 596 597 598 599
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
600 601

	1, 154,
602
	1 << 13,
603 604

	1, 168,
605
	0x0ccd,
606 607

	1, 183,
608
	0x200f,
609 610

	1, 212,
611
		0x169,
612 613

	5, 187,
614 615 616 617 618
	0x023d,
	0x00a4,
	0x00a4,
	0x7ff0,
	0x3ccc,
619 620

	1, 198,
621
	0x800,
622 623

	1, 222,
624
	0x0010,
625 626

	1, 235,
627
	0x0062,
628 629 630 631

	0,
};

632 633 634 635
static int dib7000p_demod_reset(struct dib7000p_state *state)
{
	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);

636 637 638
	if (state->version == SOC7090)
		dibx000_reset_i2c_master(&state->i2c_master);

639 640 641
	dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);

	/* restart all parts */
642 643 644 645 646 647 648 649
	dib7000p_write_word(state, 770, 0xffff);
	dib7000p_write_word(state, 771, 0xffff);
	dib7000p_write_word(state, 772, 0x001f);
	dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));

	dib7000p_write_word(state, 770, 0);
	dib7000p_write_word(state, 771, 0);
	dib7000p_write_word(state, 772, 0);
650 651
	dib7000p_write_word(state, 1280, 0);

652 653 654 655 656
	if (state->version != SOC7090) {
		dib7000p_write_word(state,  898, 0x0003);
		dib7000p_write_word(state,  898, 0);
	}

657 658 659 660
	/* default */
	dib7000p_reset_pll(state);

	if (dib7000p_reset_gpio(state) != 0)
661
		dprintk("GPIO reset was not successful.");
662

663 664
	if (state->version == SOC7090) {
		dib7000p_write_word(state, 899, 0);
665

666 667 668 669
		/* impulse noise */
		dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
		dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
		dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
670
		dib7000p_write_word(state, 273, (0<<6) | 30);
671 672 673
	}
	if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
		dprintk("OUTPUT_MODE could not be reset.");
674 675 676 677 678

	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
	dib7000p_sad_calib(state);
	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);

679 680 681 682 683
	/* unforce divstr regardless whether i2c enumeration was done or not */
	dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));

	dib7000p_set_bandwidth(state, 8000);

684
	if (state->version == SOC7090) {
685
		dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
686
	} else {
687 688 689 690 691
		if (state->cfg.tuner_is_baseband)
			dib7000p_write_word(state, 36, 0x0755);
		else
			dib7000p_write_word(state, 36, 0x1f55);
	}
692 693

	dib7000p_write_tab(state, dib7000p_defaults);
694 695 696 697 698
	if (state->version != SOC7090) {
		dib7000p_write_word(state, 901, 0x0006);
		dib7000p_write_word(state, 902, (3 << 10) | (1 << 6));
		dib7000p_write_word(state, 905, 0x2c8e);
	}
699

700 701 702 703 704
	dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);

	return 0;
}

705 706 707 708
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
	u16 tmp = 0;
	tmp = dib7000p_read_word(state, 903);
709
	dib7000p_write_word(state, 903, (tmp | 0x1));
710
	tmp = dib7000p_read_word(state, 900);
711
	dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));
712 713
}

714 715 716
static void dib7000p_restart_agc(struct dib7000p_state *state)
{
	// P_restart_iqc & P_restart_agc
717
	dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
718 719 720
	dib7000p_write_word(state, 770, 0x0000);
}

721
static int dib7000p_update_lna(struct dib7000p_state *state)
722 723 724
{
	u16 dyn_gain;

725
	if (state->cfg.update_lna) {
726
		dyn_gain = dib7000p_read_word(state, 394);
727
		if (state->cfg.update_lna(&state->demod, dyn_gain)) {
728
			dib7000p_restart_agc(state);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
			return 1;
		}
	}

	return 0;
}

static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
{
	struct dibx000_agc_config *agc = NULL;
	int i;
	if (state->current_band == band && state->current_agc != NULL)
		return 0;
	state->current_band = band;

	for (i = 0; i < state->cfg.agc_config_count; i++)
		if (state->cfg.agc[i].band_caps & band) {
			agc = &state->cfg.agc[i];
747
			break;
748 749 750
		}

	if (agc == NULL) {
751
		dprintk("no valid AGC configuration found for band 0x%02x", band);
752
		return -EINVAL;
753
	}
754 755 756 757

	state->current_agc = agc;

	/* AGC */
758 759 760
	dib7000p_write_word(state, 75, agc->setup);
	dib7000p_write_word(state, 76, agc->inv_gain);
	dib7000p_write_word(state, 77, agc->time_stabiliz);
761 762 763 764
	dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);

	// Demod AGC loop configuration
	dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
765
	dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
766 767

	/* AGC continued */
768
	dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
769 770 771 772 773 774 775 776 777
		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);

	if (state->wbd_ref != 0)
		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
	else
		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);

	dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));

778 779 780 781 782 783
	dib7000p_write_word(state, 107, agc->agc1_max);
	dib7000p_write_word(state, 108, agc->agc1_min);
	dib7000p_write_word(state, 109, agc->agc2_max);
	dib7000p_write_word(state, 110, agc->agc2_min);
	dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
	dib7000p_write_word(state, 112, agc->agc1_pt3);
784
	dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
785
	dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
786 787
	dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
	return 0;
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
{
	u32 internal = dib7000p_get_internal_freq(state);
	s32 unit_khz_dds_val = 67108864 / (internal);	/* 2**26 / Fsampling is the unit 1KHz offset */
	u32 abs_offset_khz = ABS(offset_khz);
	u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
	u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));

	dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert);

	if (offset_khz < 0)
		unit_khz_dds_val *= -1;

	/* IF tuner */
	if (invert)
		dds -= (abs_offset_khz * unit_khz_dds_val);	/* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */
	else
		dds += (abs_offset_khz * unit_khz_dds_val);

	if (abs_offset_khz <= (internal / 2)) {	/* Max dds offset is the half of the demod freq */
		dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
		dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
	}
}

815
static int dib7000p_agc_startup(struct dvb_frontend *demod)
816
{
817
	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
818 819 820 821
	struct dib7000p_state *state = demod->demodulator_priv;
	int ret = -1;
	u8 *agc_state = &state->agc_state;
	u8 agc_split;
822 823
	u16 reg;
	u32 upd_demod_gain_period = 0x1000;
824 825

	switch (state->agc_state) {
826 827 828 829 830
	case 0:
		dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 0x79b) & 0xff00;
			dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF);	/* lsb */
831
			dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));
832 833 834 835 836

			/* enable adc i & q */
			reg = dib7000p_read_word(state, 0x780);
			dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
		} else {
837 838
			dib7000p_set_adc_state(state, DIBX000_ADC_ON);
			dib7000p_pll_clk_cfg(state);
839
		}
840

841 842
		if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
			return -1;
843

844 845 846 847
		dib7000p_set_dds(state, 0);
		ret = 7;
		(*agc_state)++;
		break;
848

849 850 851
	case 1:
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->demod, 1);
852

853 854 855 856 857
		dib7000p_write_word(state, 78, 32768);
		if (!state->current_agc->perform_agc_softsplit) {
			/* we are using the wbd - so slow AGC startup */
			/* force 0 split on WBD and restart AGC */
			dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
858
			(*agc_state)++;
859 860 861 862 863 864 865
			ret = 5;
		} else {
			/* default AGC startup */
			(*agc_state) = 4;
			/* wait AGC rough lock time */
			ret = 7;
		}
866

867 868
		dib7000p_restart_agc(state);
		break;
869

870 871 872 873 874 875
	case 2:		/* fast split search path after 5sec */
		dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4));	/* freeze AGC loop */
		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8));	/* fast split search 0.25kHz */
		(*agc_state)++;
		ret = 14;
		break;
876

877 878 879
	case 3:		/* split search ended */
		agc_split = (u8) dib7000p_read_word(state, 396);	/* store the split value for the next time */
		dib7000p_write_word(state, 78, dib7000p_read_word(state, 394));	/* set AGC gain start value */
880

881 882
		dib7000p_write_word(state, 75, state->current_agc->setup);	/* std AGC loop */
		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split);	/* standard split search */
883

884
		dib7000p_restart_agc(state);
885

886
		dprintk("SPLIT %p: %hd", demod, agc_split);
887

888 889 890
		(*agc_state)++;
		ret = 5;
		break;
891

892 893 894 895 896
	case 4:		/* LNA startup */
		ret = 7;

		if (dib7000p_update_lna(state))
			ret = 5;
897
		else
898
			(*agc_state)++;
899 900 901 902 903 904 905 906 907
		break;

	case 5:
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->demod, 0);
		(*agc_state)++;
		break;
	default:
		break;
908 909
	}
	return ret;
910 911
}

912
static void dib7000p_update_timf(struct dib7000p_state *state)
913 914
{
	u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
915
	state->timf = timf * 160 / (state->current_bandwidth / 50);
916 917
	dib7000p_write_word(state, 23, (u16) (timf >> 16));
	dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
918 919 920
	dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf);

}
921

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	switch (op) {
	case DEMOD_TIMF_SET:
		state->timf = timf;
		break;
	case DEMOD_TIMF_UPDATE:
		dib7000p_update_timf(state);
		break;
	case DEMOD_TIMF_GET:
		break;
	}
	dib7000p_set_bandwidth(state, state->current_bandwidth);
	return state->timf;
937
}
938
EXPORT_SYMBOL(dib7000p_ctrl_timf);
939

940 941
static void dib7000p_set_channel(struct dib7000p_state *state,
				 struct dtv_frontend_properties *ch, u8 seq)
942
{
943 944
	u16 value, est[4];

945
	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
946 947

	/* nfft, guard, qam, alpha */
948
	value = 0;
949
	switch (ch->transmission_mode) {
950 951 952
	case TRANSMISSION_MODE_2K:
		value |= (0 << 7);
		break;
953
	case TRANSMISSION_MODE_4K:
954 955 956 957 958 959
		value |= (2 << 7);
		break;
	default:
	case TRANSMISSION_MODE_8K:
		value |= (1 << 7);
		break;
960
	}
961
	switch (ch->guard_interval) {
962 963 964 965 966 967 968 969 970 971 972 973 974
	case GUARD_INTERVAL_1_32:
		value |= (0 << 5);
		break;
	case GUARD_INTERVAL_1_16:
		value |= (1 << 5);
		break;
	case GUARD_INTERVAL_1_4:
		value |= (3 << 5);
		break;
	default:
	case GUARD_INTERVAL_1_8:
		value |= (2 << 5);
		break;
975
	}
976
	switch (ch->modulation) {
977 978 979 980 981 982 983 984 985 986
	case QPSK:
		value |= (0 << 3);
		break;
	case QAM_16:
		value |= (1 << 3);
		break;
	default:
	case QAM_64:
		value |= (2 << 3);
		break;
987 988
	}
	switch (HIERARCHY_1) {
989 990 991 992 993 994 995 996 997 998
	case HIERARCHY_2:
		value |= 2;
		break;
	case HIERARCHY_4:
		value |= 4;
		break;
	default:
	case HIERARCHY_1:
		value |= 1;
		break;
999 1000
	}
	dib7000p_write_word(state, 0, value);
1001
	dib7000p_write_word(state, 5, (seq << 4) | 1);	/* do not force tps, search list 0 */
1002

1003 1004 1005 1006
	/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
	value = 0;
	if (1 != 0)
		value |= (1 << 6);
1007
	if (ch->hierarchy == 1)
1008 1009 1010
		value |= (1 << 4);
	if (1 == 1)
		value |= 1;
1011
	switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	case FEC_2_3:
		value |= (2 << 1);
		break;
	case FEC_3_4:
		value |= (3 << 1);
		break;
	case FEC_5_6:
		value |= (5 << 1);
		break;
	case FEC_7_8:
		value |= (7 << 1);
		break;
	default:
	case FEC_1_2:
		value |= (1 << 1);
		break;
1028 1029 1030 1031
	}
	dib7000p_write_word(state, 208, value);

	/* offset loop parameters */
1032 1033 1034 1035
	dib7000p_write_word(state, 26, 0x6680);
	dib7000p_write_word(state, 32, 0x0003);
	dib7000p_write_word(state, 29, 0x1273);
	dib7000p_write_word(state, 33, 0x0005);
1036 1037

	/* P_dvsy_sync_wait */
1038
	switch (ch->transmission_mode) {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	case TRANSMISSION_MODE_8K:
		value = 256;
		break;
	case TRANSMISSION_MODE_4K:
		value = 128;
		break;
	case TRANSMISSION_MODE_2K:
	default:
		value = 64;
		break;
1049
	}
1050
	switch (ch->guard_interval) {
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	case GUARD_INTERVAL_1_16:
		value *= 2;
		break;
	case GUARD_INTERVAL_1_8:
		value *= 4;
		break;
	case GUARD_INTERVAL_1_4:
		value *= 8;
		break;
	default:
	case GUARD_INTERVAL_1_32:
		value *= 1;
		break;
1064
	}
1065
	if (state->cfg.diversity_delay == 0)
1066
		state->div_sync_wait = (value * 3) / 2 + 48;
1067
	else
1068
		state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;
1069

1070
	/* deactive the possibility of diversity reception if extended interleaver */
1071
	state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K;
1072
	dib7000p_set_diversity_in(&state->demod, state->div_state);
1073 1074

	/* channel estimation fine configuration */
1075
	switch (ch->modulation) {
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	case QAM_64:
		est[0] = 0x0148;	/* P_adp_regul_cnt 0.04 */
		est[1] = 0xfff0;	/* P_adp_noise_cnt -0.002 */
		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		est[3] = 0xfff8;	/* P_adp_noise_ext -0.001 */
		break;
	case QAM_16:
		est[0] = 0x023d;	/* P_adp_regul_cnt 0.07 */
		est[1] = 0xffdf;	/* P_adp_noise_cnt -0.004 */
		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		est[3] = 0xfff0;	/* P_adp_noise_ext -0.002 */
		break;
	default:
		est[0] = 0x099a;	/* P_adp_regul_cnt 0.3 */
		est[1] = 0xffae;	/* P_adp_noise_cnt -0.01 */
		est[2] = 0x0333;	/* P_adp_regul_ext 0.1 */
		est[3] = 0xfff8;	/* P_adp_noise_ext -0.002 */
		break;
1094
	}
1095 1096
	for (value = 0; value < 4; value++)
		dib7000p_write_word(state, 187 + value, est[value]);
1097 1098
}

1099
static int dib7000p_autosearch_start(struct dvb_frontend *demod)
1100
{
1101
	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
1102
	struct dib7000p_state *state = demod->demodulator_priv;
1103
	struct dtv_frontend_properties schan;
1104
	u32 value, factor;
1105
	u32 internal = dib7000p_get_internal_freq(state);
1106 1107

	schan = *ch;
1108 1109 1110 1111 1112 1113
	schan.modulation = QAM_64;
	schan.guard_interval = GUARD_INTERVAL_1_32;
	schan.transmission_mode = TRANSMISSION_MODE_8K;
	schan.code_rate_HP = FEC_2_3;
	schan.code_rate_LP = FEC_3_4;
	schan.hierarchy = 0;
1114 1115 1116

	dib7000p_set_channel(state, &schan, 7);

1117
	factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz);
1118 1119 1120 1121 1122 1123
	if (factor >= 5000) {
		if (state->version == SOC7090)
			factor = 2;
		else
			factor = 1;
	} else
1124
		factor = 6;
1125

1126
	value = 30 * internal * factor;
1127 1128
	dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 7, (u16) (value & 0xffff));
1129
	value = 100 * internal * factor;
1130 1131
	dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 9, (u16) (value & 0xffff));
1132
	value = 500 * internal * factor;
1133 1134
	dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 11, (u16) (value & 0xffff));
1135 1136

	value = dib7000p_read_word(state, 0);
1137
	dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	dib7000p_read_word(state, 1284);
	dib7000p_write_word(state, 0, (u16) value);

	return 0;
}

static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	u16 irq_pending = dib7000p_read_word(state, 1284);

1149
	if (irq_pending & 0x1)
1150 1151
		return 1;

1152
	if (irq_pending & 0x2)
1153 1154
		return 2;

1155
	return 0;
1156 1157
}

1158 1159
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
	static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
		24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
		53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
		82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
		107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
		128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
		147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
		166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
		183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
		199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
		213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
		225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
		235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
		244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
		250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
		254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
		255, 255, 255, 255, 255, 255
	};
1179 1180

	u32 xtal = state->cfg.bw->xtal_hz / 1000;
1181
	int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
1182
	int k;
1183
	int coef_re[8], coef_im[8];
1184 1185 1186
	int bw_khz = bw;
	u32 pha;

1187
	dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
1188

1189
	if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
1190 1191 1192 1193
		return;

	bw_khz /= 100;

1194
	dib7000p_write_word(state, 142, 0x0610);
1195 1196

	for (k = 0; k < 8; k++) {
1197
		pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
1198

1199
		if (pha == 0) {
1200 1201
			coef_re[k] = 256;
			coef_im[k] = 0;
1202 1203 1204
		} else if (pha < 256) {
			coef_re[k] = sine[256 - (pha & 0xff)];
			coef_im[k] = sine[pha & 0xff];
1205 1206 1207 1208
		} else if (pha == 256) {
			coef_re[k] = 0;
			coef_im[k] = 256;
		} else if (pha < 512) {
1209 1210
			coef_re[k] = -sine[pha & 0xff];
			coef_im[k] = sine[256 - (pha & 0xff)];
1211 1212 1213 1214
		} else if (pha == 512) {
			coef_re[k] = -256;
			coef_im[k] = 0;
		} else if (pha < 768) {
1215 1216
			coef_re[k] = -sine[256 - (pha & 0xff)];
			coef_im[k] = -sine[pha & 0xff];
1217 1218 1219 1220
		} else if (pha == 768) {
			coef_re[k] = 0;
			coef_im[k] = -256;
		} else {
1221 1222
			coef_re[k] = sine[pha & 0xff];
			coef_im[k] = -sine[256 - (pha & 0xff)];
1223 1224 1225
		}

		coef_re[k] *= notch[k];
1226 1227 1228 1229
		coef_re[k] += (1 << 14);
		if (coef_re[k] >= (1 << 24))
			coef_re[k] = (1 << 24) - 1;
		coef_re[k] /= (1 << 15);
1230 1231

		coef_im[k] *= notch[k];
1232 1233 1234 1235
		coef_im[k] += (1 << 14);
		if (coef_im[k] >= (1 << 24))
			coef_im[k] = (1 << 24) - 1;
		coef_im[k] /= (1 << 15);
1236

1237
		dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
1238 1239 1240 1241 1242

		dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
		dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
		dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
	}
1243
	dib7000p_write_word(state, 143, 0);
1244 1245
}

1246
static int dib7000p_tune(struct dvb_frontend *demod)
1247
{
1248
	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	struct dib7000p_state *state = demod->demodulator_priv;
	u16 tmp = 0;

	if (ch != NULL)
		dib7000p_set_channel(state, ch, 0);
	else
		return -EINVAL;

	// restart demod
	dib7000p_write_word(state, 770, 0x4000);
	dib7000p_write_word(state, 770, 0x0000);
	msleep(45);

	/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
1263 1264
	tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
	if (state->sfn_workaround_active) {
1265
		dprintk("SFN workaround is active");
1266
		tmp |= (1 << 9);
1267
		dib7000p_write_word(state, 166, 0x4000);
1268
	} else {
1269
		dib7000p_write_word(state, 166, 0x0000);
1270 1271
	}
	dib7000p_write_word(state, 29, tmp);
1272 1273 1274 1275 1276 1277 1278 1279 1280

	// never achieved a lock with that bandwidth so far - wait for osc-freq to update
	if (state->timf == 0)
		msleep(200);

	/* offset loop parameters */

	/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
	tmp = (6 << 8) | 0x80;
1281
	switch (ch->transmission_mode) {
1282 1283 1284
	case TRANSMISSION_MODE_2K:
		tmp |= (2 << 12);
		break;
1285
	case TRANSMISSION_MODE_4K:
1286 1287 1288 1289 1290 1291
		tmp |= (3 << 12);
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= (4 << 12);
		break;
1292
	}
1293
	dib7000p_write_word(state, 26, tmp);	/* timf_a(6xxx) */
1294 1295 1296

	/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
	tmp = (0 << 4);
1297
	switch (ch->transmission_mode) {
1298 1299 1300
	case TRANSMISSION_MODE_2K:
		tmp |= 0x6;
		break;
1301
	case TRANSMISSION_MODE_4K:
1302 1303 1304 1305 1306 1307
		tmp |= 0x7;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= 0x8;
		break;
1308
	}
1309
	dib7000p_write_word(state, 32, tmp);
1310 1311 1312

	/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
	tmp = (0 << 4);
1313
	switch (ch->transmission_mode) {
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	case TRANSMISSION_MODE_2K:
		tmp |= 0x6;
		break;
	case TRANSMISSION_MODE_4K:
		tmp |= 0x7;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= 0x8;
		break;
1324
	}
1325
	dib7000p_write_word(state, 33, tmp);
1326

1327
	tmp = dib7000p_read_word(state, 509);
1328 1329
	if (!((tmp >> 6) & 0x1)) {
		/* restart the fec */
1330
		tmp = dib7000p_read_word(state, 771);
1331 1332
		dib7000p_write_word(state, 771, tmp | (1 << 1));
		dib7000p_write_word(state, 771, tmp);
1333 1334
		msleep(40);
		tmp = dib7000p_read_word(state, 509);
1335 1336
	}
	// we achieved a lock - it's time to update the osc freq
1337
	if ((tmp >> 6) & 0x1) {
1338
		dib7000p_update_timf(state);
1339 1340 1341 1342
		/* P_timf_alpha += 2 */
		tmp = dib7000p_read_word(state, 26);
		dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
	}
1343 1344

	if (state->cfg.spur_protect)
1345
		dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
1346

1347
	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
1348 1349 1350
	return 0;
}

1351
static int dib7000p_wakeup(struct dvb_frontend *demod)
1352 1353 1354 1355
{
	struct dib7000p_state *state = demod->demodulator_priv;
	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
1356 1357
	if (state->version == SOC7090)
		dib7000p_sad_calib(state);
1358
	return 0;
1359 1360 1361 1362 1363
}

static int dib7000p_sleep(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
1364
	if (state->version == SOC7090)
1365
		return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
1366 1367 1368 1369 1370 1371
	return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
}

static int dib7000p_identify(struct dib7000p_state *st)
{
	u16 value;
1372
	dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr);
1373 1374

	if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
1375
		dprintk("wrong Vendor ID (read=0x%x)", value);
1376 1377 1378 1379
		return -EREMOTEIO;
	}

	if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
1380
		dprintk("wrong Device ID (%x)", value);
1381 1382 1383 1384 1385 1386
		return -EREMOTEIO;
	}

	return 0;
}

1387
static int dib7000p_get_frontend(struct dvb_frontend *fe)
1388
{
1389
	struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
1390
	struct dib7000p_state *state = fe->demodulator_priv;
1391
	u16 tps = dib7000p_read_word(state, 463);
1392 1393 1394

	fep->inversion = INVERSION_AUTO;

1395
	fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth);
1396 1397

	switch ((tps >> 8) & 0x3) {
1398
	case 0:
1399
		fep->transmission_mode = TRANSMISSION_MODE_2K;
1400 1401
		break;
	case 1:
1402
		fep->transmission_mode = TRANSMISSION_MODE_8K;
1403
		break;
1404
	/* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */
1405 1406 1407
	}

	switch (tps & 0x3) {
1408
	case 0:
1409
		fep->guard_interval = GUARD_INTERVAL_1_32;
1410 1411
		break;
	case 1:
1412
		fep->guard_interval = GUARD_INTERVAL_1_16;
1413 1414
		break;
	case 2:
1415
		fep->guard_interval = GUARD_INTERVAL_1_8;
1416 1417
		break;
	case 3:
1418
		fep->guard_interval = GUARD_INTERVAL_1_4;
1419
		break;
1420 1421 1422
	}

	switch ((tps >> 14) & 0x3) {
1423
	case 0:
1424
		fep->modulation = QPSK;
1425 1426
		break;
	case 1:
1427
		fep->modulation = QAM_16;
1428 1429 1430
		break;
	case 2:
	default:
1431
		fep->modulation = QAM_64;
1432
		break;
1433 1434 1435 1436 1437
	}

	/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
	/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */

1438
	fep->hierarchy = HIERARCHY_NONE;
1439
	switch ((tps >> 5) & 0x7) {
1440
	case 1:
1441
		fep->code_rate_HP = FEC_1_2;
1442 1443
		break;
	case 2:
1444
		fep->code_rate_HP = FEC_2_3;
1445 1446
		break;
	case 3:
1447
		fep->code_rate_HP = FEC_3_4;
1448 1449
		break;
	case 5:
1450
		fep->code_rate_HP = FEC_5_6;
1451 1452 1453
		break;
	case 7:
	default:
1454
		fep->code_rate_HP = FEC_7_8;
1455
		break;
1456 1457 1458 1459

	}

	switch ((tps >> 2) & 0x7) {
1460
	case 1:
1461
		fep->code_rate_LP = FEC_1_2;
1462 1463
		break;
	case 2:
1464
		fep->code_rate_LP = FEC_2_3;
1465 1466
		break;
	case 3:
1467
		fep->code_rate_LP = FEC_3_4;
1468 1469
		break;
	case 5:
1470
		fep->code_rate_LP = FEC_5_6;
1471 1472 1473
		break;
	case 7:
	default:
1474
		fep->code_rate_LP = FEC_7_8;
1475
		break;
1476 1477 1478 1479 1480 1481 1482
	}

	/* native interleaver: (dib7000p_read_word(state, 464) >>  5) & 0x1 */

	return 0;
}

1483
static int dib7000p_set_frontend(struct dvb_frontend *fe)
1484
{
1485
	struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
1486
	struct dib7000p_state *state = fe->demodulator_priv;
1487
	int time, ret;
1488

1489
	if (state->version == SOC7090)
1490
		dib7090_set_diversity_in(fe, 0);
1491
	else
1492
		dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
1493

1494
	/* maybe the parameter has been changed */
1495 1496
	state->sfn_workaround_active = buggy_sfn_workaround;

1497
	if (fe->ops.tuner_ops.set_params)
1498
		fe->ops.tuner_ops.set_params(fe);
1499

1500 1501 1502
	/* start up the AGC */
	state->agc_state = 0;
	do {
1503
		time = dib7000p_agc_startup(fe);
1504 1505 1506 1507
		if (time != -1)
			msleep(time);
	} while (time != -1);

1508 1509
	if (fep->transmission_mode == TRANSMISSION_MODE_AUTO ||
		fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) {
1510 1511
		int i = 800, found;

1512
		dib7000p_autosearch_start(fe);
1513 1514 1515 1516 1517
		do {
			msleep(1);
			found = dib7000p_autosearch_is_irq(fe);
		} while (found == 0 && i--);

1518
		dprintk("autosearch returns: %d", found);
1519
		if (found == 0 || found == 1)
1520
			return 0;
1521

1522
		dib7000p_get_frontend(fe);
1523 1524
	}

1525
	ret = dib7000p_tune(fe);
1526

1527
	/* make this a config parameter */
1528
	if (state->version == SOC7090) {
1529
		dib7090_set_output_mode(fe, state->cfg.output_mode);
1530 1531 1532 1533 1534
		if (state->cfg.enMpegOutput == 0) {
			dib7090_setDibTxMux(state, MPEG_ON_DIBTX);
			dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
		}
	} else
1535 1536 1537
		dib7000p_set_output_mode(state, state->cfg.output_mode);

	return ret;
1538 1539
}

1540
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t * stat)
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 lock = dib7000p_read_word(state, 509);

	*stat = 0;

	if (lock & 0x8000)
		*stat |= FE_HAS_SIGNAL;
	if (lock & 0x3000)
		*stat |= FE_HAS_CARRIER;
	if (lock & 0x0100)
		*stat |= FE_HAS_VITERBI;
	if (lock & 0x0010)
		*stat |= FE_HAS_SYNC;
1555
	if ((lock & 0x0038) == 0x38)
1556 1557 1558 1559 1560
		*stat |= FE_HAS_LOCK;

	return 0;
}

1561
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
1562 1563 1564 1565 1566 1567
{
	struct dib7000p_state *state = fe->demodulator_priv;
	*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
	return 0;
}

1568
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
1569 1570 1571 1572 1573 1574
{
	struct dib7000p_state *state = fe->demodulator_priv;
	*unc = dib7000p_read_word(state, 506);
	return 0;
}

1575
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
1576 1577 1578 1579 1580 1581 1582
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val = dib7000p_read_word(state, 394);
	*strength = 65535 - val;
	return 0;
}

1583
static int dib7000p_read_snr(struct dvb_frontend *fe, u16 * snr)
1584
{
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val;
	s32 signal_mant, signal_exp, noise_mant, noise_exp;
	u32 result = 0;

	val = dib7000p_read_word(state, 479);
	noise_mant = (val >> 4) & 0xff;
	noise_exp = ((val & 0xf) << 2);
	val = dib7000p_read_word(state, 480);
	noise_exp += ((val >> 14) & 0x3);
	if ((noise_exp & 0x20) != 0)
		noise_exp -= 0x40;

	signal_mant = (val >> 6) & 0xFF;
1599
	signal_exp = (val & 0x3F);
1600 1601 1602 1603
	if ((signal_exp & 0x20) != 0)
		signal_exp -= 0x40;

	if (signal_mant != 0)
1604
		result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
1605 1606 1607 1608
	else
		result = intlog10(2) * 10 * signal_exp - 100;

	if (noise_mant != 0)
1609
		result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
1610 1611 1612 1613
	else
		result -= intlog10(2) * 10 * noise_exp - 100;

	*snr = result / ((1 << 24) / 10);
1614 1615 1616
	return 0;
}

1617
static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
1618 1619 1620 1621 1622 1623 1624 1625 1626
{
	tune->min_delay_ms = 1000;
	return 0;
}

static void dib7000p_release(struct dvb_frontend *demod)
{
	struct dib7000p_state *st = demod->demodulator_priv;
	dibx000_exit_i2c_master(&st->i2c_master);
1627
	i2c_del_adapter(&st->dib7090_tuner_adap);
1628 1629 1630 1631 1632
	kfree(st);
}

int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{
1633
	u8 *tx, *rx;
1634
	struct i2c_msg msg[2] = {
1635 1636
		{.addr = 18 >> 1, .flags = 0, .len = 2},
		{.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2},
1637
	};
1638 1639 1640 1641 1642 1643 1644 1645
	int ret = 0;

	tx = kzalloc(2*sizeof(u8), GFP_KERNEL);
	if (!tx)
		return -ENOMEM;
	rx = kzalloc(2*sizeof(u8), GFP_KERNEL);
	if (!rx) {
		ret = -ENOMEM;
1646
		goto rx_memory_error;
1647 1648 1649 1650
	}

	msg[0].buf = tx;
	msg[1].buf = rx;
1651 1652 1653 1654 1655 1656

	tx[0] = 0x03;
	tx[1] = 0x00;

	if (i2c_transfer(i2c_adap, msg, 2) == 2)
		if (rx[0] == 0x01 && rx[1] == 0xb3) {
1657
			dprintk("-D-  DiB7000PC detected");
1658 1659 1660 1661 1662 1663 1664
			return 1;
		}

	msg[0].addr = msg[1].addr = 0x40;

	if (i2c_transfer(i2c_adap, msg, 2) == 2)
		if (rx[0] == 0x01 && rx[1] == 0xb3) {
1665
			dprintk("-D-  DiB7000PC detected");
1666 1667 1668
			return 1;
		}

1669
	dprintk("-D-  DiB7000PC not detected");
1670 1671 1672 1673 1674

	kfree(rx);
rx_memory_error:
	kfree(tx);
	return ret;
1675 1676 1677
}
EXPORT_SYMBOL(dib7000pc_detection);

1678
struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
1679 1680 1681 1682 1683 1684
{
	struct dib7000p_state *st = demod->demodulator_priv;
	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
EXPORT_SYMBOL(dib7000p_get_i2c_master);

1685 1686
int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
1687 1688 1689 1690 1691
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val = dib7000p_read_word(state, 235) & 0xffef;
	val |= (onoff & 0x1) << 4;
	dprintk("PID filter enabled %d", onoff);
	return dib7000p_write_word(state, 235, val);
1692 1693 1694 1695 1696
}
EXPORT_SYMBOL(dib7000p_pid_filter_ctrl);

int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
1697 1698 1699
	struct dib7000p_state *state = fe->demodulator_priv;
	dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff);
	return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0);
1700 1701 1702
}
EXPORT_SYMBOL(dib7000p_pid_filter);

1703 1704
int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
{
1705
	struct dib7000p_state *dpst;
1706 1707 1708
	int k = 0;
	u8 new_addr = 0;

1709 1710
	dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
	if (!dpst)
1711
		return -ENOMEM;
1712 1713

	dpst->i2c_adap = i2c;
1714
	mutex_init(&dpst->i2c_buffer_lock);
1715

1716
	for (k = no_of_demods - 1; k >= 0; k--) {
1717
		dpst->cfg = cfg[k];
1718 1719

		/* designated i2c address */
1720 1721 1722 1723
		if (cfg[k].default_i2c_addr != 0)
			new_addr = cfg[k].default_i2c_addr + (k << 1);
		else
			new_addr = (0x40 + k) << 1;
1724
		dpst->i2c_addr = new_addr;
1725
		dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
1726 1727
		if (dib7000p_identify(dpst) != 0) {
			dpst->i2c_addr = default_addr;
1728
			dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
1729
			if (dib7000p_identify(dpst) != 0) {
1730
				dprintk("DiB7000P #%d: not identified\n", k);
1731
				kfree(dpst);
1732 1733 1734 1735 1736
				return -EIO;
			}
		}

		/* start diversity to pull_down div_str - just for i2c-enumeration */
1737
		dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY);
1738 1739

		/* set new i2c address and force divstart */
1740
		dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2);
1741

1742
		dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
1743 1744 1745
	}

	for (k = 0; k < no_of_demods; k++) {
1746
		dpst->cfg = cfg[k];
1747 1748 1749 1750
		if (cfg[k].default_i2c_addr != 0)
			dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
		else
			dpst->i2c_addr = (0x40 + k) << 1;
1751 1752

		// unforce divstr
1753
		dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2);
1754 1755

		/* deactivate div - it was just for i2c-enumeration */
1756
		dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z);
1757 1758
	}

1759
	kfree(dpst);
1760 1761 1762 1763
	return 0;
}
EXPORT_SYMBOL(dib7000p_i2c_enumeration);

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static const s32 lut_1000ln_mant[] = {
	6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
};

static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u32 tmp_val = 0, exp = 0, mant = 0;
	s32 pow_i;
	u16 buf[2];
	u8 ix = 0;

	buf[0] = dib7000p_read_word(state, 0x184);
	buf[1] = dib7000p_read_word(state, 0x185);
	pow_i = (buf[0] << 16) | buf[1];
	dprintk("raw pow_i = %d", pow_i);

	tmp_val = pow_i;
	while (tmp_val >>= 1)
		exp++;

	mant = (pow_i * 1000 / (1 << exp));
	dprintk(" mant = %d exp = %d", mant / 1000, exp);

	ix = (u8) ((mant - 1000) / 100);	/* index of the LUT */
	dprintk(" ix = %d", ix);

	pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
	pow_i = (pow_i << 8) / 1000;
	dprintk(" pow_i = %d", pow_i);

	return pow_i;
}

static int map_addr_to_serpar_number(struct i2c_msg *msg)
{
	if ((msg->buf[0] <= 15))
		msg->buf[0] -= 1;
	else if (msg->buf[0] == 17)
		msg->buf[0] = 15;
	else if (msg->buf[0] == 16)
		msg->buf[0] = 17;
	else if (msg->buf[0] == 19)
		msg->buf[0] = 16;
	else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
		msg->buf[0] -= 3;
	else if (msg->buf[0] == 28)
		msg->buf[0] = 23;
1812
	else
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
		return -EINVAL;
	return 0;
}

static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u8 n_overflow = 1;
	u16 i = 1000;
	u16 serpar_num = msg[0].buf[0];

	while (n_overflow == 1 && i) {
		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
		i--;
		if (i == 0)
			dprintk("Tuner ITF: write busy (overflow)");
	}
	dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
	dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);

	return num;
}

static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u8 n_overflow = 1, n_empty = 1;
	u16 i = 1000;
	u16 serpar_num = msg[0].buf[0];
	u16 read_word;

	while (n_overflow == 1 && i) {
		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
		i--;
		if (i == 0)
			dprintk("TunerITF: read busy (overflow)");
	}
	dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));

	i = 1000;
	while (n_empty == 1 && i) {
		n_empty = dib7000p_read_word(state, 1984) & 0x1;
		i--;
		if (i == 0)
			dprintk("TunerITF: read busy (empty)");
	}
	read_word = dib7000p_read_word(state, 1987);
	msg[1].buf[0] = (read_word >> 8) & 0xff;
	msg[1].buf[1] = (read_word) & 0xff;

	return num;
}

static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	if (map_addr_to_serpar_number(&msg[0]) == 0) {	/* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */
		if (num == 1) {	/* write */
			return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
		} else {	/* read */
			return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
		}
	}
	return num;
}

O
Olivier Grenie 已提交
1878 1879
static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap,
		struct i2c_msg msg[], int num, u16 apb_address)
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u16 word;

	if (num == 1) {		/* write */
		dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
	} else {
		word = dib7000p_read_word(state, apb_address);
		msg[1].buf[0] = (word >> 8) & 0xff;
		msg[1].buf[1] = (word) & 0xff;
	}

	return num;
}

static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);

	u16 apb_address = 0, word;
	int i = 0;
	switch (msg[0].buf[0]) {
	case 0x12:
		apb_address = 1920;
		break;
	case 0x14:
		apb_address = 1921;
		break;
	case 0x24:
		apb_address = 1922;
		break;
	case 0x1a:
		apb_address = 1923;
		break;
	case 0x22:
		apb_address = 1924;
		break;
	case 0x33:
		apb_address = 1926;
		break;
	case 0x34:
		apb_address = 1927;
		break;
	case 0x35:
		apb_address = 1928;
		break;
	case 0x36:
		apb_address = 1929;
		break;
	case 0x37:
		apb_address = 1930;
		break;
	case 0x38:
		apb_address = 1931;
		break;
	case 0x39:
		apb_address = 1932;
		break;
	case 0x2a:
		apb_address = 1935;
		break;
	case 0x2b:
		apb_address = 1936;
		break;
	case 0x2c:
		apb_address = 1937;
		break;
	case 0x2d:
		apb_address = 1938;
		break;
	case 0x2e:
		apb_address = 1939;
		break;
	case 0x2f:
		apb_address = 1940;
		break;
	case 0x30:
		apb_address = 1941;
		break;
	case 0x31:
		apb_address = 1942;
		break;
	case 0x32:
		apb_address = 1943;
		break;
	case 0x3e:
		apb_address = 1944;
		break;
	case 0x3f:
		apb_address = 1945;
		break;
	case 0x40:
		apb_address = 1948;
		break;
	case 0x25:
		apb_address = 914;
		break;
	case 0x26:
		apb_address = 915;
		break;
	case 0x27:
1981
		apb_address = 917;
1982 1983
		break;
	case 0x28:
1984
		apb_address = 916;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
		break;
	case 0x1d:
		i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
		word = dib7000p_read_word(state, 384 + i);
		msg[1].buf[0] = (word >> 8) & 0xff;
		msg[1].buf[1] = (word) & 0xff;
		return num;
	case 0x1f:
		if (num == 1) {	/* write */
			word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
			word &= 0x3;
1996
			word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
			dib7000p_write_word(state, 72, word);	/* Set the proper input */
			return num;
		}
	}

	if (apb_address != 0)	/* R/W acces via APB */
		return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
	else			/* R/W access via SERPAR  */
		return w7090p_tuner_rw_serpar(i2c_adap, msg, num);

	return 0;
}

static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C;
}

static struct i2c_algorithm dib7090_tuner_xfer_algo = {
	.master_xfer = dib7090_tuner_xfer,
	.functionality = dib7000p_i2c_func,
};

struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
{
	struct dib7000p_state *st = fe->demodulator_priv;
	return &st->dib7090_tuner_adap;
}
EXPORT_SYMBOL(dib7090_get_i2c_tuner);

static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
{
	u16 reg;

	/* drive host bus 2, 3, 4 */
	reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1798, reg);

	/* drive host bus 5,6 */
	reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
	reg |= (drive << 8) | (drive << 2);
	dib7000p_write_word(state, 1799, reg);

	/* drive host bus 7, 8, 9 */
	reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1800, reg);

	/* drive host bus 10, 11 */
	reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
	reg |= (drive << 8) | (drive << 2);
	dib7000p_write_word(state, 1801, reg);

	/* drive host bus 12, 13, 14 */
	reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1802, reg);

	return 0;
}

static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
{
	u32 quantif = 3;
	u32 nom = (insertExtSynchro * P_Kin + syncSize);
	u32 denom = P_Kout;
	u32 syncFreq = ((nom << quantif) / denom);

	if ((syncFreq & ((1 << quantif) - 1)) != 0)
		syncFreq = (syncFreq >> quantif) + 1;
	else
		syncFreq = (syncFreq >> quantif);

	if (syncFreq != 0)
		syncFreq = syncFreq - 1;

	return syncFreq;
}

static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
{
	dprintk("Configure DibStream Tx");

	dib7000p_write_word(state, 1615, 1);
	dib7000p_write_word(state, 1603, P_Kin);
	dib7000p_write_word(state, 1605, P_Kout);
	dib7000p_write_word(state, 1606, insertExtSynchro);
	dib7000p_write_word(state, 1608, synchroMode);
	dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
	dib7000p_write_word(state, 1610, syncWord & 0xffff);
	dib7000p_write_word(state, 1612, syncSize);
	dib7000p_write_word(state, 1615, 0);

	return 0;
}

static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
		u32 dataOutRate)
{
	u32 syncFreq;

	dprintk("Configure DibStream Rx");
2100
	if ((P_Kin != 0) && (P_Kout != 0)) {
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
		dib7000p_write_word(state, 1542, syncFreq);
	}
	dib7000p_write_word(state, 1554, 1);
	dib7000p_write_word(state, 1536, P_Kin);
	dib7000p_write_word(state, 1537, P_Kout);
	dib7000p_write_word(state, 1539, synchroMode);
	dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
	dib7000p_write_word(state, 1541, syncWord & 0xffff);
	dib7000p_write_word(state, 1543, syncSize);
	dib7000p_write_word(state, 1544, dataOutRate);
	dib7000p_write_word(state, 1554, 0);

	return 0;
}

2117
static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff)
2118
{
2119
	u16 reg_1287 = dib7000p_read_word(state, 1287);
2120

2121 2122 2123 2124 2125 2126 2127 2128
	switch (onoff) {
	case 1:
			reg_1287 &= ~(1<<7);
			break;
	case 0:
			reg_1287 |= (1<<7);
			break;
	}
2129

2130
	dib7000p_write_word(state, 1287, reg_1287);
2131 2132
}

2133 2134
static void dib7090_configMpegMux(struct dib7000p_state *state,
		u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
2135 2136 2137
{
	dprintk("Enable Mpeg mux");

2138
	dib7090_enMpegMux(state, 0);
2139

2140 2141 2142
	/* If the input mode is MPEG do not divide the serial clock */
	if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
		enSerialClkDiv2 = 0;
2143

2144 2145 2146 2147 2148
	dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2)
			| ((enSerialMode & 0x1) << 1)
			| (enSerialClkDiv2 & 0x1));

	dib7090_enMpegMux(state, 1);
2149 2150
}

2151
static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode)
2152
{
2153
	u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7);
2154

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	switch (mode) {
	case MPEG_ON_DIBTX:
			dprintk("SET MPEG ON DIBSTREAM TX");
			dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
			reg_1288 |= (1<<9);
			break;
	case DIV_ON_DIBTX:
			dprintk("SET DIV_OUT ON DIBSTREAM TX");
			dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
			reg_1288 |= (1<<8);
			break;
	case ADC_ON_DIBTX:
			dprintk("SET ADC_OUT ON DIBSTREAM TX");
			dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
			reg_1288 |= (1<<7);
			break;
	default:
			break;
	}
	dib7000p_write_word(state, 1288, reg_1288);
2175 2176
}

2177
static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode)
2178
{
2179
	u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4);
2180

2181
	switch (mode) {
2182 2183 2184 2185 2186 2187 2188 2189 2190
	case DEMOUT_ON_HOSTBUS:
			dprintk("SET DEM OUT OLD INTERF ON HOST BUS");
			dib7090_enMpegMux(state, 0);
			reg_1288 |= (1<<6);
			break;
	case DIBTX_ON_HOSTBUS:
			dprintk("SET DIBSTREAM TX ON HOST BUS");
			dib7090_enMpegMux(state, 0);
			reg_1288 |= (1<<5);
2191
			break;
2192 2193 2194
	case MPEG_ON_HOSTBUS:
			dprintk("SET MPEG MUX ON HOST BUS");
			reg_1288 |= (1<<4);
2195
			break;
2196
	default:
2197 2198
			break;
	}
2199
	dib7000p_write_word(state, 1288, reg_1288);
2200 2201
}

2202
int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
2203
{
2204 2205 2206
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 reg_1287;

2207
	switch (onoff) {
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	case 0: /* only use the internal way - not the diversity input */
			dprintk("%s mode OFF : by default Enable Mpeg INPUT", __func__);
			dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);

			/* Do not divide the serial clock of MPEG MUX */
			/* in SERIAL MODE in case input mode MPEG is used */
			reg_1287 = dib7000p_read_word(state, 1287);
			/* enSerialClkDiv2 == 1 ? */
			if ((reg_1287 & 0x1) == 1) {
				/* force enSerialClkDiv2 = 0 */
				reg_1287 &= ~0x1;
				dib7000p_write_word(state, 1287, reg_1287);
			}
			state->input_mode_mpeg = 1;
			break;
	case 1: /* both ways */
	case 2: /* only the diversity input */
			dprintk("%s ON : Enable diversity INPUT", __func__);
			dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
			state->input_mode_mpeg = 0;
			break;
2229 2230
	}

2231
	dib7000p_set_diversity_in(&state->demod, onoff);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	return 0;
}

static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
{
	struct dib7000p_state *state = fe->demodulator_priv;

	u16 outreg, smo_mode, fifo_threshold;
	u8 prefer_mpeg_mux_use = 1;
	int ret = 0;

	dib7090_host_bus_drive(state, 1);

	fifo_threshold = 1792;
	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
	outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));

	switch (mode) {
	case OUTMODE_HIGH_Z:
		outreg = 0;
		break;

	case OUTMODE_MPEG2_SERIAL:
		if (prefer_mpeg_mux_use) {
2256 2257 2258 2259 2260 2261 2262
			dprintk("setting output mode TS_SERIAL using Mpeg Mux");
			dib7090_configMpegMux(state, 3, 1, 1);
			dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
		} else {/* Use Smooth block */
			dprintk("setting output mode TS_SERIAL using Smooth bloc");
			dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
			outreg |= (2<<6) | (0 << 1);
2263 2264 2265 2266 2267
		}
		break;

	case OUTMODE_MPEG2_PAR_GATED_CLK:
		if (prefer_mpeg_mux_use) {
2268 2269 2270 2271 2272 2273 2274
			dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux");
			dib7090_configMpegMux(state, 2, 0, 0);
			dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
		} else { /* Use Smooth block */
			dprintk("setting output mode TS_PARALLEL_GATED using Smooth block");
			dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
			outreg |= (0<<6);
2275 2276 2277 2278
		}
		break;

	case OUTMODE_MPEG2_PAR_CONT_CLK:	/* Using Smooth block only */
2279 2280 2281
		dprintk("setting output mode TS_PARALLEL_CONT using Smooth block");
		dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
		outreg |= (1<<6);
2282 2283 2284
		break;

	case OUTMODE_MPEG2_FIFO:	/* Using Smooth block because not supported by new Mpeg Mux bloc */
2285 2286 2287
		dprintk("setting output mode TS_FIFO using Smooth block");
		dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
		outreg |= (5<<6);
2288 2289 2290 2291 2292
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		break;

	case OUTMODE_DIVERSITY:
2293 2294 2295
		dprintk("setting output mode MODE_DIVERSITY");
		dib7090_setDibTxMux(state, DIV_ON_DIBTX);
		dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
2296 2297 2298
		break;

	case OUTMODE_ANALOG_ADC:
2299 2300 2301
		dprintk("setting output mode MODE_ANALOG_ADC");
		dib7090_setDibTxMux(state, ADC_ON_DIBTX);
		dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
2302 2303
		break;
	}
2304 2305
	if (mode != OUTMODE_HIGH_Z)
		outreg |= (1 << 10);
2306 2307 2308 2309 2310 2311

	if (state->cfg.output_mpeg2_in_188_bytes)
		smo_mode |= (1 << 5);

	ret |= dib7000p_write_word(state, 235, smo_mode);
	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
2312
	ret |= dib7000p_write_word(state, 1286, outreg);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

	return ret;
}

int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 en_cur_state;

	dprintk("sleep dib7090: %d", onoff);

	en_cur_state = dib7000p_read_word(state, 1922);

2326
	if (en_cur_state > 0xff)
2327 2328 2329
		state->tuner_enable = en_cur_state;

	if (onoff)
2330
		en_cur_state &= 0x00ff;
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	else {
		if (state->tuner_enable != 0)
			en_cur_state = state->tuner_enable;
	}

	dib7000p_write_word(state, 1922, en_cur_state);

	return 0;
}
EXPORT_SYMBOL(dib7090_tuner_sleep);

int dib7090_get_adc_power(struct dvb_frontend *fe)
{
	return dib7000p_get_adc_power(fe);
}
EXPORT_SYMBOL(dib7090_get_adc_power);

int dib7090_slave_reset(struct dvb_frontend *fe)
{
	struct dib7000p_state *state = fe->demodulator_priv;
2351
	u16 reg;
2352

2353 2354
	reg = dib7000p_read_word(state, 1794);
	dib7000p_write_word(state, 1794, reg | (4 << 12));
2355

2356 2357
	dib7000p_write_word(state, 1032, 0xffff);
	return 0;
2358 2359 2360
}
EXPORT_SYMBOL(dib7090_slave_reset);

2361
static struct dvb_frontend_ops dib7000p_ops;
2362
struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
{
	struct dvb_frontend *demod;
	struct dib7000p_state *st;
	st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
	if (st == NULL)
		return NULL;

	memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
	st->i2c_adap = i2c_adap;
	st->i2c_addr = i2c_addr;
	st->gpio_val = cfg->gpio_val;
	st->gpio_dir = cfg->gpio_dir;

2376 2377 2378
	/* Ensure the output mode remains at the previous default if it's
	 * not specifically set by the caller.
	 */
2379
	if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
2380 2381
		st->cfg.output_mode = OUTMODE_MPEG2_FIFO;

2382
	demod = &st->demod;
2383 2384
	demod->demodulator_priv = st;
	memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
2385
	mutex_init(&st->i2c_buffer_lock);
2386

2387
	dib7000p_write_word(st, 1287, 0x0003);	/* sram lead in, rdy */
2388

2389 2390 2391
	if (dib7000p_identify(st) != 0)
		goto error;

2392 2393
	st->version = dib7000p_read_word(st, 897);

2394
	/* FIXME: make sure the dev.parent field is initialized, or else
2395 2396 2397 2398
	   request_firmware() will hit an OOPS (this should be moved somewhere
	   more common) */
	st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent;

2399 2400
	dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);

2401 2402 2403 2404 2405 2406 2407 2408
	/* init 7090 tuner adapter */
	strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name));
	st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
	st->dib7090_tuner_adap.algo_data = NULL;
	st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
	i2c_set_adapdata(&st->dib7090_tuner_adap, st);
	i2c_add_adapter(&st->dib7090_tuner_adap);

2409 2410
	dib7000p_demod_reset(st);

2411 2412 2413 2414 2415
	if (st->version == SOC7090) {
		dib7090_set_output_mode(demod, st->cfg.output_mode);
		dib7090_set_diversity_in(demod, 0);
	}

2416 2417
	return demod;

2418
error:
2419 2420 2421 2422 2423 2424
	kfree(st);
	return NULL;
}
EXPORT_SYMBOL(dib7000p_attach);

static struct dvb_frontend_ops dib7000p_ops = {
2425
	.delsys = { SYS_DVBT },
2426
	.info = {
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
		 .name = "DiBcom 7000PC",
		 .frequency_min = 44250000,
		 .frequency_max = 867250000,
		 .frequency_stepsize = 62500,
		 .caps = FE_CAN_INVERSION_AUTO |
		 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
		 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
		 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
		 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
		 },

	.release = dib7000p_release,

	.init = dib7000p_wakeup,
	.sleep = dib7000p_sleep,

2443
	.set_frontend = dib7000p_set_frontend,
2444
	.get_tune_settings = dib7000p_fe_get_tune_settings,
2445
	.get_frontend = dib7000p_get_frontend,
2446 2447 2448

	.read_status = dib7000p_read_status,
	.read_ber = dib7000p_read_ber,
2449
	.read_signal_strength = dib7000p_read_signal_strength,
2450 2451
	.read_snr = dib7000p_read_snr,
	.read_ucblocks = dib7000p_read_unc_blocks,
2452 2453
};

2454
MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>");
2455 2456 2457
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL");