i915_gem_userptr.c 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2012-2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drmP.h>
#include <drm/i915_drm.h>
27 28 29 30 31 32 33 34
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>

35 36
struct i915_mm_struct {
	struct mm_struct *mm;
37
	struct drm_i915_private *i915;
38 39 40 41 42 43
	struct i915_mmu_notifier *mn;
	struct hlist_node node;
	struct kref kref;
	struct work_struct work;
};

44 45 46 47 48 49 50 51
#if defined(CONFIG_MMU_NOTIFIER)
#include <linux/interval_tree.h>

struct i915_mmu_notifier {
	spinlock_t lock;
	struct hlist_node node;
	struct mmu_notifier mn;
	struct rb_root objects;
52
	struct workqueue_struct *wq;
53 54 55
};

struct i915_mmu_object {
56
	struct i915_mmu_notifier *mn;
57
	struct drm_i915_gem_object *obj;
58
	struct interval_tree_node it;
59
	struct list_head link;
60
	struct work_struct work;
61
	bool attached;
62 63
};

64
static void cancel_userptr(struct work_struct *work)
65
{
66 67
	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
	struct drm_i915_gem_object *obj = mo->obj;
68 69
	struct drm_device *dev = obj->base.dev;

70
	i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
71

72 73 74 75
	mutex_lock(&dev->struct_mutex);
	/* Cancel any active worker and force us to re-evaluate gup */
	obj->userptr.work = NULL;

76 77 78 79 80 81 82 83
	/* We are inside a kthread context and can't be interrupted */
	if (i915_gem_object_unbind(obj) == 0)
		__i915_gem_object_put_pages(obj);
	WARN_ONCE(obj->mm.pages,
		  "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
		  obj->bind_count,
		  obj->mm.pages_pin_count,
		  obj->pin_display);
84

85
	i915_gem_object_put(obj);
86 87 88
	mutex_unlock(&dev->struct_mutex);
}

89
static void add_object(struct i915_mmu_object *mo)
90
{
91 92
	if (mo->attached)
		return;
93

94 95 96 97 98 99 100 101 102 103 104
	interval_tree_insert(&mo->it, &mo->mn->objects);
	mo->attached = true;
}

static void del_object(struct i915_mmu_object *mo)
{
	if (!mo->attached)
		return;

	interval_tree_remove(&mo->it, &mo->mn->objects);
	mo->attached = false;
105 106
}

107 108 109 110 111
static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
						       struct mm_struct *mm,
						       unsigned long start,
						       unsigned long end)
{
112 113 114
	struct i915_mmu_notifier *mn =
		container_of(_mn, struct i915_mmu_notifier, mn);
	struct i915_mmu_object *mo;
115 116 117 118 119
	struct interval_tree_node *it;
	LIST_HEAD(cancelled);

	if (RB_EMPTY_ROOT(&mn->objects))
		return;
120 121 122 123 124

	/* interval ranges are inclusive, but invalidate range is exclusive */
	end--;

	spin_lock(&mn->lock);
125 126 127 128 129 130 131 132 133 134 135 136 137
	it = interval_tree_iter_first(&mn->objects, start, end);
	while (it) {
		/* The mmu_object is released late when destroying the
		 * GEM object so it is entirely possible to gain a
		 * reference on an object in the process of being freed
		 * since our serialisation is via the spinlock and not
		 * the struct_mutex - and consequently use it after it
		 * is freed and then double free it. To prevent that
		 * use-after-free we only acquire a reference on the
		 * object if it is not in the process of being destroyed.
		 */
		mo = container_of(it, struct i915_mmu_object, it);
		if (kref_get_unless_zero(&mo->obj->base.refcount))
138
			queue_work(mn->wq, &mo->work);
139

140 141
		list_add(&mo->link, &cancelled);
		it = interval_tree_iter_next(it, start, end);
142
	}
143 144
	list_for_each_entry(mo, &cancelled, link)
		del_object(mo);
145
	spin_unlock(&mn->lock);
146 147

	flush_workqueue(mn->wq);
148 149 150 151 152 153 154
}

static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
};

static struct i915_mmu_notifier *
155
i915_mmu_notifier_create(struct mm_struct *mm)
156
{
157
	struct i915_mmu_notifier *mn;
158 159
	int ret;

160 161
	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
	if (mn == NULL)
162 163
		return ERR_PTR(-ENOMEM);

164 165 166
	spin_lock_init(&mn->lock);
	mn->mn.ops = &i915_gem_userptr_notifier;
	mn->objects = RB_ROOT;
167 168 169 170 171
	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
	if (mn->wq == NULL) {
		kfree(mn);
		return ERR_PTR(-ENOMEM);
	}
172 173 174

	 /* Protected by mmap_sem (write-lock) */
	ret = __mmu_notifier_register(&mn->mn, mm);
175
	if (ret) {
176
		destroy_workqueue(mn->wq);
177
		kfree(mn);
178 179 180
		return ERR_PTR(ret);
	}

181
	return mn;
182 183 184 185 186
}

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
187
	struct i915_mmu_object *mo;
188

189 190
	mo = obj->userptr.mmu_object;
	if (mo == NULL)
191 192
		return;

193 194 195
	spin_lock(&mo->mn->lock);
	del_object(mo);
	spin_unlock(&mo->mn->lock);
196 197 198 199 200 201 202 203
	kfree(mo);

	obj->userptr.mmu_object = NULL;
}

static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct *mm)
{
204 205 206 207 208 209 210
	struct i915_mmu_notifier *mn = mm->mn;

	mn = mm->mn;
	if (mn)
		return mn;

	down_write(&mm->mm->mmap_sem);
211
	mutex_lock(&mm->i915->mm_lock);
212 213 214 215
	if ((mn = mm->mn) == NULL) {
		mn = i915_mmu_notifier_create(mm->mm);
		if (!IS_ERR(mn))
			mm->mn = mn;
216
	}
217
	mutex_unlock(&mm->i915->mm_lock);
218 219 220
	up_write(&mm->mm->mmap_sem);

	return mn;
221 222 223 224 225 226
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
227 228
	struct i915_mmu_notifier *mn;
	struct i915_mmu_object *mo;
229 230 231 232

	if (flags & I915_USERPTR_UNSYNCHRONIZED)
		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;

233 234
	if (WARN_ON(obj->userptr.mm == NULL))
		return -EINVAL;
235

236 237 238
	mn = i915_mmu_notifier_find(obj->userptr.mm);
	if (IS_ERR(mn))
		return PTR_ERR(mn);
239

240 241 242
	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
	if (mo == NULL)
		return -ENOMEM;
243

244 245
	mo->mn = mn;
	mo->obj = obj;
246 247 248
	mo->it.start = obj->userptr.ptr;
	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
	INIT_WORK(&mo->work, cancel_userptr);
249 250

	obj->userptr.mmu_object = mo;
251
	return 0;
252 253 254 255 256 257 258 259
}

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
	if (mn == NULL)
		return;
260

261
	mmu_notifier_unregister(&mn->mn, mm);
262
	destroy_workqueue(mn->wq);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	kfree(mn);
}

#else

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
		return -ENODEV;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	return 0;
}
285 286 287 288 289 290 291

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
}

292 293
#endif

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
{
	struct i915_mm_struct *mm;

	/* Protected by dev_priv->mm_lock */
	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
		if (mm->mm == real)
			return mm;

	return NULL;
}

static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_mm_struct *mm;
	int ret = 0;

	/* During release of the GEM object we hold the struct_mutex. This
	 * precludes us from calling mmput() at that time as that may be
	 * the last reference and so call exit_mmap(). exit_mmap() will
	 * attempt to reap the vma, and if we were holding a GTT mmap
	 * would then call drm_gem_vm_close() and attempt to reacquire
	 * the struct mutex. So in order to avoid that recursion, we have
	 * to defer releasing the mm reference until after we drop the
	 * struct_mutex, i.e. we need to schedule a worker to do the clean
	 * up.
	 */
	mutex_lock(&dev_priv->mm_lock);
	mm = __i915_mm_struct_find(dev_priv, current->mm);
	if (mm == NULL) {
		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
		if (mm == NULL) {
			ret = -ENOMEM;
			goto out;
		}

		kref_init(&mm->kref);
334
		mm->i915 = to_i915(obj->base.dev);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

		mm->mm = current->mm;
		atomic_inc(&current->mm->mm_count);

		mm->mn = NULL;

		/* Protected by dev_priv->mm_lock */
		hash_add(dev_priv->mm_structs,
			 &mm->node, (unsigned long)mm->mm);
	} else
		kref_get(&mm->kref);

	obj->userptr.mm = mm;
out:
	mutex_unlock(&dev_priv->mm_lock);
	return ret;
}

static void
__i915_mm_struct_free__worker(struct work_struct *work)
{
	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
	i915_mmu_notifier_free(mm->mn, mm->mm);
	mmdrop(mm->mm);
	kfree(mm);
}

static void
__i915_mm_struct_free(struct kref *kref)
{
	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);

	/* Protected by dev_priv->mm_lock */
	hash_del(&mm->node);
369
	mutex_unlock(&mm->i915->mm_lock);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
	schedule_work(&mm->work);
}

static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
{
	if (obj->userptr.mm == NULL)
		return;

	kref_put_mutex(&obj->userptr.mm->kref,
		       __i915_mm_struct_free,
		       &to_i915(obj->base.dev)->mm_lock);
	obj->userptr.mm = NULL;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
struct get_pages_work {
	struct work_struct work;
	struct drm_i915_gem_object *obj;
	struct task_struct *task;
};

#if IS_ENABLED(CONFIG_SWIOTLB)
#define swiotlb_active() swiotlb_nr_tbl()
#else
#define swiotlb_active() 0
#endif

static int
st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
{
	struct scatterlist *sg;
	int ret, n;

	*st = kmalloc(sizeof(**st), GFP_KERNEL);
	if (*st == NULL)
		return -ENOMEM;

	if (swiotlb_active()) {
		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
		if (ret)
			goto err;

		for_each_sg((*st)->sgl, sg, num_pages, n)
			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
	} else {
		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
						0, num_pages << PAGE_SHIFT,
						GFP_KERNEL);
		if (ret)
			goto err;
	}

	return 0;

err:
	kfree(*st);
	*st = NULL;
	return ret;
}

432
static struct sg_table *
I
Imre Deak 已提交
433 434 435
__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
			     struct page **pvec, int num_pages)
{
436
	struct sg_table *pages;
I
Imre Deak 已提交
437 438
	int ret;

439
	ret = st_set_pages(&pages, pvec, num_pages);
I
Imre Deak 已提交
440
	if (ret)
441
		return ERR_PTR(ret);
I
Imre Deak 已提交
442

443
	ret = i915_gem_gtt_prepare_pages(obj, pages);
I
Imre Deak 已提交
444
	if (ret) {
445 446 447
		sg_free_table(pages);
		kfree(pages);
		return ERR_PTR(ret);
I
Imre Deak 已提交
448 449
	}

450
	return pages;
I
Imre Deak 已提交
451 452
}

453
static int
454 455 456
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
			      bool value)
{
457 458
	int ret = 0;

459 460 461 462 463 464 465 466 467 468 469 470
	/* During mm_invalidate_range we need to cancel any userptr that
	 * overlaps the range being invalidated. Doing so requires the
	 * struct_mutex, and that risks recursion. In order to cause
	 * recursion, the user must alias the userptr address space with
	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
	 * to invalidate that mmaping, mm_invalidate_range is called with
	 * the userptr address *and* the struct_mutex held.  To prevent that
	 * we set a flag under the i915_mmu_notifier spinlock to indicate
	 * whether this object is valid.
	 */
#if defined(CONFIG_MMU_NOTIFIER)
	if (obj->userptr.mmu_object == NULL)
471
		return 0;
472 473

	spin_lock(&obj->userptr.mmu_object->mn->lock);
474 475 476
	/* In order to serialise get_pages with an outstanding
	 * cancel_userptr, we must drop the struct_mutex and try again.
	 */
477 478 479 480
	if (!value)
		del_object(obj->userptr.mmu_object);
	else if (!work_pending(&obj->userptr.mmu_object->work))
		add_object(obj->userptr.mmu_object);
481 482
	else
		ret = -EAGAIN;
483 484
	spin_unlock(&obj->userptr.mmu_object->mn->lock);
#endif
485 486

	return ret;
487 488
}

489 490 491 492 493 494
static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
	struct get_pages_work *work = container_of(_work, typeof(*work), work);
	struct drm_i915_gem_object *obj = work->obj;
	struct drm_device *dev = obj->base.dev;
495
	const int npages = obj->base.size >> PAGE_SHIFT;
496 497 498 499 500 501
	struct page **pvec;
	int pinned, ret;

	ret = -ENOMEM;
	pinned = 0;

502
	pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
503
	if (pvec != NULL) {
504
		struct mm_struct *mm = obj->userptr.mm->mm;
505 506 507 508
		unsigned int flags = 0;

		if (!obj->userptr.read_only)
			flags |= FOLL_WRITE;
509

510 511 512 513 514 515 516 517
		ret = -EFAULT;
		if (atomic_inc_not_zero(&mm->mm_users)) {
			down_read(&mm->mmap_sem);
			while (pinned < npages) {
				ret = get_user_pages_remote
					(work->task, mm,
					 obj->userptr.ptr + pinned * PAGE_SIZE,
					 npages - pinned,
518
					 flags,
519 520 521 522 523 524 525 526
					 pvec + pinned, NULL);
				if (ret < 0)
					break;

				pinned += ret;
			}
			up_read(&mm->mmap_sem);
			mmput(mm);
527 528 529 530
		}
	}

	mutex_lock(&dev->struct_mutex);
531
	if (obj->userptr.work == &work->work) {
532 533
		struct sg_table *pages = ERR_PTR(ret);

534
		if (pinned == npages) {
535 536 537
			pages = __i915_gem_userptr_set_pages(obj, pvec, npages);
			if (!IS_ERR(pages)) {
				__i915_gem_object_set_pages(obj, pages);
538
				pinned = 0;
539
				pages = NULL;
540
			}
541
		}
542 543

		obj->userptr.work = ERR_CAST(pages);
544 545
	}

546
	i915_gem_object_put(obj);
547 548 549 550 551 552 553 554 555
	mutex_unlock(&dev->struct_mutex);

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);

	put_task_struct(work->task);
	kfree(work);
}

556
static struct sg_table *
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
				      bool *active)
{
	struct get_pages_work *work;

	/* Spawn a worker so that we can acquire the
	 * user pages without holding our mutex. Access
	 * to the user pages requires mmap_sem, and we have
	 * a strict lock ordering of mmap_sem, struct_mutex -
	 * we already hold struct_mutex here and so cannot
	 * call gup without encountering a lock inversion.
	 *
	 * Userspace will keep on repeating the operation
	 * (thanks to EAGAIN) until either we hit the fast
	 * path or the worker completes. If the worker is
	 * cancelled or superseded, the task is still run
	 * but the results ignored. (This leads to
	 * complications that we may have a stray object
	 * refcount that we need to be wary of when
	 * checking for existing objects during creation.)
	 * If the worker encounters an error, it reports
	 * that error back to this function through
	 * obj->userptr.work = ERR_PTR.
	 */
	work = kmalloc(sizeof(*work), GFP_KERNEL);
	if (work == NULL)
583
		return ERR_PTR(-ENOMEM);
584 585 586

	obj->userptr.work = &work->work;

587
	work->obj = i915_gem_object_get(obj);
588 589 590 591 592 593 594 595

	work->task = current;
	get_task_struct(work->task);

	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
	schedule_work(&work->work);

	*active = true;
596
	return ERR_PTR(-EAGAIN);
597 598
}

599
static struct sg_table *
600 601 602 603
i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
{
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
604
	struct sg_table *pages;
605
	int pinned, ret;
606
	bool active;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

	/* If userspace should engineer that these pages are replaced in
	 * the vma between us binding this page into the GTT and completion
	 * of rendering... Their loss. If they change the mapping of their
	 * pages they need to create a new bo to point to the new vma.
	 *
	 * However, that still leaves open the possibility of the vma
	 * being copied upon fork. Which falls under the same userspace
	 * synchronisation issue as a regular bo, except that this time
	 * the process may not be expecting that a particular piece of
	 * memory is tied to the GPU.
	 *
	 * Fortunately, we can hook into the mmu_notifier in order to
	 * discard the page references prior to anything nasty happening
	 * to the vma (discard or cloning) which should prevent the more
	 * egregious cases from causing harm.
	 */
624 625

	if (obj->userptr.work) {
626
		/* active flag should still be held for the pending work */
627
		if (IS_ERR(obj->userptr.work))
628
			return ERR_CAST(obj->userptr.work);
629
		else
630
			return ERR_PTR(-EAGAIN);
631
	}
632 633

	/* Let the mmu-notifier know that we have begun and need cancellation */
634 635
	ret = __i915_gem_userptr_set_active(obj, true);
	if (ret)
636
		return ERR_PTR(ret);
637 638 639

	pvec = NULL;
	pinned = 0;
640
	if (obj->userptr.mm->mm == current->mm) {
641 642
		pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
				      GFP_TEMPORARY);
643
		if (pvec == NULL) {
644
			__i915_gem_userptr_set_active(obj, false);
645
			return ERR_PTR(-ENOMEM);
646 647 648 649 650
		}

		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
					       !obj->userptr.read_only, pvec);
	}
651 652 653

	active = false;
	if (pinned < 0)
654
		pages = ERR_PTR(pinned), pinned = 0;
655
	else if (pinned < num_pages)
656
		pages = __i915_gem_userptr_get_pages_schedule(obj, &active);
657
	else
658 659
		pages = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
	if (IS_ERR(pages)) {
660 661
		__i915_gem_userptr_set_active(obj, active);
		release_pages(pvec, pinned, 0);
662 663
	}
	drm_free_large(pvec);
664
	return pages;
665 666 667
}

static void
668 669
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
			   struct sg_table *pages)
670
{
671 672
	struct sgt_iter sgt_iter;
	struct page *page;
673 674

	BUG_ON(obj->userptr.work != NULL);
675
	__i915_gem_userptr_set_active(obj, false);
676

C
Chris Wilson 已提交
677 678
	if (obj->mm.madv != I915_MADV_WILLNEED)
		obj->mm.dirty = false;
679

680
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
681

682
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
683
		if (obj->mm.dirty)
684 685 686
			set_page_dirty(page);

		mark_page_accessed(page);
687
		put_page(page);
688
	}
C
Chris Wilson 已提交
689
	obj->mm.dirty = false;
690

691 692
	sg_free_table(pages);
	kfree(pages);
693 694 695 696 697 698
}

static void
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
{
	i915_gem_userptr_release__mmu_notifier(obj);
699
	i915_gem_userptr_release__mm_struct(obj);
700 701 702 703 704
}

static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
{
705
	if (obj->userptr.mmu_object)
706 707 708 709 710 711
		return 0;

	return i915_gem_userptr_init__mmu_notifier(obj, 0);
}

static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
712
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
713 714
	.get_pages = i915_gem_userptr_get_pages,
	.put_pages = i915_gem_userptr_put_pages,
715
	.dmabuf_export = i915_gem_userptr_dmabuf_export,
716 717 718 719 720 721 722 723 724 725
	.release = i915_gem_userptr_release,
};

/**
 * Creates a new mm object that wraps some normal memory from the process
 * context - user memory.
 *
 * We impose several restrictions upon the memory being mapped
 * into the GPU.
 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
726
 * 2. It must be normal system memory, not a pointer into another map of IO
727
 *    space (e.g. it must not be a GTT mmapping of another object).
728
 * 3. We only allow a bo as large as we could in theory map into the GTT,
729
 *    that is we limit the size to the total size of the GTT.
730
 * 4. The bo is marked as being snoopable. The backing pages are left
731 732 733 734 735 736 737 738 739 740 741 742 743 744
 *    accessible directly by the CPU, but reads and writes by the GPU may
 *    incur the cost of a snoop (unless you have an LLC architecture).
 *
 * Synchronisation between multiple users and the GPU is left to userspace
 * through the normal set-domain-ioctl. The kernel will enforce that the
 * GPU relinquishes the VMA before it is returned back to the system
 * i.e. upon free(), munmap() or process termination. However, the userspace
 * malloc() library may not immediately relinquish the VMA after free() and
 * instead reuse it whilst the GPU is still reading and writing to the VMA.
 * Caveat emptor.
 *
 * Also note, that the object created here is not currently a "first class"
 * object, in that several ioctls are banned. These are the CPU access
 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
745 746 747 748
 * direct access via your pointer rather than use those ioctls. Another
 * restriction is that we do not allow userptr surfaces to be pinned to the
 * hardware and so we reject any attempt to create a framebuffer out of a
 * userptr.
749 750 751 752 753 754 755 756 757 758 759 760 761
 *
 * If you think this is a good interface to use to pass GPU memory between
 * drivers, please use dma-buf instead. In fact, wherever possible use
 * dma-buf instead.
 */
int
i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_userptr *args = data;
	struct drm_i915_gem_object *obj;
	int ret;
	u32 handle;

762 763 764 765 766 767 768
	if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) {
		/* We cannot support coherent userptr objects on hw without
		 * LLC and broken snooping.
		 */
		return -ENODEV;
	}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	if (args->flags & ~(I915_USERPTR_READ_ONLY |
			    I915_USERPTR_UNSYNCHRONIZED))
		return -EINVAL;

	if (offset_in_page(args->user_ptr | args->user_size))
		return -EINVAL;

	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
		return -EFAULT;

	if (args->flags & I915_USERPTR_READ_ONLY) {
		/* On almost all of the current hw, we cannot tell the GPU that a
		 * page is readonly, so this is just a placeholder in the uAPI.
		 */
		return -ENODEV;
	}

	obj = i915_gem_object_alloc(dev);
	if (obj == NULL)
		return -ENOMEM;

	drm_gem_private_object_init(dev, &obj->base, args->user_size);
	i915_gem_object_init(obj, &i915_gem_userptr_ops);
	obj->cache_level = I915_CACHE_LLC;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;

	obj->userptr.ptr = args->user_ptr;
	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);

	/* And keep a pointer to the current->mm for resolving the user pages
	 * at binding. This means that we need to hook into the mmu_notifier
	 * in order to detect if the mmu is destroyed.
	 */
804 805
	ret = i915_gem_userptr_init__mm_struct(obj);
	if (ret == 0)
806 807 808 809 810
		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
	if (ret == 0)
		ret = drm_gem_handle_create(file, &obj->base, &handle);

	/* drop reference from allocate - handle holds it now */
811
	i915_gem_object_put_unlocked(obj);
812 813 814 815 816 817 818
	if (ret)
		return ret;

	args->handle = handle;
	return 0;
}

819
void i915_gem_init_userptr(struct drm_i915_private *dev_priv)
820
{
821 822
	mutex_init(&dev_priv->mm_lock);
	hash_init(dev_priv->mm_structs);
823
}