i915_gem_userptr.c 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2012-2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drmP.h>
#include <drm/i915_drm.h>
27 28 29 30 31 32 33 34
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>

35 36
struct i915_mm_struct {
	struct mm_struct *mm;
37
	struct drm_i915_private *i915;
38 39 40 41 42 43
	struct i915_mmu_notifier *mn;
	struct hlist_node node;
	struct kref kref;
	struct work_struct work;
};

44 45 46 47 48 49 50 51
#if defined(CONFIG_MMU_NOTIFIER)
#include <linux/interval_tree.h>

struct i915_mmu_notifier {
	spinlock_t lock;
	struct hlist_node node;
	struct mmu_notifier mn;
	struct rb_root objects;
52
	struct workqueue_struct *wq;
53 54 55
};

struct i915_mmu_object {
56
	struct i915_mmu_notifier *mn;
57
	struct drm_i915_gem_object *obj;
58
	struct interval_tree_node it;
59
	struct list_head link;
60
	struct work_struct work;
61
	bool attached;
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static void wait_rendering(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
	int i, n;

	if (!obj->active)
		return;

	n = 0;
	for (i = 0; i < I915_NUM_ENGINES; i++) {
		struct drm_i915_gem_request *req;

		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

81
		requests[n++] = i915_gem_request_get(req);
82 83 84 85 86
	}

	mutex_unlock(&dev->struct_mutex);

	for (i = 0; i < n; i++)
87
		__i915_wait_request(requests[i], false, NULL, NULL);
88 89 90 91

	mutex_lock(&dev->struct_mutex);

	for (i = 0; i < n; i++)
92
		i915_gem_request_put(requests[i]);
93 94
}

95
static void cancel_userptr(struct work_struct *work)
96
{
97 98
	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
	struct drm_i915_gem_object *obj = mo->obj;
99 100 101 102 103 104 105 106 107 108 109
	struct drm_device *dev = obj->base.dev;

	mutex_lock(&dev->struct_mutex);
	/* Cancel any active worker and force us to re-evaluate gup */
	obj->userptr.work = NULL;

	if (obj->pages != NULL) {
		struct drm_i915_private *dev_priv = to_i915(dev);
		struct i915_vma *vma, *tmp;
		bool was_interruptible;

110 111
		wait_rendering(obj);

112 113 114
		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

115 116
		list_for_each_entry_safe(vma, tmp, &obj->vma_list, obj_link)
			WARN_ON(i915_vma_unbind(vma));
117 118 119 120 121 122 123 124 125
		WARN_ON(i915_gem_object_put_pages(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
}

126
static void add_object(struct i915_mmu_object *mo)
127
{
128 129
	if (mo->attached)
		return;
130

131 132 133 134 135 136 137 138 139 140 141
	interval_tree_insert(&mo->it, &mo->mn->objects);
	mo->attached = true;
}

static void del_object(struct i915_mmu_object *mo)
{
	if (!mo->attached)
		return;

	interval_tree_remove(&mo->it, &mo->mn->objects);
	mo->attached = false;
142 143
}

144 145 146 147 148
static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
						       struct mm_struct *mm,
						       unsigned long start,
						       unsigned long end)
{
149 150 151
	struct i915_mmu_notifier *mn =
		container_of(_mn, struct i915_mmu_notifier, mn);
	struct i915_mmu_object *mo;
152 153 154 155 156
	struct interval_tree_node *it;
	LIST_HEAD(cancelled);

	if (RB_EMPTY_ROOT(&mn->objects))
		return;
157 158 159 160 161

	/* interval ranges are inclusive, but invalidate range is exclusive */
	end--;

	spin_lock(&mn->lock);
162 163 164 165 166 167 168 169 170 171 172 173 174
	it = interval_tree_iter_first(&mn->objects, start, end);
	while (it) {
		/* The mmu_object is released late when destroying the
		 * GEM object so it is entirely possible to gain a
		 * reference on an object in the process of being freed
		 * since our serialisation is via the spinlock and not
		 * the struct_mutex - and consequently use it after it
		 * is freed and then double free it. To prevent that
		 * use-after-free we only acquire a reference on the
		 * object if it is not in the process of being destroyed.
		 */
		mo = container_of(it, struct i915_mmu_object, it);
		if (kref_get_unless_zero(&mo->obj->base.refcount))
175
			queue_work(mn->wq, &mo->work);
176

177 178
		list_add(&mo->link, &cancelled);
		it = interval_tree_iter_next(it, start, end);
179
	}
180 181
	list_for_each_entry(mo, &cancelled, link)
		del_object(mo);
182
	spin_unlock(&mn->lock);
183 184

	flush_workqueue(mn->wq);
185 186 187 188 189 190 191
}

static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
};

static struct i915_mmu_notifier *
192
i915_mmu_notifier_create(struct mm_struct *mm)
193
{
194
	struct i915_mmu_notifier *mn;
195 196
	int ret;

197 198
	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
	if (mn == NULL)
199 200
		return ERR_PTR(-ENOMEM);

201 202 203
	spin_lock_init(&mn->lock);
	mn->mn.ops = &i915_gem_userptr_notifier;
	mn->objects = RB_ROOT;
204 205 206 207 208
	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
	if (mn->wq == NULL) {
		kfree(mn);
		return ERR_PTR(-ENOMEM);
	}
209 210 211

	 /* Protected by mmap_sem (write-lock) */
	ret = __mmu_notifier_register(&mn->mn, mm);
212
	if (ret) {
213
		destroy_workqueue(mn->wq);
214
		kfree(mn);
215 216 217
		return ERR_PTR(ret);
	}

218
	return mn;
219 220 221 222 223
}

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
224
	struct i915_mmu_object *mo;
225

226 227
	mo = obj->userptr.mmu_object;
	if (mo == NULL)
228 229
		return;

230 231 232
	spin_lock(&mo->mn->lock);
	del_object(mo);
	spin_unlock(&mo->mn->lock);
233 234 235 236 237 238 239 240
	kfree(mo);

	obj->userptr.mmu_object = NULL;
}

static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct *mm)
{
241 242 243 244 245 246 247
	struct i915_mmu_notifier *mn = mm->mn;

	mn = mm->mn;
	if (mn)
		return mn;

	down_write(&mm->mm->mmap_sem);
248
	mutex_lock(&mm->i915->mm_lock);
249 250 251 252
	if ((mn = mm->mn) == NULL) {
		mn = i915_mmu_notifier_create(mm->mm);
		if (!IS_ERR(mn))
			mm->mn = mn;
253
	}
254
	mutex_unlock(&mm->i915->mm_lock);
255 256 257
	up_write(&mm->mm->mmap_sem);

	return mn;
258 259 260 261 262 263
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
264 265
	struct i915_mmu_notifier *mn;
	struct i915_mmu_object *mo;
266 267 268 269

	if (flags & I915_USERPTR_UNSYNCHRONIZED)
		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;

270 271
	if (WARN_ON(obj->userptr.mm == NULL))
		return -EINVAL;
272

273 274 275
	mn = i915_mmu_notifier_find(obj->userptr.mm);
	if (IS_ERR(mn))
		return PTR_ERR(mn);
276

277 278 279
	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
	if (mo == NULL)
		return -ENOMEM;
280

281 282
	mo->mn = mn;
	mo->obj = obj;
283 284 285
	mo->it.start = obj->userptr.ptr;
	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
	INIT_WORK(&mo->work, cancel_userptr);
286 287

	obj->userptr.mmu_object = mo;
288
	return 0;
289 290 291 292 293 294 295 296
}

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
	if (mn == NULL)
		return;
297

298
	mmu_notifier_unregister(&mn->mn, mm);
299
	destroy_workqueue(mn->wq);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
	kfree(mn);
}

#else

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
		return -ENODEV;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	return 0;
}
322 323 324 325 326 327 328

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
}

329 330
#endif

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
{
	struct i915_mm_struct *mm;

	/* Protected by dev_priv->mm_lock */
	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
		if (mm->mm == real)
			return mm;

	return NULL;
}

static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_mm_struct *mm;
	int ret = 0;

	/* During release of the GEM object we hold the struct_mutex. This
	 * precludes us from calling mmput() at that time as that may be
	 * the last reference and so call exit_mmap(). exit_mmap() will
	 * attempt to reap the vma, and if we were holding a GTT mmap
	 * would then call drm_gem_vm_close() and attempt to reacquire
	 * the struct mutex. So in order to avoid that recursion, we have
	 * to defer releasing the mm reference until after we drop the
	 * struct_mutex, i.e. we need to schedule a worker to do the clean
	 * up.
	 */
	mutex_lock(&dev_priv->mm_lock);
	mm = __i915_mm_struct_find(dev_priv, current->mm);
	if (mm == NULL) {
		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
		if (mm == NULL) {
			ret = -ENOMEM;
			goto out;
		}

		kref_init(&mm->kref);
371
		mm->i915 = to_i915(obj->base.dev);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

		mm->mm = current->mm;
		atomic_inc(&current->mm->mm_count);

		mm->mn = NULL;

		/* Protected by dev_priv->mm_lock */
		hash_add(dev_priv->mm_structs,
			 &mm->node, (unsigned long)mm->mm);
	} else
		kref_get(&mm->kref);

	obj->userptr.mm = mm;
out:
	mutex_unlock(&dev_priv->mm_lock);
	return ret;
}

static void
__i915_mm_struct_free__worker(struct work_struct *work)
{
	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
	i915_mmu_notifier_free(mm->mn, mm->mm);
	mmdrop(mm->mm);
	kfree(mm);
}

static void
__i915_mm_struct_free(struct kref *kref)
{
	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);

	/* Protected by dev_priv->mm_lock */
	hash_del(&mm->node);
406
	mutex_unlock(&mm->i915->mm_lock);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
	schedule_work(&mm->work);
}

static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
{
	if (obj->userptr.mm == NULL)
		return;

	kref_put_mutex(&obj->userptr.mm->kref,
		       __i915_mm_struct_free,
		       &to_i915(obj->base.dev)->mm_lock);
	obj->userptr.mm = NULL;
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
struct get_pages_work {
	struct work_struct work;
	struct drm_i915_gem_object *obj;
	struct task_struct *task;
};

#if IS_ENABLED(CONFIG_SWIOTLB)
#define swiotlb_active() swiotlb_nr_tbl()
#else
#define swiotlb_active() 0
#endif

static int
st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
{
	struct scatterlist *sg;
	int ret, n;

	*st = kmalloc(sizeof(**st), GFP_KERNEL);
	if (*st == NULL)
		return -ENOMEM;

	if (swiotlb_active()) {
		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
		if (ret)
			goto err;

		for_each_sg((*st)->sgl, sg, num_pages, n)
			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
	} else {
		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
						0, num_pages << PAGE_SHIFT,
						GFP_KERNEL);
		if (ret)
			goto err;
	}

	return 0;

err:
	kfree(*st);
	*st = NULL;
	return ret;
}

I
Imre Deak 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static int
__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
			     struct page **pvec, int num_pages)
{
	int ret;

	ret = st_set_pages(&obj->pages, pvec, num_pages);
	if (ret)
		return ret;

	ret = i915_gem_gtt_prepare_object(obj);
	if (ret) {
		sg_free_table(obj->pages);
		kfree(obj->pages);
		obj->pages = NULL;
	}

	return ret;
}

489
static int
490 491 492
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
			      bool value)
{
493 494
	int ret = 0;

495 496 497 498 499 500 501 502 503 504 505 506
	/* During mm_invalidate_range we need to cancel any userptr that
	 * overlaps the range being invalidated. Doing so requires the
	 * struct_mutex, and that risks recursion. In order to cause
	 * recursion, the user must alias the userptr address space with
	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
	 * to invalidate that mmaping, mm_invalidate_range is called with
	 * the userptr address *and* the struct_mutex held.  To prevent that
	 * we set a flag under the i915_mmu_notifier spinlock to indicate
	 * whether this object is valid.
	 */
#if defined(CONFIG_MMU_NOTIFIER)
	if (obj->userptr.mmu_object == NULL)
507
		return 0;
508 509

	spin_lock(&obj->userptr.mmu_object->mn->lock);
510 511 512
	/* In order to serialise get_pages with an outstanding
	 * cancel_userptr, we must drop the struct_mutex and try again.
	 */
513 514 515 516
	if (!value)
		del_object(obj->userptr.mmu_object);
	else if (!work_pending(&obj->userptr.mmu_object->work))
		add_object(obj->userptr.mmu_object);
517 518
	else
		ret = -EAGAIN;
519 520
	spin_unlock(&obj->userptr.mmu_object->mn->lock);
#endif
521 522

	return ret;
523 524
}

525 526 527 528 529 530
static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
	struct get_pages_work *work = container_of(_work, typeof(*work), work);
	struct drm_i915_gem_object *obj = work->obj;
	struct drm_device *dev = obj->base.dev;
531
	const int npages = obj->base.size >> PAGE_SHIFT;
532 533 534 535 536 537
	struct page **pvec;
	int pinned, ret;

	ret = -ENOMEM;
	pinned = 0;

538
	pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
539
	if (pvec != NULL) {
540
		struct mm_struct *mm = obj->userptr.mm->mm;
541

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		ret = -EFAULT;
		if (atomic_inc_not_zero(&mm->mm_users)) {
			down_read(&mm->mmap_sem);
			while (pinned < npages) {
				ret = get_user_pages_remote
					(work->task, mm,
					 obj->userptr.ptr + pinned * PAGE_SIZE,
					 npages - pinned,
					 !obj->userptr.read_only, 0,
					 pvec + pinned, NULL);
				if (ret < 0)
					break;

				pinned += ret;
			}
			up_read(&mm->mmap_sem);
			mmput(mm);
559 560 561 562
		}
	}

	mutex_lock(&dev->struct_mutex);
563 564 565 566 567 568 569 570 571 572
	if (obj->userptr.work == &work->work) {
		if (pinned == npages) {
			ret = __i915_gem_userptr_set_pages(obj, pvec, npages);
			if (ret == 0) {
				list_add_tail(&obj->global_list,
					      &to_i915(dev)->mm.unbound_list);
				obj->get_page.sg = obj->pages->sgl;
				obj->get_page.last = 0;
				pinned = 0;
			}
573
		}
574
		obj->userptr.work = ERR_PTR(ret);
575 576
		if (ret)
			__i915_gem_userptr_set_active(obj, false);
577 578 579 580 581 582 583 584 585 586 587 588 589
	}

	obj->userptr.workers--;
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);

	put_task_struct(work->task);
	kfree(work);
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static int
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
				      bool *active)
{
	struct get_pages_work *work;

	/* Spawn a worker so that we can acquire the
	 * user pages without holding our mutex. Access
	 * to the user pages requires mmap_sem, and we have
	 * a strict lock ordering of mmap_sem, struct_mutex -
	 * we already hold struct_mutex here and so cannot
	 * call gup without encountering a lock inversion.
	 *
	 * Userspace will keep on repeating the operation
	 * (thanks to EAGAIN) until either we hit the fast
	 * path or the worker completes. If the worker is
	 * cancelled or superseded, the task is still run
	 * but the results ignored. (This leads to
	 * complications that we may have a stray object
	 * refcount that we need to be wary of when
	 * checking for existing objects during creation.)
	 * If the worker encounters an error, it reports
	 * that error back to this function through
	 * obj->userptr.work = ERR_PTR.
	 */
	if (obj->userptr.workers >= I915_GEM_USERPTR_MAX_WORKERS)
		return -EAGAIN;

	work = kmalloc(sizeof(*work), GFP_KERNEL);
	if (work == NULL)
		return -ENOMEM;

	obj->userptr.work = &work->work;
	obj->userptr.workers++;

	work->obj = obj;
	drm_gem_object_reference(&obj->base);

	work->task = current;
	get_task_struct(work->task);

	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
	schedule_work(&work->work);

	*active = true;
	return -EAGAIN;
}

638 639 640 641 642 643
static int
i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
{
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;
644
	bool active;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

	/* If userspace should engineer that these pages are replaced in
	 * the vma between us binding this page into the GTT and completion
	 * of rendering... Their loss. If they change the mapping of their
	 * pages they need to create a new bo to point to the new vma.
	 *
	 * However, that still leaves open the possibility of the vma
	 * being copied upon fork. Which falls under the same userspace
	 * synchronisation issue as a regular bo, except that this time
	 * the process may not be expecting that a particular piece of
	 * memory is tied to the GPU.
	 *
	 * Fortunately, we can hook into the mmu_notifier in order to
	 * discard the page references prior to anything nasty happening
	 * to the vma (discard or cloning) which should prevent the more
	 * egregious cases from causing harm.
	 */
662 663 664 665 666 667 668 669 670 671 672
	if (IS_ERR(obj->userptr.work)) {
		/* active flag will have been dropped already by the worker */
		ret = PTR_ERR(obj->userptr.work);
		obj->userptr.work = NULL;
		return ret;
	}
	if (obj->userptr.work)
		/* active flag should still be held for the pending work */
		return -EAGAIN;

	/* Let the mmu-notifier know that we have begun and need cancellation */
673 674 675
	ret = __i915_gem_userptr_set_active(obj, true);
	if (ret)
		return ret;
676 677 678

	pvec = NULL;
	pinned = 0;
679
	if (obj->userptr.mm->mm == current->mm) {
680 681
		pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
				      GFP_TEMPORARY);
682
		if (pvec == NULL) {
683 684
			__i915_gem_userptr_set_active(obj, false);
			return -ENOMEM;
685 686 687 688 689
		}

		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
					       !obj->userptr.read_only, pvec);
	}
690 691 692 693 694 695 696

	active = false;
	if (pinned < 0)
		ret = pinned, pinned = 0;
	else if (pinned < num_pages)
		ret = __i915_gem_userptr_get_pages_schedule(obj, &active);
	else
I
Imre Deak 已提交
697
		ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
698 699 700
	if (ret) {
		__i915_gem_userptr_set_active(obj, active);
		release_pages(pvec, pinned, 0);
701 702 703 704 705 706 707 708
	}
	drm_free_large(pvec);
	return ret;
}

static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
{
709 710
	struct sgt_iter sgt_iter;
	struct page *page;
711 712

	BUG_ON(obj->userptr.work != NULL);
713
	__i915_gem_userptr_set_active(obj, false);
714 715 716 717

	if (obj->madv != I915_MADV_WILLNEED)
		obj->dirty = 0;

I
Imre Deak 已提交
718 719
	i915_gem_gtt_finish_object(obj);

720
	for_each_sgt_page(page, sgt_iter, obj->pages) {
721 722 723 724
		if (obj->dirty)
			set_page_dirty(page);

		mark_page_accessed(page);
725
		put_page(page);
726 727 728 729 730 731 732 733 734 735 736
	}
	obj->dirty = 0;

	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
{
	i915_gem_userptr_release__mmu_notifier(obj);
737
	i915_gem_userptr_release__mm_struct(obj);
738 739 740 741 742
}

static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
{
743
	if (obj->userptr.mmu_object)
744 745 746 747 748 749
		return 0;

	return i915_gem_userptr_init__mmu_notifier(obj, 0);
}

static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
750
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
751 752
	.get_pages = i915_gem_userptr_get_pages,
	.put_pages = i915_gem_userptr_put_pages,
753
	.dmabuf_export = i915_gem_userptr_dmabuf_export,
754 755 756 757 758 759 760 761 762 763
	.release = i915_gem_userptr_release,
};

/**
 * Creates a new mm object that wraps some normal memory from the process
 * context - user memory.
 *
 * We impose several restrictions upon the memory being mapped
 * into the GPU.
 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
764
 * 2. It must be normal system memory, not a pointer into another map of IO
765
 *    space (e.g. it must not be a GTT mmapping of another object).
766
 * 3. We only allow a bo as large as we could in theory map into the GTT,
767
 *    that is we limit the size to the total size of the GTT.
768
 * 4. The bo is marked as being snoopable. The backing pages are left
769 770 771 772 773 774 775 776 777 778 779 780 781 782
 *    accessible directly by the CPU, but reads and writes by the GPU may
 *    incur the cost of a snoop (unless you have an LLC architecture).
 *
 * Synchronisation between multiple users and the GPU is left to userspace
 * through the normal set-domain-ioctl. The kernel will enforce that the
 * GPU relinquishes the VMA before it is returned back to the system
 * i.e. upon free(), munmap() or process termination. However, the userspace
 * malloc() library may not immediately relinquish the VMA after free() and
 * instead reuse it whilst the GPU is still reading and writing to the VMA.
 * Caveat emptor.
 *
 * Also note, that the object created here is not currently a "first class"
 * object, in that several ioctls are banned. These are the CPU access
 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
783 784 785 786
 * direct access via your pointer rather than use those ioctls. Another
 * restriction is that we do not allow userptr surfaces to be pinned to the
 * hardware and so we reject any attempt to create a framebuffer out of a
 * userptr.
787 788 789 790 791 792 793 794 795 796 797 798 799
 *
 * If you think this is a good interface to use to pass GPU memory between
 * drivers, please use dma-buf instead. In fact, wherever possible use
 * dma-buf instead.
 */
int
i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_userptr *args = data;
	struct drm_i915_gem_object *obj;
	int ret;
	u32 handle;

800 801 802 803 804 805 806
	if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) {
		/* We cannot support coherent userptr objects on hw without
		 * LLC and broken snooping.
		 */
		return -ENODEV;
	}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	if (args->flags & ~(I915_USERPTR_READ_ONLY |
			    I915_USERPTR_UNSYNCHRONIZED))
		return -EINVAL;

	if (offset_in_page(args->user_ptr | args->user_size))
		return -EINVAL;

	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
		return -EFAULT;

	if (args->flags & I915_USERPTR_READ_ONLY) {
		/* On almost all of the current hw, we cannot tell the GPU that a
		 * page is readonly, so this is just a placeholder in the uAPI.
		 */
		return -ENODEV;
	}

	obj = i915_gem_object_alloc(dev);
	if (obj == NULL)
		return -ENOMEM;

	drm_gem_private_object_init(dev, &obj->base, args->user_size);
	i915_gem_object_init(obj, &i915_gem_userptr_ops);
	obj->cache_level = I915_CACHE_LLC;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;

	obj->userptr.ptr = args->user_ptr;
	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);

	/* And keep a pointer to the current->mm for resolving the user pages
	 * at binding. This means that we need to hook into the mmu_notifier
	 * in order to detect if the mmu is destroyed.
	 */
842 843
	ret = i915_gem_userptr_init__mm_struct(obj);
	if (ret == 0)
844 845 846 847 848 849 850 851 852 853 854 855 856
		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
	if (ret == 0)
		ret = drm_gem_handle_create(file, &obj->base, &handle);

	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;

	args->handle = handle;
	return 0;
}

857
void i915_gem_init_userptr(struct drm_i915_private *dev_priv)
858
{
859 860
	mutex_init(&dev_priv->mm_lock);
	hash_init(dev_priv->mm_structs);
861
}