i915_gem_userptr.c 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2012-2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drmP.h>
#include <drm/i915_drm.h>
27 28 29 30 31 32 33 34
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>

35 36
struct i915_mm_struct {
	struct mm_struct *mm;
37
	struct drm_i915_private *i915;
38 39 40 41 42 43
	struct i915_mmu_notifier *mn;
	struct hlist_node node;
	struct kref kref;
	struct work_struct work;
};

44 45 46 47 48 49 50 51
#if defined(CONFIG_MMU_NOTIFIER)
#include <linux/interval_tree.h>

struct i915_mmu_notifier {
	spinlock_t lock;
	struct hlist_node node;
	struct mmu_notifier mn;
	struct rb_root objects;
52
	struct workqueue_struct *wq;
53 54 55
};

struct i915_mmu_object {
56
	struct i915_mmu_notifier *mn;
57
	struct drm_i915_gem_object *obj;
58
	struct interval_tree_node it;
59
	struct list_head link;
60
	struct work_struct work;
61
	bool attached;
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static void wait_rendering(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
	unsigned reset_counter;
	int i, n;

	if (!obj->active)
		return;

	n = 0;
	for (i = 0; i < I915_NUM_ENGINES; i++) {
		struct drm_i915_gem_request *req;

		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		requests[n++] = i915_gem_request_reference(req);
	}

	reset_counter = atomic_read(&to_i915(dev)->gpu_error.reset_counter);
	mutex_unlock(&dev->struct_mutex);

	for (i = 0; i < n; i++)
		__i915_wait_request(requests[i], reset_counter, false,
				    NULL, NULL);

	mutex_lock(&dev->struct_mutex);

	for (i = 0; i < n; i++)
		i915_gem_request_unreference(requests[i]);
}

98
static void cancel_userptr(struct work_struct *work)
99
{
100 101
	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
	struct drm_i915_gem_object *obj = mo->obj;
102 103 104 105 106 107 108 109 110 111 112
	struct drm_device *dev = obj->base.dev;

	mutex_lock(&dev->struct_mutex);
	/* Cancel any active worker and force us to re-evaluate gup */
	obj->userptr.work = NULL;

	if (obj->pages != NULL) {
		struct drm_i915_private *dev_priv = to_i915(dev);
		struct i915_vma *vma, *tmp;
		bool was_interruptible;

113 114
		wait_rendering(obj);

115 116 117
		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

118
		list_for_each_entry_safe(vma, tmp, &obj->vma_list, obj_link) {
119 120 121 122 123 124 125 126 127 128 129 130
			int ret = i915_vma_unbind(vma);
			WARN_ON(ret && ret != -EIO);
		}
		WARN_ON(i915_gem_object_put_pages(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
}

131
static void add_object(struct i915_mmu_object *mo)
132
{
133 134
	if (mo->attached)
		return;
135

136 137 138 139 140 141 142 143 144 145 146
	interval_tree_insert(&mo->it, &mo->mn->objects);
	mo->attached = true;
}

static void del_object(struct i915_mmu_object *mo)
{
	if (!mo->attached)
		return;

	interval_tree_remove(&mo->it, &mo->mn->objects);
	mo->attached = false;
147 148
}

149 150 151 152 153
static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
						       struct mm_struct *mm,
						       unsigned long start,
						       unsigned long end)
{
154 155 156
	struct i915_mmu_notifier *mn =
		container_of(_mn, struct i915_mmu_notifier, mn);
	struct i915_mmu_object *mo;
157 158 159 160 161
	struct interval_tree_node *it;
	LIST_HEAD(cancelled);

	if (RB_EMPTY_ROOT(&mn->objects))
		return;
162 163 164 165 166

	/* interval ranges are inclusive, but invalidate range is exclusive */
	end--;

	spin_lock(&mn->lock);
167 168 169 170 171 172 173 174 175 176 177 178 179
	it = interval_tree_iter_first(&mn->objects, start, end);
	while (it) {
		/* The mmu_object is released late when destroying the
		 * GEM object so it is entirely possible to gain a
		 * reference on an object in the process of being freed
		 * since our serialisation is via the spinlock and not
		 * the struct_mutex - and consequently use it after it
		 * is freed and then double free it. To prevent that
		 * use-after-free we only acquire a reference on the
		 * object if it is not in the process of being destroyed.
		 */
		mo = container_of(it, struct i915_mmu_object, it);
		if (kref_get_unless_zero(&mo->obj->base.refcount))
180
			queue_work(mn->wq, &mo->work);
181

182 183
		list_add(&mo->link, &cancelled);
		it = interval_tree_iter_next(it, start, end);
184
	}
185 186
	list_for_each_entry(mo, &cancelled, link)
		del_object(mo);
187
	spin_unlock(&mn->lock);
188 189

	flush_workqueue(mn->wq);
190 191 192 193 194 195 196
}

static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
};

static struct i915_mmu_notifier *
197
i915_mmu_notifier_create(struct mm_struct *mm)
198
{
199
	struct i915_mmu_notifier *mn;
200 201
	int ret;

202 203
	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
	if (mn == NULL)
204 205
		return ERR_PTR(-ENOMEM);

206 207 208
	spin_lock_init(&mn->lock);
	mn->mn.ops = &i915_gem_userptr_notifier;
	mn->objects = RB_ROOT;
209 210 211 212 213
	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
	if (mn->wq == NULL) {
		kfree(mn);
		return ERR_PTR(-ENOMEM);
	}
214 215 216

	 /* Protected by mmap_sem (write-lock) */
	ret = __mmu_notifier_register(&mn->mn, mm);
217
	if (ret) {
218
		destroy_workqueue(mn->wq);
219
		kfree(mn);
220 221 222
		return ERR_PTR(ret);
	}

223
	return mn;
224 225 226 227 228
}

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
229
	struct i915_mmu_object *mo;
230

231 232
	mo = obj->userptr.mmu_object;
	if (mo == NULL)
233 234
		return;

235 236 237
	spin_lock(&mo->mn->lock);
	del_object(mo);
	spin_unlock(&mo->mn->lock);
238 239 240 241 242 243 244 245
	kfree(mo);

	obj->userptr.mmu_object = NULL;
}

static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct *mm)
{
246 247 248 249 250 251 252
	struct i915_mmu_notifier *mn = mm->mn;

	mn = mm->mn;
	if (mn)
		return mn;

	down_write(&mm->mm->mmap_sem);
253
	mutex_lock(&mm->i915->mm_lock);
254 255 256 257
	if ((mn = mm->mn) == NULL) {
		mn = i915_mmu_notifier_create(mm->mm);
		if (!IS_ERR(mn))
			mm->mn = mn;
258
	}
259
	mutex_unlock(&mm->i915->mm_lock);
260 261 262
	up_write(&mm->mm->mmap_sem);

	return mn;
263 264 265 266 267 268
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
269 270
	struct i915_mmu_notifier *mn;
	struct i915_mmu_object *mo;
271 272 273 274

	if (flags & I915_USERPTR_UNSYNCHRONIZED)
		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;

275 276
	if (WARN_ON(obj->userptr.mm == NULL))
		return -EINVAL;
277

278 279 280
	mn = i915_mmu_notifier_find(obj->userptr.mm);
	if (IS_ERR(mn))
		return PTR_ERR(mn);
281

282 283 284
	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
	if (mo == NULL)
		return -ENOMEM;
285

286 287
	mo->mn = mn;
	mo->obj = obj;
288 289 290
	mo->it.start = obj->userptr.ptr;
	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
	INIT_WORK(&mo->work, cancel_userptr);
291 292

	obj->userptr.mmu_object = mo;
293
	return 0;
294 295 296 297 298 299 300 301
}

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
	if (mn == NULL)
		return;
302

303
	mmu_notifier_unregister(&mn->mn, mm);
304
	destroy_workqueue(mn->wq);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	kfree(mn);
}

#else

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
		return -ENODEV;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	return 0;
}
327 328 329 330 331 332 333

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
}

334 335
#endif

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
{
	struct i915_mm_struct *mm;

	/* Protected by dev_priv->mm_lock */
	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
		if (mm->mm == real)
			return mm;

	return NULL;
}

static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_mm_struct *mm;
	int ret = 0;

	/* During release of the GEM object we hold the struct_mutex. This
	 * precludes us from calling mmput() at that time as that may be
	 * the last reference and so call exit_mmap(). exit_mmap() will
	 * attempt to reap the vma, and if we were holding a GTT mmap
	 * would then call drm_gem_vm_close() and attempt to reacquire
	 * the struct mutex. So in order to avoid that recursion, we have
	 * to defer releasing the mm reference until after we drop the
	 * struct_mutex, i.e. we need to schedule a worker to do the clean
	 * up.
	 */
	mutex_lock(&dev_priv->mm_lock);
	mm = __i915_mm_struct_find(dev_priv, current->mm);
	if (mm == NULL) {
		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
		if (mm == NULL) {
			ret = -ENOMEM;
			goto out;
		}

		kref_init(&mm->kref);
376
		mm->i915 = to_i915(obj->base.dev);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

		mm->mm = current->mm;
		atomic_inc(&current->mm->mm_count);

		mm->mn = NULL;

		/* Protected by dev_priv->mm_lock */
		hash_add(dev_priv->mm_structs,
			 &mm->node, (unsigned long)mm->mm);
	} else
		kref_get(&mm->kref);

	obj->userptr.mm = mm;
out:
	mutex_unlock(&dev_priv->mm_lock);
	return ret;
}

static void
__i915_mm_struct_free__worker(struct work_struct *work)
{
	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
	i915_mmu_notifier_free(mm->mn, mm->mm);
	mmdrop(mm->mm);
	kfree(mm);
}

static void
__i915_mm_struct_free(struct kref *kref)
{
	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);

	/* Protected by dev_priv->mm_lock */
	hash_del(&mm->node);
411
	mutex_unlock(&mm->i915->mm_lock);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
	schedule_work(&mm->work);
}

static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
{
	if (obj->userptr.mm == NULL)
		return;

	kref_put_mutex(&obj->userptr.mm->kref,
		       __i915_mm_struct_free,
		       &to_i915(obj->base.dev)->mm_lock);
	obj->userptr.mm = NULL;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
struct get_pages_work {
	struct work_struct work;
	struct drm_i915_gem_object *obj;
	struct task_struct *task;
};

#if IS_ENABLED(CONFIG_SWIOTLB)
#define swiotlb_active() swiotlb_nr_tbl()
#else
#define swiotlb_active() 0
#endif

static int
st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
{
	struct scatterlist *sg;
	int ret, n;

	*st = kmalloc(sizeof(**st), GFP_KERNEL);
	if (*st == NULL)
		return -ENOMEM;

	if (swiotlb_active()) {
		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
		if (ret)
			goto err;

		for_each_sg((*st)->sgl, sg, num_pages, n)
			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
	} else {
		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
						0, num_pages << PAGE_SHIFT,
						GFP_KERNEL);
		if (ret)
			goto err;
	}

	return 0;

err:
	kfree(*st);
	*st = NULL;
	return ret;
}

I
Imre Deak 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static int
__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
			     struct page **pvec, int num_pages)
{
	int ret;

	ret = st_set_pages(&obj->pages, pvec, num_pages);
	if (ret)
		return ret;

	ret = i915_gem_gtt_prepare_object(obj);
	if (ret) {
		sg_free_table(obj->pages);
		kfree(obj->pages);
		obj->pages = NULL;
	}

	return ret;
}

494
static int
495 496 497
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
			      bool value)
{
498 499
	int ret = 0;

500 501 502 503 504 505 506 507 508 509 510 511
	/* During mm_invalidate_range we need to cancel any userptr that
	 * overlaps the range being invalidated. Doing so requires the
	 * struct_mutex, and that risks recursion. In order to cause
	 * recursion, the user must alias the userptr address space with
	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
	 * to invalidate that mmaping, mm_invalidate_range is called with
	 * the userptr address *and* the struct_mutex held.  To prevent that
	 * we set a flag under the i915_mmu_notifier spinlock to indicate
	 * whether this object is valid.
	 */
#if defined(CONFIG_MMU_NOTIFIER)
	if (obj->userptr.mmu_object == NULL)
512
		return 0;
513 514

	spin_lock(&obj->userptr.mmu_object->mn->lock);
515 516 517
	/* In order to serialise get_pages with an outstanding
	 * cancel_userptr, we must drop the struct_mutex and try again.
	 */
518 519 520 521
	if (!value)
		del_object(obj->userptr.mmu_object);
	else if (!work_pending(&obj->userptr.mmu_object->work))
		add_object(obj->userptr.mmu_object);
522 523
	else
		ret = -EAGAIN;
524 525
	spin_unlock(&obj->userptr.mmu_object->mn->lock);
#endif
526 527

	return ret;
528 529
}

530 531 532 533 534 535
static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
	struct get_pages_work *work = container_of(_work, typeof(*work), work);
	struct drm_i915_gem_object *obj = work->obj;
	struct drm_device *dev = obj->base.dev;
536
	const int npages = obj->base.size >> PAGE_SHIFT;
537 538 539 540 541 542
	struct page **pvec;
	int pinned, ret;

	ret = -ENOMEM;
	pinned = 0;

543
	pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
544
	if (pvec != NULL) {
545
		struct mm_struct *mm = obj->userptr.mm->mm;
546

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		ret = -EFAULT;
		if (atomic_inc_not_zero(&mm->mm_users)) {
			down_read(&mm->mmap_sem);
			while (pinned < npages) {
				ret = get_user_pages_remote
					(work->task, mm,
					 obj->userptr.ptr + pinned * PAGE_SIZE,
					 npages - pinned,
					 !obj->userptr.read_only, 0,
					 pvec + pinned, NULL);
				if (ret < 0)
					break;

				pinned += ret;
			}
			up_read(&mm->mmap_sem);
			mmput(mm);
564 565 566 567
		}
	}

	mutex_lock(&dev->struct_mutex);
568 569 570 571 572 573 574 575 576 577
	if (obj->userptr.work == &work->work) {
		if (pinned == npages) {
			ret = __i915_gem_userptr_set_pages(obj, pvec, npages);
			if (ret == 0) {
				list_add_tail(&obj->global_list,
					      &to_i915(dev)->mm.unbound_list);
				obj->get_page.sg = obj->pages->sgl;
				obj->get_page.last = 0;
				pinned = 0;
			}
578
		}
579
		obj->userptr.work = ERR_PTR(ret);
580 581
		if (ret)
			__i915_gem_userptr_set_active(obj, false);
582 583 584 585 586 587 588 589 590 591 592 593 594
	}

	obj->userptr.workers--;
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);

	put_task_struct(work->task);
	kfree(work);
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static int
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
				      bool *active)
{
	struct get_pages_work *work;

	/* Spawn a worker so that we can acquire the
	 * user pages without holding our mutex. Access
	 * to the user pages requires mmap_sem, and we have
	 * a strict lock ordering of mmap_sem, struct_mutex -
	 * we already hold struct_mutex here and so cannot
	 * call gup without encountering a lock inversion.
	 *
	 * Userspace will keep on repeating the operation
	 * (thanks to EAGAIN) until either we hit the fast
	 * path or the worker completes. If the worker is
	 * cancelled or superseded, the task is still run
	 * but the results ignored. (This leads to
	 * complications that we may have a stray object
	 * refcount that we need to be wary of when
	 * checking for existing objects during creation.)
	 * If the worker encounters an error, it reports
	 * that error back to this function through
	 * obj->userptr.work = ERR_PTR.
	 */
	if (obj->userptr.workers >= I915_GEM_USERPTR_MAX_WORKERS)
		return -EAGAIN;

	work = kmalloc(sizeof(*work), GFP_KERNEL);
	if (work == NULL)
		return -ENOMEM;

	obj->userptr.work = &work->work;
	obj->userptr.workers++;

	work->obj = obj;
	drm_gem_object_reference(&obj->base);

	work->task = current;
	get_task_struct(work->task);

	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
	schedule_work(&work->work);

	*active = true;
	return -EAGAIN;
}

643 644 645 646 647 648
static int
i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
{
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;
649
	bool active;
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

	/* If userspace should engineer that these pages are replaced in
	 * the vma between us binding this page into the GTT and completion
	 * of rendering... Their loss. If they change the mapping of their
	 * pages they need to create a new bo to point to the new vma.
	 *
	 * However, that still leaves open the possibility of the vma
	 * being copied upon fork. Which falls under the same userspace
	 * synchronisation issue as a regular bo, except that this time
	 * the process may not be expecting that a particular piece of
	 * memory is tied to the GPU.
	 *
	 * Fortunately, we can hook into the mmu_notifier in order to
	 * discard the page references prior to anything nasty happening
	 * to the vma (discard or cloning) which should prevent the more
	 * egregious cases from causing harm.
	 */
667 668 669 670 671 672 673 674 675 676 677
	if (IS_ERR(obj->userptr.work)) {
		/* active flag will have been dropped already by the worker */
		ret = PTR_ERR(obj->userptr.work);
		obj->userptr.work = NULL;
		return ret;
	}
	if (obj->userptr.work)
		/* active flag should still be held for the pending work */
		return -EAGAIN;

	/* Let the mmu-notifier know that we have begun and need cancellation */
678 679 680
	ret = __i915_gem_userptr_set_active(obj, true);
	if (ret)
		return ret;
681 682 683

	pvec = NULL;
	pinned = 0;
684
	if (obj->userptr.mm->mm == current->mm) {
685 686
		pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
				      GFP_TEMPORARY);
687
		if (pvec == NULL) {
688 689
			__i915_gem_userptr_set_active(obj, false);
			return -ENOMEM;
690 691 692 693 694
		}

		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
					       !obj->userptr.read_only, pvec);
	}
695 696 697 698 699 700 701

	active = false;
	if (pinned < 0)
		ret = pinned, pinned = 0;
	else if (pinned < num_pages)
		ret = __i915_gem_userptr_get_pages_schedule(obj, &active);
	else
I
Imre Deak 已提交
702
		ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
703 704 705
	if (ret) {
		__i915_gem_userptr_set_active(obj, active);
		release_pages(pvec, pinned, 0);
706 707 708 709 710 711 712 713
	}
	drm_free_large(pvec);
	return ret;
}

static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
{
714
	struct sg_page_iter sg_iter;
715 716

	BUG_ON(obj->userptr.work != NULL);
717
	__i915_gem_userptr_set_active(obj, false);
718 719 720 721

	if (obj->madv != I915_MADV_WILLNEED)
		obj->dirty = 0;

I
Imre Deak 已提交
722 723
	i915_gem_gtt_finish_object(obj);

724 725
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
		struct page *page = sg_page_iter_page(&sg_iter);
726 727 728 729 730

		if (obj->dirty)
			set_page_dirty(page);

		mark_page_accessed(page);
731
		put_page(page);
732 733 734 735 736 737 738 739 740 741 742
	}
	obj->dirty = 0;

	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
{
	i915_gem_userptr_release__mmu_notifier(obj);
743
	i915_gem_userptr_release__mm_struct(obj);
744 745 746 747 748
}

static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
{
749
	if (obj->userptr.mmu_object)
750 751 752 753 754 755
		return 0;

	return i915_gem_userptr_init__mmu_notifier(obj, 0);
}

static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
756
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
757 758
	.get_pages = i915_gem_userptr_get_pages,
	.put_pages = i915_gem_userptr_put_pages,
759
	.dmabuf_export = i915_gem_userptr_dmabuf_export,
760 761 762 763 764 765 766 767 768 769
	.release = i915_gem_userptr_release,
};

/**
 * Creates a new mm object that wraps some normal memory from the process
 * context - user memory.
 *
 * We impose several restrictions upon the memory being mapped
 * into the GPU.
 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
770
 * 2. It must be normal system memory, not a pointer into another map of IO
771
 *    space (e.g. it must not be a GTT mmapping of another object).
772
 * 3. We only allow a bo as large as we could in theory map into the GTT,
773
 *    that is we limit the size to the total size of the GTT.
774
 * 4. The bo is marked as being snoopable. The backing pages are left
775 776 777 778 779 780 781 782 783 784 785 786 787 788
 *    accessible directly by the CPU, but reads and writes by the GPU may
 *    incur the cost of a snoop (unless you have an LLC architecture).
 *
 * Synchronisation between multiple users and the GPU is left to userspace
 * through the normal set-domain-ioctl. The kernel will enforce that the
 * GPU relinquishes the VMA before it is returned back to the system
 * i.e. upon free(), munmap() or process termination. However, the userspace
 * malloc() library may not immediately relinquish the VMA after free() and
 * instead reuse it whilst the GPU is still reading and writing to the VMA.
 * Caveat emptor.
 *
 * Also note, that the object created here is not currently a "first class"
 * object, in that several ioctls are banned. These are the CPU access
 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
789 790 791 792
 * direct access via your pointer rather than use those ioctls. Another
 * restriction is that we do not allow userptr surfaces to be pinned to the
 * hardware and so we reject any attempt to create a framebuffer out of a
 * userptr.
793 794 795 796 797 798 799 800 801 802 803 804 805
 *
 * If you think this is a good interface to use to pass GPU memory between
 * drivers, please use dma-buf instead. In fact, wherever possible use
 * dma-buf instead.
 */
int
i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_userptr *args = data;
	struct drm_i915_gem_object *obj;
	int ret;
	u32 handle;

806 807 808 809 810 811 812
	if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) {
		/* We cannot support coherent userptr objects on hw without
		 * LLC and broken snooping.
		 */
		return -ENODEV;
	}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	if (args->flags & ~(I915_USERPTR_READ_ONLY |
			    I915_USERPTR_UNSYNCHRONIZED))
		return -EINVAL;

	if (offset_in_page(args->user_ptr | args->user_size))
		return -EINVAL;

	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
		return -EFAULT;

	if (args->flags & I915_USERPTR_READ_ONLY) {
		/* On almost all of the current hw, we cannot tell the GPU that a
		 * page is readonly, so this is just a placeholder in the uAPI.
		 */
		return -ENODEV;
	}

	obj = i915_gem_object_alloc(dev);
	if (obj == NULL)
		return -ENOMEM;

	drm_gem_private_object_init(dev, &obj->base, args->user_size);
	i915_gem_object_init(obj, &i915_gem_userptr_ops);
	obj->cache_level = I915_CACHE_LLC;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;

	obj->userptr.ptr = args->user_ptr;
	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);

	/* And keep a pointer to the current->mm for resolving the user pages
	 * at binding. This means that we need to hook into the mmu_notifier
	 * in order to detect if the mmu is destroyed.
	 */
848 849
	ret = i915_gem_userptr_init__mm_struct(obj);
	if (ret == 0)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
	if (ret == 0)
		ret = drm_gem_handle_create(file, &obj->base, &handle);

	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;

	args->handle = handle;
	return 0;
}

int
i915_gem_init_userptr(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
867 868
	mutex_init(&dev_priv->mm_lock);
	hash_init(dev_priv->mm_structs);
869 870
	return 0;
}