bio-integrity.c 13.9 KB
Newer Older
1 2 3
/*
 * bio-integrity.c - bio data integrity extensions
 *
4
 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version
 * 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
 * USA.
 *
 */

#include <linux/blkdev.h>
#include <linux/mempool.h>
25
#include <linux/export.h>
26 27
#include <linux/bio.h>
#include <linux/workqueue.h>
28
#include <linux/slab.h>
29

30
#define BIP_INLINE_VECS	4
31

32
static struct kmem_cache *bip_slab;
33 34 35
static struct workqueue_struct *kintegrityd_wq;

/**
36
 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
37 38 39 40 41 42 43 44
 * @bio:	bio to attach integrity metadata to
 * @gfp_mask:	Memory allocation mask
 * @nr_vecs:	Number of integrity metadata scatter-gather elements
 *
 * Description: This function prepares a bio for attaching integrity
 * metadata.  nr_vecs specifies the maximum number of pages containing
 * integrity metadata that can be attached.
 */
45 46 47
struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
						  gfp_t gfp_mask,
						  unsigned int nr_vecs)
48 49
{
	struct bio_integrity_payload *bip;
50
	struct bio_set *bs = bio->bi_pool;
51 52 53 54 55 56 57 58
	unsigned long idx = BIO_POOL_NONE;
	unsigned inline_vecs;

	if (!bs) {
		bip = kmalloc(sizeof(struct bio_integrity_payload) +
			      sizeof(struct bio_vec) * nr_vecs, gfp_mask);
		inline_vecs = nr_vecs;
	} else {
59
		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
60
		inline_vecs = BIP_INLINE_VECS;
61 62
	}

63 64 65
	if (unlikely(!bip))
		return NULL;

66 67
	memset(bip, 0, sizeof(*bip));

68 69 70 71 72
	if (nr_vecs > inline_vecs) {
		bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx,
					  bs->bvec_integrity_pool);
		if (!bip->bip_vec)
			goto err;
73
		bip->bip_max_vcnt = bvec_nr_vecs(idx);
74 75
	} else {
		bip->bip_vec = bip->bip_inline_vecs;
76
		bip->bip_max_vcnt = inline_vecs;
77 78
	}

79
	bip->bip_slab = idx;
80 81
	bip->bip_bio = bio;
	bio->bi_integrity = bip;
82
	bio->bi_rw |= REQ_INTEGRITY;
83 84

	return bip;
85 86 87
err:
	mempool_free(bip, bs->bio_integrity_pool);
	return NULL;
88 89 90 91 92 93 94 95 96 97
}
EXPORT_SYMBOL(bio_integrity_alloc);

/**
 * bio_integrity_free - Free bio integrity payload
 * @bio:	bio containing bip to be freed
 *
 * Description: Used to free the integrity portion of a bio. Usually
 * called from bio_free().
 */
98
void bio_integrity_free(struct bio *bio)
99
{
100
	struct bio_integrity_payload *bip = bio_integrity(bio);
101 102
	struct bio_set *bs = bio->bi_pool;

103
	if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
M
Martin K. Petersen 已提交
104 105
		kfree(page_address(bip->bip_vec->bv_page) +
		      bip->bip_vec->bv_offset);
106

107 108 109 110 111
	if (bs) {
		if (bip->bip_slab != BIO_POOL_NONE)
			bvec_free(bs->bvec_integrity_pool, bip->bip_vec,
				  bip->bip_slab);

112
		mempool_free(bip, bs->bio_integrity_pool);
113 114 115
	} else {
		kfree(bip);
	}
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

	bio->bi_integrity = NULL;
}
EXPORT_SYMBOL(bio_integrity_free);

/**
 * bio_integrity_add_page - Attach integrity metadata
 * @bio:	bio to update
 * @page:	page containing integrity metadata
 * @len:	number of bytes of integrity metadata in page
 * @offset:	start offset within page
 *
 * Description: Attach a page containing integrity metadata to bio.
 */
int bio_integrity_add_page(struct bio *bio, struct page *page,
			   unsigned int len, unsigned int offset)
{
133
	struct bio_integrity_payload *bip = bio_integrity(bio);
134 135
	struct bio_vec *iv;

136
	if (bip->bip_vcnt >= bip->bip_max_vcnt) {
137 138 139 140
		printk(KERN_ERR "%s: bip_vec full\n", __func__);
		return 0;
	}

141
	iv = bip->bip_vec + bip->bip_vcnt;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	iv->bv_page = page;
	iv->bv_len = len;
	iv->bv_offset = offset;
	bip->bip_vcnt++;

	return len;
}
EXPORT_SYMBOL(bio_integrity_add_page);

/**
 * bio_integrity_enabled - Check whether integrity can be passed
 * @bio:	bio to check
 *
 * Description: Determines whether bio_integrity_prep() can be called
 * on this bio or not.	bio data direction and target device must be
 * set prior to calling.  The functions honors the write_generate and
 * read_verify flags in sysfs.
 */
161
bool bio_integrity_enabled(struct bio *bio)
162
{
163 164
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

165
	if (!bio_is_rw(bio))
166
		return false;
167

168 169
	/* Already protected? */
	if (bio_integrity(bio))
170 171 172 173 174 175
		return false;

	if (bi == NULL)
		return false;

	if (bio_data_dir(bio) == READ && bi->verify_fn != NULL &&
176
	    (bi->flags & BLK_INTEGRITY_VERIFY))
177 178 179
		return true;

	if (bio_data_dir(bio) == WRITE && bi->generate_fn != NULL &&
180
	    (bi->flags & BLK_INTEGRITY_GENERATE))
181
		return true;
182

183
	return false;
184 185 186 187
}
EXPORT_SYMBOL(bio_integrity_enabled);

/**
188
 * bio_integrity_intervals - Return number of integrity intervals for a bio
189
 * @bi:		blk_integrity profile for device
190
 * @sectors:	Size of the bio in 512-byte sectors
191 192
 *
 * Description: The block layer calculates everything in 512 byte
193 194 195
 * sectors but integrity metadata is done in terms of the data integrity
 * interval size of the storage device.  Convert the block layer sectors
 * to the appropriate number of integrity intervals.
196
 */
197 198
static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
						   unsigned int sectors)
199
{
200
	return sectors >> (ilog2(bi->interval) - 9);
201 202
}

203 204 205
static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
					       unsigned int sectors)
{
206
	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
207 208
}

209
/**
210
 * bio_integrity_process - Process integrity metadata for a bio
211
 * @bio:	bio to generate/verify integrity metadata for
212
 * @proc_fn:	Pointer to the relevant processing function
213
 */
214 215
static int bio_integrity_process(struct bio *bio,
				 integrity_processing_fn *proc_fn)
216 217
{
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
218
	struct blk_integrity_iter iter;
219
	struct bio_vec *bv;
M
Martin K. Petersen 已提交
220
	struct bio_integrity_payload *bip = bio_integrity(bio);
221
	unsigned int i, ret = 0;
M
Martin K. Petersen 已提交
222 223
	void *prot_buf = page_address(bip->bip_vec->bv_page) +
		bip->bip_vec->bv_offset;
224

225 226 227 228
	iter.disk_name = bio->bi_bdev->bd_disk->disk_name;
	iter.interval = bi->interval;
	iter.seed = bip_get_seed(bip);
	iter.prot_buf = prot_buf;
229

230 231
	bio_for_each_segment_all(bv, bio, i) {
		void *kaddr = kmap_atomic(bv->bv_page);
232

233 234 235 236 237 238 239 240
		iter.data_buf = kaddr + bv->bv_offset;
		iter.data_size = bv->bv_len;

		ret = proc_fn(&iter);
		if (ret) {
			kunmap_atomic(kaddr);
			return ret;
		}
241

242
		kunmap_atomic(kaddr);
243
	}
244 245 246
	return ret;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/**
 * bio_integrity_prep - Prepare bio for integrity I/O
 * @bio:	bio to prepare
 *
 * Description: Allocates a buffer for integrity metadata, maps the
 * pages and attaches them to a bio.  The bio must have data
 * direction, target device and start sector set priot to calling.  In
 * the WRITE case, integrity metadata will be generated using the
 * block device's integrity function.  In the READ case, the buffer
 * will be prepared for DMA and a suitable end_io handler set up.
 */
int bio_integrity_prep(struct bio *bio)
{
	struct bio_integrity_payload *bip;
	struct blk_integrity *bi;
	struct request_queue *q;
	void *buf;
	unsigned long start, end;
	unsigned int len, nr_pages;
	unsigned int bytes, offset, i;
267
	unsigned int intervals;
268 269 270 271 272 273

	bi = bdev_get_integrity(bio->bi_bdev);
	q = bdev_get_queue(bio->bi_bdev);
	BUG_ON(bi == NULL);
	BUG_ON(bio_integrity(bio));

274
	intervals = bio_integrity_intervals(bi, bio_sectors(bio));
275 276

	/* Allocate kernel buffer for protection data */
277
	len = intervals * bi->tuple_size;
278
	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
279 280
	if (unlikely(buf == NULL)) {
		printk(KERN_ERR "could not allocate integrity buffer\n");
281
		return -ENOMEM;
282 283 284 285 286 287 288 289 290 291 292 293 294 295
	}

	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	start = ((unsigned long) buf) >> PAGE_SHIFT;
	nr_pages = end - start;

	/* Allocate bio integrity payload and integrity vectors */
	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
	if (unlikely(bip == NULL)) {
		printk(KERN_ERR "could not allocate data integrity bioset\n");
		kfree(buf);
		return -EIO;
	}

296
	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
297
	bip->bip_iter.bi_size = len;
298
	bip_set_seed(bip, bio->bi_iter.bi_sector);
299

300 301 302
	if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM)
		bip->bip_flags |= BIP_IP_CHECKSUM;

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	/* Map it */
	offset = offset_in_page(buf);
	for (i = 0 ; i < nr_pages ; i++) {
		int ret;
		bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

		ret = bio_integrity_add_page(bio, virt_to_page(buf),
					     bytes, offset);

		if (ret == 0)
			return 0;

		if (ret < bytes)
			break;

		buf += bytes;
		len -= bytes;
		offset = 0;
	}

	/* Install custom I/O completion handler if read verify is enabled */
	if (bio_data_dir(bio) == READ) {
		bip->bip_end_io = bio->bi_end_io;
		bio->bi_end_io = bio_integrity_endio;
	}

	/* Auto-generate integrity metadata if this is a write */
	if (bio_data_dir(bio) == WRITE)
337
		bio_integrity_process(bio, bi->generate_fn);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

	return 0;
}
EXPORT_SYMBOL(bio_integrity_prep);

/**
 * bio_integrity_verify_fn - Integrity I/O completion worker
 * @work:	Work struct stored in bio to be verified
 *
 * Description: This workqueue function is called to complete a READ
 * request.  The function verifies the transferred integrity metadata
 * and then calls the original bio end_io function.
 */
static void bio_integrity_verify_fn(struct work_struct *work)
{
353
	struct bio_integrity_payload *bip =
354 355
		container_of(work, struct bio_integrity_payload, bip_work);
	struct bio *bio = bip->bip_bio;
356
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
357
	int error;
358

359
	error = bio_integrity_process(bio, bi->verify_fn);
360 361 362

	/* Restore original bio completion handler */
	bio->bi_end_io = bip->bip_end_io;
K
Kent Overstreet 已提交
363
	bio_endio_nodec(bio, error);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
}

/**
 * bio_integrity_endio - Integrity I/O completion function
 * @bio:	Protected bio
 * @error:	Pointer to errno
 *
 * Description: Completion for integrity I/O
 *
 * Normally I/O completion is done in interrupt context.  However,
 * verifying I/O integrity is a time-consuming task which must be run
 * in process context.	This function postpones completion
 * accordingly.
 */
void bio_integrity_endio(struct bio *bio, int error)
{
380
	struct bio_integrity_payload *bip = bio_integrity(bio);
381 382 383

	BUG_ON(bip->bip_bio != bio);

384 385 386 387 388 389
	/* In case of an I/O error there is no point in verifying the
	 * integrity metadata.  Restore original bio end_io handler
	 * and run it.
	 */
	if (error) {
		bio->bi_end_io = bip->bip_end_io;
390
		bio_endio_nodec(bio, error);
391 392 393 394

		return;
	}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
	queue_work(kintegrityd_wq, &bip->bip_work);
}
EXPORT_SYMBOL(bio_integrity_endio);

/**
 * bio_integrity_advance - Advance integrity vector
 * @bio:	bio whose integrity vector to update
 * @bytes_done:	number of data bytes that have been completed
 *
 * Description: This function calculates how many integrity bytes the
 * number of completed data bytes correspond to and advances the
 * integrity vector accordingly.
 */
void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
{
411
	struct bio_integrity_payload *bip = bio_integrity(bio);
412
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
413
	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
414

415
	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
416 417 418 419 420 421 422 423 424 425 426 427 428 429
}
EXPORT_SYMBOL(bio_integrity_advance);

/**
 * bio_integrity_trim - Trim integrity vector
 * @bio:	bio whose integrity vector to update
 * @offset:	offset to first data sector
 * @sectors:	number of data sectors
 *
 * Description: Used to trim the integrity vector in a cloned bio.
 * The ivec will be advanced corresponding to 'offset' data sectors
 * and the length will be truncated corresponding to 'len' data
 * sectors.
 */
430 431
void bio_integrity_trim(struct bio *bio, unsigned int offset,
			unsigned int sectors)
432
{
433
	struct bio_integrity_payload *bip = bio_integrity(bio);
434 435
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

436 437
	bio_integrity_advance(bio, offset << 9);
	bip->bip_iter.bi_size = bio_integrity_bytes(bi, sectors);
438 439 440 441 442 443 444
}
EXPORT_SYMBOL(bio_integrity_trim);

/**
 * bio_integrity_clone - Callback for cloning bios with integrity metadata
 * @bio:	New bio
 * @bio_src:	Original bio
445
 * @gfp_mask:	Memory allocation mask
446 447 448
 *
 * Description:	Called to allocate a bip when cloning a bio
 */
449
int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
450
			gfp_t gfp_mask)
451
{
452
	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
453 454 455 456
	struct bio_integrity_payload *bip;

	BUG_ON(bip_src == NULL);

457
	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
458 459 460 461 462 463 464 465

	if (bip == NULL)
		return -EIO;

	memcpy(bip->bip_vec, bip_src->bip_vec,
	       bip_src->bip_vcnt * sizeof(struct bio_vec));

	bip->bip_vcnt = bip_src->bip_vcnt;
466
	bip->bip_iter = bip_src->bip_iter;
467 468 469 470 471

	return 0;
}
EXPORT_SYMBOL(bio_integrity_clone);

472
int bioset_integrity_create(struct bio_set *bs, int pool_size)
473
{
474 475 476
	if (bs->bio_integrity_pool)
		return 0;

477
	bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab);
478
	if (!bs->bio_integrity_pool)
479
		return -1;
480

481
	bs->bvec_integrity_pool = biovec_create_pool(pool_size);
482 483
	if (!bs->bvec_integrity_pool) {
		mempool_destroy(bs->bio_integrity_pool);
484
		return -1;
485
	}
486 487 488 489 490 491 492 493 494

	return 0;
}
EXPORT_SYMBOL(bioset_integrity_create);

void bioset_integrity_free(struct bio_set *bs)
{
	if (bs->bio_integrity_pool)
		mempool_destroy(bs->bio_integrity_pool);
495 496

	if (bs->bvec_integrity_pool)
497
		mempool_destroy(bs->bvec_integrity_pool);
498 499 500 501 502
}
EXPORT_SYMBOL(bioset_integrity_free);

void __init bio_integrity_init(void)
{
503 504 505 506 507 508
	/*
	 * kintegrityd won't block much but may burn a lot of CPU cycles.
	 * Make it highpri CPU intensive wq with max concurrency of 1.
	 */
	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
509 510
	if (!kintegrityd_wq)
		panic("Failed to create kintegrityd\n");
511

512 513 514 515
	bip_slab = kmem_cache_create("bio_integrity_payload",
				     sizeof(struct bio_integrity_payload) +
				     sizeof(struct bio_vec) * BIP_INLINE_VECS,
				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
516
}