bio-integrity.c 14.9 KB
Newer Older
1 2 3
/*
 * bio-integrity.c - bio data integrity extensions
 *
4
 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version
 * 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
 * USA.
 *
 */

#include <linux/blkdev.h>
#include <linux/mempool.h>
25
#include <linux/export.h>
26 27
#include <linux/bio.h>
#include <linux/workqueue.h>
28
#include <linux/slab.h>
29

30
#define BIP_INLINE_VECS	4
31

32
static struct kmem_cache *bip_slab;
33 34 35
static struct workqueue_struct *kintegrityd_wq;

/**
36
 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
37 38 39 40 41 42 43 44
 * @bio:	bio to attach integrity metadata to
 * @gfp_mask:	Memory allocation mask
 * @nr_vecs:	Number of integrity metadata scatter-gather elements
 *
 * Description: This function prepares a bio for attaching integrity
 * metadata.  nr_vecs specifies the maximum number of pages containing
 * integrity metadata that can be attached.
 */
45 46 47
struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
						  gfp_t gfp_mask,
						  unsigned int nr_vecs)
48 49
{
	struct bio_integrity_payload *bip;
50
	struct bio_set *bs = bio->bi_pool;
51 52 53 54 55 56 57 58
	unsigned long idx = BIO_POOL_NONE;
	unsigned inline_vecs;

	if (!bs) {
		bip = kmalloc(sizeof(struct bio_integrity_payload) +
			      sizeof(struct bio_vec) * nr_vecs, gfp_mask);
		inline_vecs = nr_vecs;
	} else {
59
		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
60
		inline_vecs = BIP_INLINE_VECS;
61 62
	}

63 64 65
	if (unlikely(!bip))
		return NULL;

66 67
	memset(bip, 0, sizeof(*bip));

68 69 70 71 72
	if (nr_vecs > inline_vecs) {
		bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx,
					  bs->bvec_integrity_pool);
		if (!bip->bip_vec)
			goto err;
73
		bip->bip_max_vcnt = bvec_nr_vecs(idx);
74 75
	} else {
		bip->bip_vec = bip->bip_inline_vecs;
76
		bip->bip_max_vcnt = inline_vecs;
77 78
	}

79
	bip->bip_slab = idx;
80 81
	bip->bip_bio = bio;
	bio->bi_integrity = bip;
82
	bio->bi_rw |= REQ_INTEGRITY;
83 84

	return bip;
85 86 87
err:
	mempool_free(bip, bs->bio_integrity_pool);
	return NULL;
88 89 90 91 92 93 94 95 96 97
}
EXPORT_SYMBOL(bio_integrity_alloc);

/**
 * bio_integrity_free - Free bio integrity payload
 * @bio:	bio containing bip to be freed
 *
 * Description: Used to free the integrity portion of a bio. Usually
 * called from bio_free().
 */
98
void bio_integrity_free(struct bio *bio)
99
{
100
	struct bio_integrity_payload *bip = bio_integrity(bio);
101 102
	struct bio_set *bs = bio->bi_pool;

103
	if (bip->bip_owns_buf)
M
Martin K. Petersen 已提交
104 105
		kfree(page_address(bip->bip_vec->bv_page) +
		      bip->bip_vec->bv_offset);
106

107 108 109 110 111
	if (bs) {
		if (bip->bip_slab != BIO_POOL_NONE)
			bvec_free(bs->bvec_integrity_pool, bip->bip_vec,
				  bip->bip_slab);

112
		mempool_free(bip, bs->bio_integrity_pool);
113 114 115
	} else {
		kfree(bip);
	}
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

	bio->bi_integrity = NULL;
}
EXPORT_SYMBOL(bio_integrity_free);

/**
 * bio_integrity_add_page - Attach integrity metadata
 * @bio:	bio to update
 * @page:	page containing integrity metadata
 * @len:	number of bytes of integrity metadata in page
 * @offset:	start offset within page
 *
 * Description: Attach a page containing integrity metadata to bio.
 */
int bio_integrity_add_page(struct bio *bio, struct page *page,
			   unsigned int len, unsigned int offset)
{
133
	struct bio_integrity_payload *bip = bio_integrity(bio);
134 135
	struct bio_vec *iv;

136
	if (bip->bip_vcnt >= bip->bip_max_vcnt) {
137 138 139 140
		printk(KERN_ERR "%s: bip_vec full\n", __func__);
		return 0;
	}

141
	iv = bip->bip_vec + bip->bip_vcnt;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	iv->bv_page = page;
	iv->bv_len = len;
	iv->bv_offset = offset;
	bip->bip_vcnt++;

	return len;
}
EXPORT_SYMBOL(bio_integrity_add_page);

/**
 * bio_integrity_enabled - Check whether integrity can be passed
 * @bio:	bio to check
 *
 * Description: Determines whether bio_integrity_prep() can be called
 * on this bio or not.	bio data direction and target device must be
 * set prior to calling.  The functions honors the write_generate and
 * read_verify flags in sysfs.
 */
161
bool bio_integrity_enabled(struct bio *bio)
162
{
163 164
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

165
	if (!bio_is_rw(bio))
166
		return false;
167

168 169
	/* Already protected? */
	if (bio_integrity(bio))
170 171 172 173 174 175 176 177 178 179 180 181
		return false;

	if (bi == NULL)
		return false;

	if (bio_data_dir(bio) == READ && bi->verify_fn != NULL &&
	    (bi->flags & INTEGRITY_FLAG_READ))
		return true;

	if (bio_data_dir(bio) == WRITE && bi->generate_fn != NULL &&
	    (bi->flags & INTEGRITY_FLAG_WRITE))
		return true;
182

183
	return false;
184 185 186 187
}
EXPORT_SYMBOL(bio_integrity_enabled);

/**
188
 * bio_integrity_intervals - Return number of integrity intervals for a bio
189
 * @bi:		blk_integrity profile for device
190
 * @sectors:	Size of the bio in 512-byte sectors
191 192
 *
 * Description: The block layer calculates everything in 512 byte
193 194 195
 * sectors but integrity metadata is done in terms of the data integrity
 * interval size of the storage device.  Convert the block layer sectors
 * to the appropriate number of integrity intervals.
196
 */
197 198
static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
						   unsigned int sectors)
199 200
{
	/* At this point there are only 512b or 4096b DIF/EPP devices */
201
	if (bi->interval == 4096)
202 203 204 205 206
		return sectors >>= 3;

	return sectors;
}

207 208 209
static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
					       unsigned int sectors)
{
210
	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
211 212
}

213
/**
214 215 216
 * bio_integrity_generate_verify - Generate/verify integrity metadata for a bio
 * @bio:	bio to generate/verify integrity metadata for
 * @operate:	operate number, 1 for generate, 0 for verify
217
 */
218
static int bio_integrity_generate_verify(struct bio *bio, int operate)
219 220 221
{
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
	struct blk_integrity_exchg bix;
222
	struct bio_vec *bv;
M
Martin K. Petersen 已提交
223
	struct bio_integrity_payload *bip = bio_integrity(bio);
224 225
	sector_t seed;
	unsigned int intervals, ret = 0, i;
M
Martin K. Petersen 已提交
226 227
	void *prot_buf = page_address(bip->bip_vec->bv_page) +
		bip->bip_vec->bv_offset;
228

229
	if (operate)
230
		seed = bio->bi_iter.bi_sector;
231
	else
232
		seed = bip->bip_iter.bi_sector;
233

234
	bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
235
	bix.interval = bi->interval;
236

237 238 239 240
	bio_for_each_segment_all(bv, bio, i) {
		void *kaddr = kmap_atomic(bv->bv_page);
		bix.data_buf = kaddr + bv->bv_offset;
		bix.data_size = bv->bv_len;
241
		bix.prot_buf = prot_buf;
242
		bix.seed = seed;
243

244
		if (operate)
245
			bi->generate_fn(&bix);
246
		else {
247 248 249 250 251 252
			ret = bi->verify_fn(&bix);
			if (ret) {
				kunmap_atomic(kaddr);
				return ret;
			}
		}
253

254 255 256
		intervals = bv->bv_len / bi->interval;
		seed += intervals;
		prot_buf += intervals * bi->tuple_size;
257

258
		kunmap_atomic(kaddr);
259
	}
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	return ret;
}

/**
 * bio_integrity_generate - Generate integrity metadata for a bio
 * @bio:	bio to generate integrity metadata for
 *
 * Description: Generates integrity metadata for a bio by calling the
 * block device's generation callback function.  The bio must have a
 * bip attached with enough room to accommodate the generated
 * integrity metadata.
 */
static void bio_integrity_generate(struct bio *bio)
{
	bio_integrity_generate_verify(bio, 1);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
}

/**
 * bio_integrity_prep - Prepare bio for integrity I/O
 * @bio:	bio to prepare
 *
 * Description: Allocates a buffer for integrity metadata, maps the
 * pages and attaches them to a bio.  The bio must have data
 * direction, target device and start sector set priot to calling.  In
 * the WRITE case, integrity metadata will be generated using the
 * block device's integrity function.  In the READ case, the buffer
 * will be prepared for DMA and a suitable end_io handler set up.
 */
int bio_integrity_prep(struct bio *bio)
{
	struct bio_integrity_payload *bip;
	struct blk_integrity *bi;
	struct request_queue *q;
	void *buf;
	unsigned long start, end;
	unsigned int len, nr_pages;
	unsigned int bytes, offset, i;
297
	unsigned int intervals;
298 299 300 301 302 303

	bi = bdev_get_integrity(bio->bi_bdev);
	q = bdev_get_queue(bio->bi_bdev);
	BUG_ON(bi == NULL);
	BUG_ON(bio_integrity(bio));

304
	intervals = bio_integrity_intervals(bi, bio_sectors(bio));
305 306

	/* Allocate kernel buffer for protection data */
307
	len = intervals * bi->tuple_size;
308
	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
309 310
	if (unlikely(buf == NULL)) {
		printk(KERN_ERR "could not allocate integrity buffer\n");
311
		return -ENOMEM;
312 313 314 315 316 317 318 319 320 321 322 323 324 325
	}

	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	start = ((unsigned long) buf) >> PAGE_SHIFT;
	nr_pages = end - start;

	/* Allocate bio integrity payload and integrity vectors */
	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
	if (unlikely(bip == NULL)) {
		printk(KERN_ERR "could not allocate data integrity bioset\n");
		kfree(buf);
		return -EIO;
	}

326
	bip->bip_owns_buf = 1;
327 328
	bip->bip_iter.bi_size = len;
	bip->bip_iter.bi_sector = bio->bi_iter.bi_sector;
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	/* Map it */
	offset = offset_in_page(buf);
	for (i = 0 ; i < nr_pages ; i++) {
		int ret;
		bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

		ret = bio_integrity_add_page(bio, virt_to_page(buf),
					     bytes, offset);

		if (ret == 0)
			return 0;

		if (ret < bytes)
			break;

		buf += bytes;
		len -= bytes;
		offset = 0;
	}

	/* Install custom I/O completion handler if read verify is enabled */
	if (bio_data_dir(bio) == READ) {
		bip->bip_end_io = bio->bi_end_io;
		bio->bi_end_io = bio_integrity_endio;
	}

	/* Auto-generate integrity metadata if this is a write */
	if (bio_data_dir(bio) == WRITE)
		bio_integrity_generate(bio);

	return 0;
}
EXPORT_SYMBOL(bio_integrity_prep);

/**
 * bio_integrity_verify - Verify integrity metadata for a bio
 * @bio:	bio to verify
 *
 * Description: This function is called to verify the integrity of a
 * bio.	 The data in the bio io_vec is compared to the integrity
 * metadata returned by the HBA.
 */
static int bio_integrity_verify(struct bio *bio)
{
380
	return bio_integrity_generate_verify(bio, 0);
381 382 383 384 385 386 387 388 389 390 391 392
}

/**
 * bio_integrity_verify_fn - Integrity I/O completion worker
 * @work:	Work struct stored in bio to be verified
 *
 * Description: This workqueue function is called to complete a READ
 * request.  The function verifies the transferred integrity metadata
 * and then calls the original bio end_io function.
 */
static void bio_integrity_verify_fn(struct work_struct *work)
{
393
	struct bio_integrity_payload *bip =
394 395
		container_of(work, struct bio_integrity_payload, bip_work);
	struct bio *bio = bip->bip_bio;
396
	int error;
397

398
	error = bio_integrity_verify(bio);
399 400 401

	/* Restore original bio completion handler */
	bio->bi_end_io = bip->bip_end_io;
K
Kent Overstreet 已提交
402
	bio_endio_nodec(bio, error);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

/**
 * bio_integrity_endio - Integrity I/O completion function
 * @bio:	Protected bio
 * @error:	Pointer to errno
 *
 * Description: Completion for integrity I/O
 *
 * Normally I/O completion is done in interrupt context.  However,
 * verifying I/O integrity is a time-consuming task which must be run
 * in process context.	This function postpones completion
 * accordingly.
 */
void bio_integrity_endio(struct bio *bio, int error)
{
419
	struct bio_integrity_payload *bip = bio_integrity(bio);
420 421 422

	BUG_ON(bip->bip_bio != bio);

423 424 425 426 427 428
	/* In case of an I/O error there is no point in verifying the
	 * integrity metadata.  Restore original bio end_io handler
	 * and run it.
	 */
	if (error) {
		bio->bi_end_io = bip->bip_end_io;
429
		bio_endio_nodec(bio, error);
430 431 432 433

		return;
	}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
	queue_work(kintegrityd_wq, &bip->bip_work);
}
EXPORT_SYMBOL(bio_integrity_endio);

/**
 * bio_integrity_advance - Advance integrity vector
 * @bio:	bio whose integrity vector to update
 * @bytes_done:	number of data bytes that have been completed
 *
 * Description: This function calculates how many integrity bytes the
 * number of completed data bytes correspond to and advances the
 * integrity vector accordingly.
 */
void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
{
450
	struct bio_integrity_payload *bip = bio_integrity(bio);
451
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
452
	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
453

454
	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
455 456 457 458 459 460 461 462 463 464 465 466 467 468
}
EXPORT_SYMBOL(bio_integrity_advance);

/**
 * bio_integrity_trim - Trim integrity vector
 * @bio:	bio whose integrity vector to update
 * @offset:	offset to first data sector
 * @sectors:	number of data sectors
 *
 * Description: Used to trim the integrity vector in a cloned bio.
 * The ivec will be advanced corresponding to 'offset' data sectors
 * and the length will be truncated corresponding to 'len' data
 * sectors.
 */
469 470
void bio_integrity_trim(struct bio *bio, unsigned int offset,
			unsigned int sectors)
471
{
472
	struct bio_integrity_payload *bip = bio_integrity(bio);
473 474
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

475 476
	bio_integrity_advance(bio, offset << 9);
	bip->bip_iter.bi_size = bio_integrity_bytes(bi, sectors);
477 478 479 480 481 482 483
}
EXPORT_SYMBOL(bio_integrity_trim);

/**
 * bio_integrity_clone - Callback for cloning bios with integrity metadata
 * @bio:	New bio
 * @bio_src:	Original bio
484
 * @gfp_mask:	Memory allocation mask
485 486 487
 *
 * Description:	Called to allocate a bip when cloning a bio
 */
488
int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
489
			gfp_t gfp_mask)
490
{
491
	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
492 493 494 495
	struct bio_integrity_payload *bip;

	BUG_ON(bip_src == NULL);

496
	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
497 498 499 500 501 502 503 504

	if (bip == NULL)
		return -EIO;

	memcpy(bip->bip_vec, bip_src->bip_vec,
	       bip_src->bip_vcnt * sizeof(struct bio_vec));

	bip->bip_vcnt = bip_src->bip_vcnt;
505
	bip->bip_iter = bip_src->bip_iter;
506 507 508 509 510

	return 0;
}
EXPORT_SYMBOL(bio_integrity_clone);

511
int bioset_integrity_create(struct bio_set *bs, int pool_size)
512
{
513 514 515
	if (bs->bio_integrity_pool)
		return 0;

516
	bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab);
517
	if (!bs->bio_integrity_pool)
518
		return -1;
519

520
	bs->bvec_integrity_pool = biovec_create_pool(pool_size);
521 522
	if (!bs->bvec_integrity_pool) {
		mempool_destroy(bs->bio_integrity_pool);
523
		return -1;
524
	}
525 526 527 528 529 530 531 532 533

	return 0;
}
EXPORT_SYMBOL(bioset_integrity_create);

void bioset_integrity_free(struct bio_set *bs)
{
	if (bs->bio_integrity_pool)
		mempool_destroy(bs->bio_integrity_pool);
534 535

	if (bs->bvec_integrity_pool)
536
		mempool_destroy(bs->bvec_integrity_pool);
537 538 539 540 541
}
EXPORT_SYMBOL(bioset_integrity_free);

void __init bio_integrity_init(void)
{
542 543 544 545 546 547
	/*
	 * kintegrityd won't block much but may burn a lot of CPU cycles.
	 * Make it highpri CPU intensive wq with max concurrency of 1.
	 */
	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
548 549
	if (!kintegrityd_wq)
		panic("Failed to create kintegrityd\n");
550

551 552 553 554 555 556
	bip_slab = kmem_cache_create("bio_integrity_payload",
				     sizeof(struct bio_integrity_payload) +
				     sizeof(struct bio_vec) * BIP_INLINE_VECS,
				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
	if (!bip_slab)
		panic("Failed to create slab\n");
557
}