f_fs.c 87.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
 * f_fs.c -- user mode file system API for USB composite function controllers
4 5
 *
 * Copyright (C) 2010 Samsung Electronics
6
 * Author: Michal Nazarewicz <mina86@mina86.com>
7
 *
8
 * Based on inode.c (GadgetFS) which was:
9 10 11 12 13 14 15 16 17
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
18
#include <linux/pagemap.h>
19
#include <linux/export.h>
20
#include <linux/hid.h>
21
#include <linux/module.h>
22
#include <linux/sched/signal.h>
23
#include <linux/uio.h>
24 25 26 27 28
#include <asm/unaligned.h>

#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

29 30
#include <linux/aio.h>
#include <linux/mmu_context.h>
31
#include <linux/poll.h>
32
#include <linux/eventfd.h>
33

34
#include "u_fs.h"
35
#include "u_f.h"
36
#include "u_os_desc.h"
37
#include "configfs.h"
38 39 40 41 42 43 44

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
45 46
static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
	__attribute__((malloc));
47 48 49 50 51

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

52
/* Called with ffs->mutex held; take over ownership of data. */
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


82 83 84 85 86 87 88 89
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


90 91 92 93 94 95 96 97 98
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
99
static bool ffs_func_req_match(struct usb_function *,
100 101
			       const struct usb_ctrlrequest *,
			       bool config0);
102 103 104 105 106 107 108 109 110 111 112 113 114 115
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

116 117
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

133 134 135
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
187
	 */
188 189
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190

191 192 193 194 195 196 197 198
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

199 200 201 202 203 204
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

205 206 207 208 209 210 211
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
212 213 214
	struct iov_iter data;
	const void *to_free;
	char *buf;
215 216 217 218 219 220

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
221 222

	struct ffs_data *ffs;
223 224
};

225 226 227 228 229 230
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

231 232 233
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
234
static struct dentry *
235
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
236
		   const struct file_operations *fops);
237

238 239 240
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
241
EXPORT_SYMBOL_GPL(ffs_lock);
242

243 244 245
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
static void _ffs_free_dev(struct ffs_dev *dev);
246 247 248 249
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
250 251 252 253 254

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
255
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
256 257 258 259 260 261 262 263 264
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

265
	complete(&ffs->ep0req_completion);
266 267 268
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
269
	__releases(&ffs->ev.waitq.lock)
270 271 272 273 274 275 276 277 278 279 280
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

281 282 283 284 285 286 287 288
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

289
	reinit_completion(&ffs->ep0req_completion);
290 291 292 293 294 295 296 297 298 299 300 301

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
302
	return req->status ? req->status : req->actual;
303 304 305 306 307
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
308
		pr_vdebug("ep0 stall\n");
309 310 311 312
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
313
		pr_debug("bogus ep0 stall!\n");
314 315 316 317 318 319 320 321 322 323 324 325 326 327
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
328
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
347
		if (IS_ERR(data)) {
348 349 350 351 352 353
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
354
			pr_info("read descriptors\n");
355 356 357 358 359 360 361
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
362
			pr_info("read strings\n");
363 364 365 366 367 368 369 370 371 372 373 374 375
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

376
			ret = ffs_ready(ffs);
377 378 379 380 381 382 383 384 385 386 387
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
388 389 390 391
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
392
		spin_lock_irq(&ffs->ev.waitq.lock);
393
		switch (ffs_setup_state_clear_cancelled(ffs)) {
394
		case FFS_SETUP_CANCELLED:
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
419
		if (IS_ERR(data)) {
420 421 422 423 424 425
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

426 427
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
428
		 * but the state of setup could have changed from
429
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
430
		 * to check for that.  If that happened we copied data
431 432 433
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
434 435
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
436 437
		 * mutex.
		 */
438 439
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

459
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
460 461
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
462
	__releases(&ffs->ev.waitq.lock)
463
{
464
	/*
465 466 467
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
468
	 */
469 470
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
471 472
	unsigned i = 0;

473
	memset(events, 0, size);
474 475 476 477 478 479 480 481 482

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

483 484
	ffs->ev.count -= n;
	if (ffs->ev.count)
485 486 487 488 489 490
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

491
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
492 493 494 495 496 497 498 499 500 501 502 503 504
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
505
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
506 507 508 509 510 511 512 513 514 515 516 517 518
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

519 520 521 522
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
523 524
	spin_lock_irq(&ffs->ev.waitq.lock);

525
	switch (ffs_setup_state_clear_cancelled(ffs)) {
526
	case FFS_SETUP_CANCELLED:
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

542 543
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
544 545 546 547
			ret = -EINTR;
			break;
		}

548
		/* unlocks spinlock */
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
574 575
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
576 577 578 579 580 581
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
582
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
635
	} else if (gadget && gadget->ops->ioctl) {
636 637 638 639 640 641 642 643
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

644
static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
645 646
{
	struct ffs_data *ffs = file->private_data;
647
	__poll_t mask = EPOLLWRNORM;
648 649 650 651 652 653 654 655 656 657 658
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
659
		mask |= EPOLLOUT;
660 661 662 663 664 665
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
666
				mask |= EPOLLIN;
667 668 669 670
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
671
			mask |= (EPOLLIN | EPOLLOUT);
672 673 674 675
			break;
		}
	case FFS_CLOSING:
		break;
676 677
	case FFS_DEACTIVATED:
		break;
678 679 680 681 682 683 684
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

685 686 687 688 689 690 691 692
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
693
	.poll =		ffs_ep0_poll,
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
736 737 738 739 740
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
741 742 743 744 745 746 747 748 749 750 751
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

752 753 754 755 756 757
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
758
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
759 760

	if (io_data->read && ret > 0) {
761 762 763
		mm_segment_t oldfs = get_fs();

		set_fs(USER_DS);
764
		use_mm(io_data->mm);
765
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
766
		unuse_mm(io_data->mm);
767
		set_fs(oldfs);
768 769
	}

770
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
771

772
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
773 774
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

775 776 777
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
778
		kfree(io_data->to_free);
779 780 781 782 783 784 785 786
	kfree(io_data->buf);
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;
787
	struct ffs_data *ffs = io_data->ffs;
788 789 790 791

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
792
	queue_work(ffs->io_completion_wq, &io_data->work);
793 794
}

795 796 797 798 799 800 801 802 803 804 805
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

806 807 808 809
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
810 811 812 813 814 815
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
816
	ssize_t ret;
817
	if (!buf || buf == READ_BUFFER_DROP)
818 819 820 821 822
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
823 824 825 826
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
827 828 829 830 831
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
832 833 834 835

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
859 860
	if (!buf)
		return -ENOMEM;
861 862 863
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
864 865 866 867 868 869 870 871 872

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
873 874 875 876

	return ret;
}

877
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
878 879
{
	struct ffs_epfile *epfile = file->private_data;
880
	struct usb_request *req;
881 882
	struct ffs_ep *ep;
	char *data = NULL;
883
	ssize_t ret, data_len = -EINVAL;
884 885
	int halt;

886
	/* Are we still active? */
887 888
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
889

890 891 892
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
893 894
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
895

896 897
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
898 899
		if (ret)
			return -EINTR;
900
	}
901

902
	/* Do we halt? */
903
	halt = (!io_data->read == !epfile->in);
904 905
	if (halt && epfile->isoc)
		return -EINVAL;
906

907 908 909 910 911
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

912 913
	/* Allocate & copy */
	if (!halt) {
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

929 930
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
931 932
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
933
		 */
934
		gadget = epfile->ffs->gadget;
935

936 937 938
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
939 940
			ret = -ESHUTDOWN;
			goto error_lock;
941
		}
942
		data_len = iov_iter_count(&io_data->data);
943 944 945 946
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
947 948
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
949
		spin_unlock_irq(&epfile->ffs->eps_lock);
950 951

		data = kmalloc(data_len, GFP_KERNEL);
952 953 954 955 956
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
957
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
958 959
			ret = -EFAULT;
			goto error_mutex;
960 961
		}
	}
962

963
	spin_lock_irq(&epfile->ffs->eps_lock);
964

965 966 967 968
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
969 970 971
		ret = usb_ep_set_halt(ep->ep);
		if (!ret)
			ret = -EBADMSG;
972
	} else if (unlikely(data_len == -EINVAL)) {
973 974 975 976 977 978 979 980 981 982 983
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
984 985 986 987
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
988
		bool interrupted = false;
989

990 991 992
		req = ep->req;
		req->buf      = data;
		req->length   = data_len;
993

994 995
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
996

997 998 999
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
1000

1001
		spin_unlock_irq(&epfile->ffs->eps_lock);
1002

1003
		if (unlikely(wait_for_completion_interruptible(&done))) {
1004 1005 1006 1007 1008 1009
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1010
			usb_ep_dequeue(ep->ep, req);
1011
			interrupted = ep->status < 0;
1012
		}
1013

1014 1015 1016
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1017 1018
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1019 1020
		else
			ret = ep->status;
1021
		goto error_mutex;
1022
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1023 1024 1025 1026
		ret = -ENOMEM;
	} else {
		req->buf      = data;
		req->length   = data_len;
1027

1028 1029 1030 1031
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1032

1033 1034
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1035

1036 1037 1038 1039
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1040 1041
		}

1042 1043 1044 1045 1046 1047 1048
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1049 1050 1051

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1052
error_mutex:
1053
	mutex_unlock(&epfile->mutex);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
error:
	kfree(data);
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
	int value;

	ENTER();

	spin_lock_irq(&epfile->ffs->eps_lock);

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
		value = -EINVAL;

	spin_unlock_irq(&epfile->ffs->eps_lock);

	return value;
}

1095
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1096
{
1097
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1098
	ssize_t res;
1099 1100 1101

	ENTER();

1102 1103 1104 1105 1106 1107 1108 1109
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
	}
1110

1111 1112 1113 1114
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1115

1116
	kiocb->private = p;
1117

1118 1119
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1120

1121 1122 1123 1124 1125 1126 1127
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1128
	return res;
1129 1130
}

1131
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1132
{
1133
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1134
	ssize_t res;
1135 1136 1137

	ENTER();

1138 1139 1140 1141 1142 1143 1144
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
1145 1146
	}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1160

1161
	kiocb->private = p;
1162

1163 1164
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1175 1176
	}
	return res;
1177 1178
}

1179 1180 1181 1182 1183 1184 1185
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1186
	__ffs_epfile_read_buffer_free(epfile);
1187 1188 1189 1190 1191 1192 1193 1194 1195
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
1196
	struct ffs_ep *ep;
1197 1198 1199 1200 1201 1202 1203
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

1204 1205 1206 1207 1208 1209
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

1210 1211
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
1212 1213 1214 1215
		if (ret)
			return -EINTR;
	}

1216
	spin_lock_irq(&epfile->ffs->eps_lock);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

	/* In the meantime, endpoint got disabled or changed. */
	if (epfile->ep != ep) {
		spin_unlock_irq(&epfile->ffs->eps_lock);
		return -ESHUTDOWN;
	}

	switch (code) {
	case FUNCTIONFS_FIFO_STATUS:
		ret = usb_ep_fifo_status(epfile->ep->ep);
		break;
	case FUNCTIONFS_FIFO_FLUSH:
		usb_ep_fifo_flush(epfile->ep->ep);
		ret = 0;
		break;
	case FUNCTIONFS_CLEAR_HALT:
		ret = usb_ep_clear_halt(epfile->ep->ep);
		break;
	case FUNCTIONFS_ENDPOINT_REVMAP:
		ret = epfile->ep->num;
		break;
	case FUNCTIONFS_ENDPOINT_DESC:
	{
		int desc_idx;
		struct usb_endpoint_descriptor *desc;

		switch (epfile->ffs->gadget->speed) {
		case USB_SPEED_SUPER:
			desc_idx = 2;
1246
			break;
1247 1248
		case USB_SPEED_HIGH:
			desc_idx = 1;
1249 1250
			break;
		default:
1251
			desc_idx = 0;
1252
		}
1253 1254 1255
		desc = epfile->ep->descs[desc_idx];

		spin_unlock_irq(&epfile->ffs->eps_lock);
1256
		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1257 1258 1259 1260 1261 1262
		if (ret)
			ret = -EFAULT;
		return ret;
	}
	default:
		ret = -ENOTTY;
1263 1264 1265 1266 1267 1268
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

1269 1270 1271 1272 1273 1274 1275 1276
#ifdef CONFIG_COMPAT
static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
		unsigned long value)
{
	return ffs_epfile_ioctl(file, code, value);
}
#endif

1277 1278 1279 1280
static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1281 1282
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1283 1284
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
1285 1286 1287
#ifdef CONFIG_COMPAT
	.compat_ioctl = ffs_epfile_compat_ioctl,
#endif
1288 1289 1290 1291 1292 1293
};


/* File system and super block operations ***********************************/

/*
1294
 * Mounting the file system creates a controller file, used first for
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1311
		struct timespec64 ts = current_time(inode);
1312

1313
		inode->i_ino	 = get_next_ino();
1314 1315 1316
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1317 1318 1319
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1331
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1332
					const char *name, void *data,
A
Al Viro 已提交
1333
					const struct file_operations *fops)
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1352
	return dentry;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1365
	bool no_disconnect;
A
Al Viro 已提交
1366
	struct ffs_data *ffs_data;
1367 1368 1369 1370 1371 1372
};

static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
{
	struct ffs_sb_fill_data *data = _data;
	struct inode	*inode;
A
Al Viro 已提交
1373
	struct ffs_data	*ffs = data->ffs_data;
1374 1375 1376 1377

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1378
	data->ffs_data       = NULL;
1379
	sb->s_fs_info        = ffs;
1380 1381
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1392 1393
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1394
		return -ENOMEM;
1395 1396 1397

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1398
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1399
		return -ENOMEM;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	return 0;
}

static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
{
	ENTER();

	if (!opts || !*opts)
		return 0;

	for (;;) {
		unsigned long value;
1413
		char *eq, *comma;
1414 1415 1416 1417 1418 1419 1420 1421 1422

		/* Option limit */
		comma = strchr(opts, ',');
		if (comma)
			*comma = 0;

		/* Value limit */
		eq = strchr(opts, '=');
		if (unlikely(!eq)) {
1423
			pr_err("'=' missing in %s\n", opts);
1424 1425 1426 1427 1428
			return -EINVAL;
		}
		*eq = 0;

		/* Parse value */
1429
		if (kstrtoul(eq + 1, 0, &value)) {
1430
			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1431 1432 1433 1434 1435
			return -EINVAL;
		}

		/* Interpret option */
		switch (eq - opts) {
1436 1437 1438 1439 1440 1441
		case 13:
			if (!memcmp(opts, "no_disconnect", 13))
				data->no_disconnect = !!value;
			else
				goto invalid;
			break;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		case 5:
			if (!memcmp(opts, "rmode", 5))
				data->root_mode  = (value & 0555) | S_IFDIR;
			else if (!memcmp(opts, "fmode", 5))
				data->perms.mode = (value & 0666) | S_IFREG;
			else
				goto invalid;
			break;

		case 4:
			if (!memcmp(opts, "mode", 4)) {
				data->root_mode  = (value & 0555) | S_IFDIR;
				data->perms.mode = (value & 0666) | S_IFREG;
			} else {
				goto invalid;
			}
			break;

		case 3:
1461 1462 1463 1464 1465 1466
			if (!memcmp(opts, "uid", 3)) {
				data->perms.uid = make_kuid(current_user_ns(), value);
				if (!uid_valid(data->perms.uid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1467
			} else if (!memcmp(opts, "gid", 3)) {
1468 1469 1470 1471 1472
				data->perms.gid = make_kgid(current_user_ns(), value);
				if (!gid_valid(data->perms.gid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1473
			} else {
1474
				goto invalid;
1475
			}
1476 1477 1478 1479
			break;

		default:
invalid:
1480
			pr_err("%s: invalid option\n", opts);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
			return -EINVAL;
		}

		/* Next iteration */
		if (!comma)
			break;
		opts = comma + 1;
	}

	return 0;
}

/* "mount -t functionfs dev_name /dev/function" ends up here */

A
Al Viro 已提交
1495 1496 1497
static struct dentry *
ffs_fs_mount(struct file_system_type *t, int flags,
	      const char *dev_name, void *opts)
1498 1499 1500 1501
{
	struct ffs_sb_fill_data data = {
		.perms = {
			.mode = S_IFREG | 0600,
1502 1503
			.uid = GLOBAL_ROOT_UID,
			.gid = GLOBAL_ROOT_GID,
1504 1505
		},
		.root_mode = S_IFDIR | 0500,
1506
		.no_disconnect = false,
1507
	};
1508
	struct dentry *rv;
1509
	int ret;
1510
	void *ffs_dev;
A
Al Viro 已提交
1511
	struct ffs_data	*ffs;
1512 1513 1514 1515 1516

	ENTER();

	ret = ffs_fs_parse_opts(&data, opts);
	if (unlikely(ret < 0))
A
Al Viro 已提交
1517
		return ERR_PTR(ret);
1518

1519
	ffs = ffs_data_new(dev_name);
A
Al Viro 已提交
1520 1521 1522
	if (unlikely(!ffs))
		return ERR_PTR(-ENOMEM);
	ffs->file_perms = data.perms;
1523
	ffs->no_disconnect = data.no_disconnect;
A
Al Viro 已提交
1524 1525 1526 1527 1528 1529 1530

	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
		return ERR_PTR(-ENOMEM);
	}

1531
	ffs_dev = ffs_acquire_dev(dev_name);
A
Al Viro 已提交
1532 1533 1534 1535 1536 1537
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
		return ERR_CAST(ffs_dev);
	}
	ffs->private_data = ffs_dev;
	data.ffs_data = ffs;
1538 1539

	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
A
Al Viro 已提交
1540
	if (IS_ERR(rv) && data.ffs_data) {
1541
		ffs_release_dev(data.ffs_data);
A
Al Viro 已提交
1542 1543
		ffs_data_put(data.ffs_data);
	}
1544
	return rv;
1545 1546 1547 1548 1549 1550 1551 1552
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1553
	if (sb->s_fs_info) {
1554
		ffs_release_dev(sb->s_fs_info);
1555
		ffs_data_closed(sb->s_fs_info);
1556
	}
1557 1558 1559 1560 1561
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
A
Al Viro 已提交
1562
	.mount		= ffs_fs_mount,
1563 1564
	.kill_sb	= ffs_fs_kill_sb,
};
1565
MODULE_ALIAS_FS("functionfs");
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1578
		pr_info("file system registered\n");
1579
	else
1580
		pr_err("failed registering file system (%d)\n", ret);
1581 1582 1583 1584 1585 1586 1587 1588

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1589
	pr_info("unloading\n");
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

1603
	refcount_inc(&ffs->ref);
1604 1605 1606 1607 1608 1609
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

1610
	refcount_inc(&ffs->ref);
1611 1612 1613 1614 1615
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1616 1617 1618 1619 1620 1621
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

1622
	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1623
		pr_info("%s(): freeing\n", __func__);
1624
		ffs_data_clear(ffs);
1625
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1626 1627
		       waitqueue_active(&ffs->ep0req_completion.wait) ||
		       waitqueue_active(&ffs->wait));
1628
		destroy_workqueue(ffs->io_completion_wq);
1629
		kfree(ffs->dev_name);
1630 1631 1632 1633 1634 1635 1636 1637 1638
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1654 1655 1656 1657 1658 1659 1660
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

1661
static struct ffs_data *ffs_data_new(const char *dev_name)
1662 1663 1664
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1665
		return NULL;
1666 1667 1668

	ENTER();

1669 1670 1671 1672 1673 1674
	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
	if (!ffs->io_completion_wq) {
		kfree(ffs);
		return NULL;
	}

1675
	refcount_set(&ffs->ref, 1);
1676 1677 1678 1679 1680
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
1681
	init_waitqueue_head(&ffs->wait);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1694
	ffs_closed(ffs);
1695 1696 1697 1698 1699 1700

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1701 1702 1703
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1704
	kfree(ffs->raw_descs_data);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1716
	ffs->raw_descs_data = NULL;
1717 1718 1719 1720 1721 1722 1723
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1724
	ffs->ss_descs_count = 0;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1740 1741
	struct usb_gadget_strings **lang;
	int first_id;
1742 1743 1744 1745 1746 1747 1748

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1749 1750 1751
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1752 1753 1754 1755 1756 1757 1758

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1759
	lang = ffs->stringtabs;
1760 1761 1762 1763 1764 1765 1766
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1767 1768 1769
	}

	ffs->gadget = cdev->gadget;
1770
	ffs_data_get(ffs);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1782
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1783
		ffs_data_put(ffs);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1795
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1796 1797 1798 1799 1800 1801 1802
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
1803
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1804
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1805
		else
1806 1807
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1808 1809 1810
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
1827
		BUG_ON(mutex_is_locked(&epfile->mutex));
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1845
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1846
	while (count--) {
1847 1848 1849 1850
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1851 1852

		if (epfile) {
1853 1854
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1855 1856
			++epfile;
		}
1857
	}
1858
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1871
	while(count--) {
1872
		ep->ep->driver_data = ep;
1873

1874 1875 1876 1877 1878
		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
		if (ret) {
			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
					__func__, ep->ep->name, ret);
			break;
1879
		}
1880

1881
		ret = usb_ep_enable(ep->ep);
1882 1883
		if (likely(!ret)) {
			epfile->ep = ep;
1884 1885
			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1886 1887 1888 1889 1890 1891
		} else {
			break;
		}

		++ep;
		++epfile;
1892
	}
1893 1894

	wake_up_interruptible(&ffs->wait);
1895 1896 1897 1898 1899 1900 1901 1902
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1903 1904
/*
 * This validates if data pointed by data is a valid USB descriptor as
1905
 * well as record how many interfaces, endpoints and strings are
1906 1907 1908
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1909 1910 1911 1912 1913

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1914 1915 1916 1917
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

1918 1919 1920 1921 1922
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

1923 1924 1925 1926
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

1927 1928 1929
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
					   void *priv)
1930 1931 1932 1933 1934 1935 1936 1937 1938
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
1939
		pr_vdebug("descriptor too short\n");
1940 1941 1942 1943 1944 1945
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
1946
		pr_vdebug("descriptor longer then available data\n");
1947 1948 1949 1950 1951 1952 1953
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
1954
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1955
		if (unlikely(!__entity_check_ ##type(val))) {		\
1956
			pr_vdebug("invalid entity's value\n");		\
1957 1958 1959 1960
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
1961
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1962
				 (val), ret);				\
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
1974
		pr_vdebug("descriptor reserved for gadget: %d\n",
1975
		      _ds->bDescriptorType);
1976 1977 1978 1979
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
1980
		pr_vdebug("interface descriptor\n");
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
1992
		pr_vdebug("endpoint descriptor\n");
1993 1994 1995 1996 1997 1998 1999
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

2000 2001 2002 2003 2004 2005
	case HID_DT_HID:
		pr_vdebug("hid descriptor\n");
		if (length != sizeof(struct hid_descriptor))
			goto inv_length;
		break;

2006 2007 2008 2009 2010 2011 2012
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2013
		pr_vdebug("interface association descriptor\n");
2014 2015 2016 2017 2018 2019 2020
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

2021 2022 2023 2024 2025 2026
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2027 2028 2029 2030 2031 2032
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2033
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2034 2035 2036 2037
		return -EINVAL;

	default:
		/* We should never be here */
2038
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2039 2040
		return -EINVAL;

2041
inv_length:
2042
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2043
			  _ds->bLength, _ds->bDescriptorType);
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2070
		/* Record "descriptor" entity */
2071 2072
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2073
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2074
				 num, ret);
2075 2076 2077 2078 2079 2080
			return ret;
		}

		if (!data)
			return _len - len;

2081
		ret = ffs_do_single_desc(data, len, entity, priv);
2082
		if (unlikely(ret < 0)) {
2083
			pr_debug("%s returns %d\n", __func__, ret);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2097 2098
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2099 2100 2101 2102 2103 2104 2105 2106

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2107 2108
		/*
		 * Interfaces are indexed from zero so if we
2109
		 * encountered interface "n" then there are at least
2110 2111
		 * "n+1" interfaces.
		 */
2112 2113
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2114 2115 2116
		break;

	case FFS_STRING:
2117
		/*
2118 2119
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2120
		 */
2121 2122
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2123 2124 2125
		break;

	case FFS_ENDPOINT:
2126 2127
		d = (void *)desc;
		helper->eps_count++;
2128
		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2129 2130 2131 2132 2133 2134 2135 2136
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2137 2138 2139 2140 2141 2142
		break;
	}

	return 0;
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
2278
		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2279
			return -EINVAL;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		if (d->Reserved1 != 1) {
			/*
			 * According to the spec, Reserved1 must be set to 1
			 * but older kernels incorrectly rejected non-zero
			 * values.  We fix it here to avoid returning EINVAL
			 * in response to values we used to accept.
			 */
			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
			d->Reserved1 = 1;
		}
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
2305 2306
		if (len < length)
			return -EINVAL;
2307 2308 2309 2310 2311 2312 2313 2314
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
2315 2316 2317 2318 2319
		if (length < 14 + pnl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
				  length, pnl, type);
			return -EINVAL;
		}
2320
		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2339 2340 2341
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2342
	char *data = _data, *raw_descs;
2343
	unsigned os_descs_count = 0, counts[3], flags;
2344
	int ret = -EINVAL, i;
2345
	struct ffs_desc_helper helper;
2346 2347 2348

	ENTER();

2349
	if (get_unaligned_le32(data + 4) != len)
2350 2351
		goto error;

2352 2353 2354 2355 2356 2357 2358 2359
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2360
		ffs->user_flags = flags;
2361 2362
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2363
			      FUNCTIONFS_HAS_SS_DESC |
2364
			      FUNCTIONFS_HAS_MS_OS_DESC |
2365
			      FUNCTIONFS_VIRTUAL_ADDR |
2366
			      FUNCTIONFS_EVENTFD |
2367 2368
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2369
			ret = -ENOSYS;
2370 2371
			goto error;
		}
2372 2373 2374 2375 2376
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2377 2378
	}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2393 2394 2395 2396 2397
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2398
			goto error;
2399 2400 2401 2402
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2403
		}
2404
	}
2405
	if (flags & (1 << i)) {
2406 2407 2408
		if (len < 4) {
			goto error;
		}
2409 2410 2411 2412
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
	};
2413

2414 2415
	/* Read descriptors */
	raw_descs = data;
2416
	helper.ffs = ffs;
2417 2418 2419
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2420 2421
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2422
		ret = ffs_do_descs(counts[i], data, len,
2423
				   __ffs_data_do_entity, &helper);
2424
		if (ret < 0)
2425
			goto error;
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2439 2440
		data += ret;
		len  -= ret;
2441
	}
2442 2443 2444 2445 2446 2447 2448 2449
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2450

2451 2452 2453 2454
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2455

2456 2457 2458 2459 2460 2461
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2462
	ffs->ms_os_descs_count	= os_descs_count;
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2477
	struct usb_string *s;
2478 2479 2480

	ENTER();

2481 2482
	if (unlikely(len < 16 ||
		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2497 2498 2499 2500
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2501 2502 2503 2504 2505
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2506
	/* Allocate everything in one chunk so there's less maintenance. */
2507 2508
	{
		unsigned i = 0;
2509 2510 2511 2512 2513 2514
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2515

2516 2517 2518
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2519 2520 2521 2522
			kfree(_data);
			return -ENOMEM;
		}

2523 2524 2525
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2526 2527 2528 2529 2530 2531
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2532 2533 2534 2535
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2561 2562 2563 2564 2565
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2566
			if (likely(needed)) {
2567 2568
				/*
				 * s->id will be set while adding
2569
				 * function to configuration so for
2570 2571
				 * now just leave garbage here.
				 */
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2613 2614 2615 2616
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2617 2618
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2619 2620
	 * the source does nothing.
	 */
2621
	if (ffs->setup_state == FFS_SETUP_PENDING)
2622
		ffs->setup_state = FFS_SETUP_CANCELLED;
2623

2624 2625 2626 2627 2628 2629 2630
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2631 2632 2633
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2634
		/* FALL THROUGH */
2635 2636 2637
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2638
		/* Discard all similar events */
2639 2640 2641 2642 2643 2644
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2645
		/* Discard everything other then power management. */
2646 2647 2648 2649 2650 2651
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2652 2653
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2654 2655 2656 2657 2658 2659 2660 2661 2662
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2663
				pr_vdebug("purging event %d\n", *ev);
2664 2665 2666
		ffs->ev.count = out - ffs->ev.types;
	}

2667
	pr_vdebug("adding event %d\n", type);
2668 2669
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2670 2671
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2695 2696 2697 2698 2699 2700 2701
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2702 2703
	unsigned ep_desc_id;
	int idx;
2704
	static const char *speed_names[] = { "full", "high", "super" };
2705 2706 2707 2708

	if (type != FFS_DESCRIPTOR)
		return 0;

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2720
		func->function.hs_descriptors[(long)valuep] = desc;
2721 2722
	} else {
		ep_desc_id = 0;
2723
		func->function.fs_descriptors[(long)valuep]    = desc;
2724
	}
2725 2726 2727 2728

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2729 2730 2731 2732
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2733 2734
	ffs_ep = func->eps + idx;

2735 2736 2737
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2738
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2739 2740
		return -EINVAL;
	}
2741
	ffs_ep->descs[ep_desc_id] = ds;
2742 2743 2744 2745 2746 2747 2748 2749 2750

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2751
		u8 bEndpointAddress;
2752

2753 2754 2755 2756 2757
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2758
		pr_vdebug("autoconfig\n");
2759 2760 2761
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2762
		ep->driver_data = func->eps + idx;
2763 2764 2765 2766 2767 2768 2769 2770 2771

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2772 2773 2774 2775 2776 2777
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2815 2816 2817 2818
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2834
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2835 2836 2837 2838
	*valuep = newValue;
	return 0;
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2874
		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
2967 2968 2969 2970 2971
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
2972 2973
	const int high = !!func->ffs->hs_descs_count;
	const int super = !!func->ffs->ss_descs_count;
2974

2975
	int fs_len, hs_len, ss_len, ret, i;
2976
	struct ffs_ep *eps_ptr;
2977 2978

	/* Make it a single chunk, less management later on */
2979 2980 2981 2982 2983 2984
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
2985 2986
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
2987
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
3000
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3001
	char *vlabuf;
3002 3003 3004

	ENTER();

3005 3006
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
3007 3008
		return -ENOTSUPP;

3009
	/* Allocate a single chunk, less management later on */
3010
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3011
	if (unlikely(!vlabuf))
3012 3013
		return -ENOMEM;

3014 3015 3016 3017 3018 3019
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

3020 3021 3022
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
3023

3024
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3025 3026 3027
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
3028

3029 3030 3031 3032 3033
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3034

3035 3036
	/*
	 * Go through all the endpoint descriptors and allocate
3037
	 * endpoints first, so that later we can rewrite the endpoint
3038 3039
	 * numbers without worrying that it may be described later on.
	 */
3040
	if (likely(full)) {
3041
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3042 3043 3044 3045 3046 3047
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3048
			goto error;
3049
		}
3050
	} else {
3051
		fs_len = 0;
3052 3053 3054
	}

	if (likely(high)) {
3055
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3070
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3071 3072 3073
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3074 3075
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3076
			goto error;
3077 3078 3079
		}
	} else {
		ss_len = 0;
3080 3081
	}

3082 3083 3084 3085 3086
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3087
	ret = ffs_do_descs(ffs->fs_descs_count +
3088 3089
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3090
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3091 3092 3093 3094
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3095
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3096
	if (c->cdev->use_os_string) {
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3107 3108 3109 3110 3111 3112 3113 3114 3115
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3116 3117 3118
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3119 3120 3121 3122 3123 3124 3125 3126 3127
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3128 3129 3130 3131
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3132 3133
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3134 3135 3136 3137

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3138 3139 3140 3141 3142
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3143 3144
}

3145 3146 3147

/* Other USB function hooks *************************************************/

3148 3149 3150 3151 3152 3153 3154
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3171 3172 3173 3174 3175 3176 3177
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3209 3210 3211 3212 3213
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3214

3215 3216
	/*
	 * Most requests directed to interface go through here
3217 3218 3219 3220
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3221 3222 3223
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3224
	 */
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3239 3240
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3241 3242 3243
		break;

	default:
3244 3245 3246 3247
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3248 3249 3250 3251 3252 3253 3254 3255
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

3256
	return USB_GADGET_DELAYED_STATUS;
3257 3258
}

3259
static bool ffs_func_req_match(struct usb_function *f,
3260 3261
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3262 3263 3264
{
	struct ffs_function *func = ffs_func_from_usb(f);

3265
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3266 3267
		return false;

3268 3269
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3270 3271
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3272
	case USB_RECIP_ENDPOINT:
3273 3274
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3275 3276 3277 3278 3279 3280
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3294
/* Endpoint and interface numbers reverse mapping ***************************/
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3316 3317 3318 3319
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3320
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3321 3322 3323
{
	struct ffs_dev *dev;

3324 3325 3326
	if (!name)
		return NULL;

3327 3328 3329 3330
	list_for_each_entry(dev, &ffs_devices, entry) {
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3331

3332 3333 3334 3335 3336 3337
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3338
static struct ffs_dev *_ffs_get_single_dev(void)
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3354
static struct ffs_dev *_ffs_find_dev(const char *name)
3355 3356 3357
{
	struct ffs_dev *dev;

3358
	dev = _ffs_get_single_dev();
3359 3360 3361
	if (dev)
		return dev;

3362
	return _ffs_do_find_dev(name);
3363 3364
}

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

3384
static const struct config_item_type ffs_func_type = {
3385 3386 3387 3388 3389
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3390 3391 3392 3393 3394 3395 3396 3397
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3398
	_ffs_free_dev(opts->dev);
3399 3400 3401 3402
	ffs_dev_unlock();
	kfree(opts);
}

3403 3404
static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
3405
	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3406
		return -ENAMETOOLONG;
3407
	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3408 3409
}

3410 3411 3412 3413 3414 3415 3416 3417 3418
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3419
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3420 3421
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3422
	dev = _ffs_alloc_dev();
3423 3424 3425 3426 3427 3428
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3429
	dev->opts = opts;
3430

3431 3432
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3463
	while (count--) {
3464 3465 3466 3467
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
3468
	}
3469 3470 3471 3472 3473 3474 3475 3476 3477
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3478
	func->function.ss_descriptors = NULL;
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3501
	func->function.req_match = ffs_func_req_match;
3502 3503 3504 3505 3506 3507 3508
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3509 3510 3511
/*
 * ffs_lock must be taken by the caller of this function
 */
3512
static struct ffs_dev *_ffs_alloc_dev(void)
3513 3514 3515 3516
{
	struct ffs_dev *dev;
	int ret;

3517
	if (_ffs_get_single_dev())
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

3537
int ffs_name_dev(struct ffs_dev *dev, const char *name)
3538 3539
{
	struct ffs_dev *existing;
3540
	int ret = 0;
3541

3542
	ffs_dev_lock();
3543

3544 3545 3546 3547 3548
	existing = _ffs_do_find_dev(name);
	if (!existing)
		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
	else if (existing != dev)
		ret = -EBUSY;
3549 3550 3551 3552 3553

	ffs_dev_unlock();

	return ret;
}
3554
EXPORT_SYMBOL_GPL(ffs_name_dev);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3571
EXPORT_SYMBOL_GPL(ffs_single_dev);
3572 3573 3574 3575

/*
 * ffs_lock must be taken by the caller of this function
 */
3576
static void _ffs_free_dev(struct ffs_dev *dev)
3577 3578
{
	list_del(&dev->entry);
3579 3580 3581 3582 3583

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3596
	ffs_dev = _ffs_find_dev(dev_name);
3597
	if (!ffs_dev)
3598
		ffs_dev = ERR_PTR(-ENOENT);
3599 3600
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3601 3602
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3603
		ffs_dev = ERR_PTR(-ENOENT);
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3619
	if (ffs_dev) {
3620
		ffs_dev->mounted = false;
3621 3622 3623 3624

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3650
	if (ffs_obj->ffs_ready_callback) {
3651
		ret = ffs_obj->ffs_ready_callback(ffs);
3652 3653 3654
		if (ret)
			goto done;
	}
3655

3656
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3657 3658 3659 3660 3661 3662 3663 3664
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3665
	struct f_fs_opts *opts;
3666
	struct config_item *ci;
3667 3668 3669 3670 3671 3672 3673 3674 3675

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;
3676
	ffs_obj->ffs_data = NULL;
3677

3678 3679
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3680
		ffs_obj->ffs_closed_callback(ffs);
3681

3682 3683 3684 3685 3686 3687
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3688
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3689 3690
		goto done;

3691 3692 3693
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

3694 3695
	if (test_bit(FFS_FL_BOUND, &ffs->flags))
		unregister_gadget_item(ci);
3696
	return;
3697 3698 3699 3700
done:
	ffs_dev_unlock();
}

3701 3702 3703 3704 3705 3706 3707 3708 3709
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3710
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3721
	if (unlikely(copy_from_user(data, buf, len))) {
3722 3723 3724 3725
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3726
	pr_vdebug("Buffer from user space:\n");
3727 3728 3729 3730
	ffs_dump_mem("", data, len);

	return data;
}
3731 3732 3733 3734

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");