README.md 10.7 KB
Newer Older
jia zhang's avatar
jia zhang 已提交
1
# rune announcement
W
windayski 已提交
2
`rune` is a CLI tool for spawning and running enclaves in containers according to the OCI specification. The codebase of `rune` is a fork of [runc](https://github.com/opencontainers/runc), so `rune` can be used as `runc` if enclave is not configured or available.
jia zhang's avatar
jia zhang 已提交
3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
# runc

[![Build Status](https://travis-ci.org/opencontainers/runc.svg?branch=master)](https://travis-ci.org/opencontainers/runc)
[![Go Report Card](https://goreportcard.com/badge/github.com/opencontainers/runc)](https://goreportcard.com/report/github.com/opencontainers/runc)
[![GoDoc](https://godoc.org/github.com/opencontainers/runc?status.svg)](https://godoc.org/github.com/opencontainers/runc)

## Introduction

`runc` is a CLI tool for spawning and running containers according to the OCI specification.

## Releases

`runc` depends on and tracks the [runtime-spec](https://github.com/opencontainers/runtime-spec) repository.
We will try to make sure that `runc` and the OCI specification major versions stay in lockstep.
This means that `runc` 1.0.0 should implement the 1.0 version of the specification.

You can find official releases of `runc` on the [release](https://github.com/opencontainers/runc/releases) page.

Currently, the following features are not considered to be production-ready:

* Support for cgroup v2
## Security

The reporting process and disclosure communications are outlined [here](https://github.com/opencontainers/org/blob/master/SECURITY.md).

### Security Audit
A third party security audit was performed by Cure53, you can see the full report [here](https://github.com/opencontainers/runc/blob/master/docs/Security-Audit.pdf).

## Building

`runc` currently supports the Linux platform with various architecture support.
It must be built with Go version 1.13 or higher.

In order to enable seccomp support you will need to install `libseccomp` on your platform.
> e.g. `libseccomp-devel` for CentOS, or `libseccomp-dev` for Ubuntu

```bash
# create a 'github.com/opencontainers' in your GOPATH/src
cd github.com/opencontainers
git clone https://github.com/opencontainers/runc
cd runc

make
sudo make install
```

You can also use `go get` to install to your `GOPATH`, assuming that you have a `github.com` parent folder already created under `src`:

```bash
go get github.com/opencontainers/runc
cd $GOPATH/src/github.com/opencontainers/runc
make
sudo make install
```

`runc` will be installed to `/usr/local/sbin/runc` on your system.


#### Build Tags

`runc` supports optional build tags for compiling support of various features,
with some of them enabled by default (see `BUILDTAGS` in top-level `Makefile`).

To change build tags from the default, set the `BUILDTAGS` variable for make,
e.g.

```bash
make BUILDTAGS='seccomp apparmor'
```

| Build Tag | Feature                            | Enabled by default | Dependency |
|-----------|------------------------------------|--------------------|------------|
| seccomp   | Syscall filtering                  | yes                | libseccomp |
| selinux   | selinux process and mount labeling | yes                | <none>     |
| apparmor  | apparmor profile support           | yes                | <none>     |
| nokmem    | disable kernel memory accounting   | no                 | <none>     |


### Running the test suite

`runc` currently supports running its test suite via Docker.
To run the suite just type `make test`.

```bash
make test
```

There are additional make targets for running the tests outside of a container but this is not recommended as the tests are written with the expectation that they can write and remove anywhere.

You can run a specific test case by setting the `TESTFLAGS` variable.

```bash
# make test TESTFLAGS="-run=SomeTestFunction"
```

You can run a specific integration test by setting the `TESTPATH` variable.

```bash
# make test TESTPATH="/checkpoint.bats"
```

You can run a specific rootless integration test by setting the `ROOTLESS_TESTPATH` variable.

```bash
# make test ROOTLESS_TESTPATH="/checkpoint.bats"
```

You can run a test using your container engine's flags by setting `CONTAINER_ENGINE_BUILD_FLAGS` and `CONTAINER_ENGINE_RUN_FLAGS` variables.

```bash
# make test CONTAINER_ENGINE_BUILD_FLAGS="--build-arg http_proxy=http://yourproxy/" CONTAINER_ENGINE_RUN_FLAGS="-e http_proxy=http://yourproxy/"
```

### Dependencies Management

`runc` uses [Go Modules](https://github.com/golang/go/wiki/Modules) for dependencies management.
Please refer to [Go Modules](https://github.com/golang/go/wiki/Modules) for how to add or update
new dependencies. When updating dependencies, be sure that you are running Go `1.14` or newer.

```
# Update vendored dependencies
make vendor
# Verify all dependencies
make verify-dependencies
```

## Using runc

### Creating an OCI Bundle

In order to use runc you must have your container in the format of an OCI bundle.
If you have Docker installed you can use its `export` method to acquire a root filesystem from an existing Docker container.

```bash
# create the top most bundle directory
mkdir /mycontainer
cd /mycontainer

# create the rootfs directory
mkdir rootfs

# export busybox via Docker into the rootfs directory
docker export $(docker create busybox) | tar -C rootfs -xvf -
```

After a root filesystem is populated you just generate a spec in the format of a `config.json` file inside your bundle.
`runc` provides a `spec` command to generate a base template spec that you are then able to edit.
To find features and documentation for fields in the spec please refer to the [specs](https://github.com/opencontainers/runtime-spec) repository.

```bash
runc spec
```

### Running Containers

Assuming you have an OCI bundle from the previous step you can execute the container in two different ways.

The first way is to use the convenience command `run` that will handle creating, starting, and deleting the container after it exits.

```bash
# run as root
cd /mycontainer
runc run mycontainerid
```

If you used the unmodified `runc spec` template this should give you a `sh` session inside the container.

The second way to start a container is using the specs lifecycle operations.
This gives you more power over how the container is created and managed while it is running.
This will also launch the container in the background so you will have to edit the `config.json` to remove the `terminal` setting for the simple examples here.
Your process field in the `config.json` should look like this below with `"terminal": false` and `"args": ["sleep", "5"]`.


```json
        "process": {
                "terminal": false,
                "user": {
                        "uid": 0,
                        "gid": 0
                },
                "args": [
                        "sleep", "5"
                ],
                "env": [
                        "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
                        "TERM=xterm"
                ],
                "cwd": "/",
                "capabilities": {
                        "bounding": [
                                "CAP_AUDIT_WRITE",
                                "CAP_KILL",
                                "CAP_NET_BIND_SERVICE"
                        ],
                        "effective": [
                                "CAP_AUDIT_WRITE",
                                "CAP_KILL",
                                "CAP_NET_BIND_SERVICE"
                        ],
                        "inheritable": [
                                "CAP_AUDIT_WRITE",
                                "CAP_KILL",
                                "CAP_NET_BIND_SERVICE"
                        ],
                        "permitted": [
                                "CAP_AUDIT_WRITE",
                                "CAP_KILL",
                                "CAP_NET_BIND_SERVICE"
                        ],
                        "ambient": [
                                "CAP_AUDIT_WRITE",
                                "CAP_KILL",
                                "CAP_NET_BIND_SERVICE"
                        ]
                },
                "rlimits": [
                        {
                                "type": "RLIMIT_NOFILE",
                                "hard": 1024,
                                "soft": 1024
                        }
                ],
                "noNewPrivileges": true
        },
```

Now we can go through the lifecycle operations in your shell.


```bash
# run as root
cd /mycontainer
runc create mycontainerid

# view the container is created and in the "created" state
runc list

# start the process inside the container
runc start mycontainerid

# after 5 seconds view that the container has exited and is now in the stopped state
runc list

# now delete the container
runc delete mycontainerid
```

This allows higher level systems to augment the containers creation logic with setup of various settings after the container is created and/or before it is deleted. For example, the container's network stack is commonly set up after `create` but before `start`.

#### Rootless containers
`runc` has the ability to run containers without root privileges. This is called `rootless`. You need to pass some parameters to `runc` in order to run rootless containers. See below and compare with the previous version.

**Note:** In order to use this feature, "User Namespaces" must be compiled and enabled in your kernel. There are various ways to do this depending on your distribution:
- Confirm `CONFIG_USER_NS=y` is set in your kernel configuration (normally found in `/proc/config.gz`)
- Arch/Debian: `echo 1 > /proc/sys/kernel/unprivileged_userns_clone`
- RHEL/CentOS 7: `echo 28633 > /proc/sys/user/max_user_namespaces`

Run the following commands as an ordinary user:
```bash
# Same as the first example
mkdir ~/mycontainer
cd ~/mycontainer
mkdir rootfs
docker export $(docker create busybox) | tar -C rootfs -xvf -

# The --rootless parameter instructs runc spec to generate a configuration for a rootless container, which will allow you to run the container as a non-root user.
runc spec --rootless

# The --root parameter tells runc where to store the container state. It must be writable by the user.
runc --root /tmp/runc run mycontainerid
```

#### Supervisors

`runc` can be used with process supervisors and init systems to ensure that containers are restarted when they exit.
An example systemd unit file looks something like this.

```systemd
[Unit]
Description=Start My Container

[Service]
Type=forking
ExecStart=/usr/local/sbin/runc run -d --pid-file /run/mycontainerid.pid mycontainerid
ExecStopPost=/usr/local/sbin/runc delete mycontainerid
WorkingDirectory=/mycontainer
PIDFile=/run/mycontainerid.pid

[Install]
WantedBy=multi-user.target
```

## License

The code and docs are released under the [Apache 2.0 license](LICENSE).