nsexec.c 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

#define _GNU_SOURCE
#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <grp.h>
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>

#include <sys/ioctl.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/wait.h>

#include <linux/limits.h>
#include <linux/netlink.h>
#include <linux/types.h>

/* Get all of the CLONE_NEW* flags. */
#include "namespace.h"

/* Synchronisation values. */
enum sync_t {
	SYNC_USERMAP_PLS = 0x40,	/* Request parent to map our users. */
	SYNC_USERMAP_ACK = 0x41,	/* Mapping finished by the parent. */
	SYNC_RECVPID_PLS = 0x42,	/* Tell parent we're sending the PID. */
	SYNC_RECVPID_ACK = 0x43,	/* PID was correctly received by parent. */
	SYNC_GRANDCHILD = 0x44,	/* The grandchild is ready to run. */
	SYNC_CHILD_READY = 0x45,	/* The child or grandchild is ready to return. */
};

/*
 * Synchronisation value for cgroup namespace setup.
 * The same constant is defined in process_linux.go as "createCgroupns".
 */
#define CREATECGROUPNS 0x80

/* longjmp() arguments. */
#define JUMP_PARENT 0x00
#define JUMP_CHILD  0xA0
#define JUMP_INIT   0xA1

/* Assume the stack grows down, so arguments should be above it. */
struct clone_t {
	/*
	 * Reserve some space for clone() to locate arguments
	 * and retcode in this place
	 */
	char stack[4096] __attribute__ ((aligned(16)));
	char stack_ptr[0];

	/* There's two children. This is used to execute the different code. */
	jmp_buf *env;
	int jmpval;
};

struct nlconfig_t {
	char *data;

	/* Process settings. */
	uint32_t cloneflags;
	char *oom_score_adj;
	size_t oom_score_adj_len;

	/* User namespace settings. */
	char *uidmap;
	size_t uidmap_len;
	char *gidmap;
	size_t gidmap_len;
	char *namespaces;
	size_t namespaces_len;
	uint8_t is_setgroup;

	/* Rootless container settings. */
	uint8_t is_rootless_euid;	/* boolean */
	char *uidmappath;
	size_t uidmappath_len;
	char *gidmappath;
	size_t gidmappath_len;
};

#define PANIC   "panic"
#define FATAL   "fatal"
#define ERROR   "error"
#define WARNING "warning"
#define INFO    "info"
#define DEBUG   "debug"

static int logfd = -1;

/*
 * List of netlink message types sent to us as part of bootstrapping the init.
 * These constants are defined in libcontainer/message_linux.go.
 */
#define INIT_MSG			62000
#define CLONE_FLAGS_ATTR	27281
#define NS_PATHS_ATTR		27282
#define UIDMAP_ATTR			27283
#define GIDMAP_ATTR			27284
#define SETGROUP_ATTR		27285
#define OOM_SCORE_ADJ_ATTR	27286
#define ROOTLESS_EUID_ATTR	27287
#define UIDMAPPATH_ATTR	    27288
#define GIDMAPPATH_ATTR	    27289

/*
 * Use the raw syscall for versions of glibc which don't include a function for
 * it, namely (glibc 2.12).
 */
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 14
#	define _GNU_SOURCE
#	include "syscall.h"
#	if !defined(SYS_setns) && defined(__NR_setns)
#		define SYS_setns __NR_setns
#	endif

#ifndef SYS_setns
#	error "setns(2) syscall not supported by glibc version"
#endif

int setns(int fd, int nstype)
{
	return syscall(SYS_setns, fd, nstype);
}
#endif

137
void write_log_with_info(const char *level, const char *function, int line, const char *format, ...)
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
{
	char message[1024] = {};

	va_list args;

	if (logfd < 0 || level == NULL)
		return;

	va_start(args, format);
	if (vsnprintf(message, sizeof(message), format, args) < 0)
		goto done;

	dprintf(logfd, "{\"level\":\"%s\", \"msg\": \"%s:%d %s\"}\n", level, function, line, message);
done:
	va_end(args);
}

#define write_log(level, fmt, ...) \
	write_log_with_info((level), __FUNCTION__, __LINE__, (fmt), ##__VA_ARGS__)

/* XXX: This is ugly. */
static int syncfd = -1;

#define bail(fmt, ...)                                       \
	do {                                                       \
		write_log(FATAL, "nsenter: " fmt ": %m", ##__VA_ARGS__); \
		exit(1);                                                 \
	} while(0)

static int write_file(char *data, size_t data_len, char *pathfmt, ...)
{
	int fd, len, ret = 0;
	char path[PATH_MAX];

	va_list ap;
	va_start(ap, pathfmt);
	len = vsnprintf(path, PATH_MAX, pathfmt, ap);
	va_end(ap);
	if (len < 0)
		return -1;

	fd = open(path, O_RDWR);
	if (fd < 0) {
		return -1;
	}

	len = write(fd, data, data_len);
	if (len != data_len) {
		ret = -1;
		goto out;
	}

 out:
	close(fd);
	return ret;
}

enum policy_t {
	SETGROUPS_DEFAULT = 0,
	SETGROUPS_ALLOW,
	SETGROUPS_DENY,
};

/* This *must* be called before we touch gid_map. */
static void update_setgroups(int pid, enum policy_t setgroup)
{
	char *policy;

	switch (setgroup) {
	case SETGROUPS_ALLOW:
		policy = "allow";
		break;
	case SETGROUPS_DENY:
		policy = "deny";
		break;
	case SETGROUPS_DEFAULT:
	default:
		/* Nothing to do. */
		return;
	}

	if (write_file(policy, strlen(policy), "/proc/%d/setgroups", pid) < 0) {
		/*
		 * If the kernel is too old to support /proc/pid/setgroups,
		 * open(2) or write(2) will return ENOENT. This is fine.
		 */
		if (errno != ENOENT)
			bail("failed to write '%s' to /proc/%d/setgroups", policy, pid);
	}
}

static int try_mapping_tool(const char *app, int pid, char *map, size_t map_len)
{
	int child;

	/*
	 * If @app is NULL, execve will segfault. Just check it here and bail (if
	 * we're in this path, the caller is already getting desperate and there
	 * isn't a backup to this failing). This usually would be a configuration
	 * or programming issue.
	 */
	if (!app)
		bail("mapping tool not present");

	child = fork();
	if (child < 0)
		bail("failed to fork");

	if (!child) {
#define MAX_ARGV 20
		char *argv[MAX_ARGV];
		char *envp[] = { NULL };
		char pid_fmt[16];
		int argc = 0;
		char *next;

		snprintf(pid_fmt, 16, "%d", pid);

		argv[argc++] = (char *)app;
		argv[argc++] = pid_fmt;
		/*
		 * Convert the map string into a list of argument that
		 * newuidmap/newgidmap can understand.
		 */

		while (argc < MAX_ARGV) {
			if (*map == '\0') {
				argv[argc++] = NULL;
				break;
			}
			argv[argc++] = map;
			next = strpbrk(map, "\n ");
			if (next == NULL)
				break;
			*next++ = '\0';
			map = next + strspn(next, "\n ");
		}

		execve(app, argv, envp);
		bail("failed to execv");
	} else {
		int status;

		while (true) {
			if (waitpid(child, &status, 0) < 0) {
				if (errno == EINTR)
					continue;
				bail("failed to waitpid");
			}
			if (WIFEXITED(status) || WIFSIGNALED(status))
				return WEXITSTATUS(status);
		}
	}

	return -1;
}

static void update_uidmap(const char *path, int pid, char *map, size_t map_len)
{
	if (map == NULL || map_len <= 0)
		return;

	if (write_file(map, map_len, "/proc/%d/uid_map", pid) < 0) {
		if (errno != EPERM)
			bail("failed to update /proc/%d/uid_map", pid);
		if (try_mapping_tool(path, pid, map, map_len))
			bail("failed to use newuid map on %d", pid);
	}
}

static void update_gidmap(const char *path, int pid, char *map, size_t map_len)
{
	if (map == NULL || map_len <= 0)
		return;

	if (write_file(map, map_len, "/proc/%d/gid_map", pid) < 0) {
		if (errno != EPERM)
			bail("failed to update /proc/%d/gid_map", pid);
		if (try_mapping_tool(path, pid, map, map_len))
			bail("failed to use newgid map on %d", pid);
	}
}

static void update_oom_score_adj(char *data, size_t len)
{
	if (data == NULL || len <= 0)
		return;

	if (write_file(data, len, "/proc/self/oom_score_adj") < 0)
		bail("failed to update /proc/self/oom_score_adj");
}

/* A dummy function that just jumps to the given jumpval. */
static int child_func(void *arg) __attribute__ ((noinline));
static int child_func(void *arg)
{
	struct clone_t *ca = (struct clone_t *)arg;
	longjmp(*ca->env, ca->jmpval);
}

static int clone_parent(jmp_buf *env, int jmpval) __attribute__ ((noinline));
static int clone_parent(jmp_buf *env, int jmpval)
{
	struct clone_t ca = {
		.env = env,
		.jmpval = jmpval,
	};

	return clone(child_func, ca.stack_ptr, CLONE_PARENT | SIGCHLD, &ca);
}

/*
 * Gets the init pipe fd from the environment, which is used to read the
 * bootstrap data and tell the parent what the new pid is after we finish
 * setting up the environment.
 */
static int initpipe(void)
{
	int pipenum;
	char *initpipe, *endptr;

	initpipe = getenv("_LIBCONTAINER_INITPIPE");
	if (initpipe == NULL || *initpipe == '\0')
		return -1;

	pipenum = strtol(initpipe, &endptr, 10);
	if (*endptr != '\0')
		bail("unable to parse _LIBCONTAINER_INITPIPE");

	return pipenum;
}

static void setup_logpipe(void)
{
	char *logpipe, *endptr;

	logpipe = getenv("_LIBCONTAINER_LOGPIPE");
	if (logpipe == NULL || *logpipe == '\0') {
		return;
	}

	logfd = strtol(logpipe, &endptr, 10);
	if (logpipe == endptr || *endptr != '\0') {
		fprintf(stderr, "unable to parse _LIBCONTAINER_LOGPIPE, value: %s\n", logpipe);
		/* It is too early to use bail */
		exit(1);
	}
}

/* Returns the clone(2) flag for a namespace, given the name of a namespace. */
static int nsflag(char *name)
{
	if (!strcmp(name, "cgroup"))
		return CLONE_NEWCGROUP;
	else if (!strcmp(name, "ipc"))
		return CLONE_NEWIPC;
	else if (!strcmp(name, "mnt"))
		return CLONE_NEWNS;
	else if (!strcmp(name, "net"))
		return CLONE_NEWNET;
	else if (!strcmp(name, "pid"))
		return CLONE_NEWPID;
	else if (!strcmp(name, "user"))
		return CLONE_NEWUSER;
	else if (!strcmp(name, "uts"))
		return CLONE_NEWUTS;

	/* If we don't recognise a name, fallback to 0. */
	return 0;
}

static uint32_t readint32(char *buf)
{
	return *(uint32_t *) buf;
}

static uint8_t readint8(char *buf)
{
	return *(uint8_t *) buf;
}

static void nl_parse(int fd, struct nlconfig_t *config)
{
	size_t len, size;
	struct nlmsghdr hdr;
	char *data, *current;

	/* Retrieve the netlink header. */
	len = read(fd, &hdr, NLMSG_HDRLEN);
	if (len != NLMSG_HDRLEN)
		bail("invalid netlink header length %zu", len);

	if (hdr.nlmsg_type == NLMSG_ERROR)
		bail("failed to read netlink message");

	if (hdr.nlmsg_type != INIT_MSG)
		bail("unexpected msg type %d", hdr.nlmsg_type);

	/* Retrieve data. */
	size = NLMSG_PAYLOAD(&hdr, 0);
	current = data = malloc(size);
	if (!data)
		bail("failed to allocate %zu bytes of memory for nl_payload", size);

	len = read(fd, data, size);
	if (len != size)
		bail("failed to read netlink payload, %zu != %zu", len, size);

	/* Parse the netlink payload. */
	config->data = data;
	while (current < data + size) {
		struct nlattr *nlattr = (struct nlattr *)current;
		size_t payload_len = nlattr->nla_len - NLA_HDRLEN;

		/* Advance to payload. */
		current += NLA_HDRLEN;

		/* Handle payload. */
		switch (nlattr->nla_type) {
		case CLONE_FLAGS_ATTR:
			config->cloneflags = readint32(current);
			break;
		case ROOTLESS_EUID_ATTR:
			config->is_rootless_euid = readint8(current);	/* boolean */
			break;
		case OOM_SCORE_ADJ_ATTR:
			config->oom_score_adj = current;
			config->oom_score_adj_len = payload_len;
			break;
		case NS_PATHS_ATTR:
			config->namespaces = current;
			config->namespaces_len = payload_len;
			break;
		case UIDMAP_ATTR:
			config->uidmap = current;
			config->uidmap_len = payload_len;
			break;
		case GIDMAP_ATTR:
			config->gidmap = current;
			config->gidmap_len = payload_len;
			break;
		case UIDMAPPATH_ATTR:
			config->uidmappath = current;
			config->uidmappath_len = payload_len;
			break;
		case GIDMAPPATH_ATTR:
			config->gidmappath = current;
			config->gidmappath_len = payload_len;
			break;
		case SETGROUP_ATTR:
			config->is_setgroup = readint8(current);
			break;
		default:
			bail("unknown netlink message type %d", nlattr->nla_type);
		}

		current += NLA_ALIGN(payload_len);
	}
}

void nl_free(struct nlconfig_t *config)
{
	free(config->data);
}

void join_namespaces(char *nslist)
{
	int num = 0, i;
	char *saveptr = NULL;
	char *namespace = strtok_r(nslist, ",", &saveptr);
	struct namespace_t {
		int fd;
		int ns;
		char type[PATH_MAX];
		char path[PATH_MAX];
	} *namespaces = NULL;

	if (!namespace || !strlen(namespace) || !strlen(nslist))
		bail("ns paths are empty");

	/*
	 * We have to open the file descriptors first, since after
	 * we join the mnt namespace we might no longer be able to
	 * access the paths.
	 */
	do {
		int fd;
		char *path;
		struct namespace_t *ns;

		/* Resize the namespace array. */
		namespaces = realloc(namespaces, ++num * sizeof(struct namespace_t));
		if (!namespaces)
			bail("failed to reallocate namespace array");
		ns = &namespaces[num - 1];

		/* Split 'ns:path'. */
		path = strstr(namespace, ":");
		if (!path)
			bail("failed to parse %s", namespace);
		*path++ = '\0';

		fd = open(path, O_RDONLY);
		if (fd < 0)
			bail("failed to open %s", path);

		ns->fd = fd;
		ns->ns = nsflag(namespace);
		strncpy(ns->path, path, PATH_MAX - 1);
		ns->path[PATH_MAX - 1] = '\0';
	} while ((namespace = strtok_r(NULL, ",", &saveptr)) != NULL);

	/*
	 * The ordering in which we join namespaces is important. We should
	 * always join the user namespace *first*. This is all guaranteed
	 * from the container_linux.go side of this, so we're just going to
	 * follow the order given to us.
	 */

	for (i = 0; i < num; i++) {
		struct namespace_t ns = namespaces[i];

		if (setns(ns.fd, ns.ns) < 0)
			bail("failed to setns to %s", ns.path);

		close(ns.fd);
	}

	free(namespaces);
}

/* Defined in cloned_binary.c. */
extern int ensure_cloned_binary(void);

572 573 574 575
/* Defined in loader.c. */
extern int is_enclave(void);
extern int load_enclave_runtime(void);

576 577 578 579 580 581
void nsexec(void)
{
	int pipenum;
	jmp_buf env;
	int sync_child_pipe[2], sync_grandchild_pipe[2];
	struct nlconfig_t config = { 0 };
582
	char *rootfs;
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

	/*
	 * Setup a pipe to send logs to the parent. This should happen
	 * first, because bail will use that pipe.
	 */
	setup_logpipe();

	/*
	 * If we don't have an init pipe, just return to the go routine.
	 * We'll only get an init pipe for start or exec.
	 */
	pipenum = initpipe();
	if (pipenum == -1)
		return;

	/*
	 * We need to re-exec if we are not in a cloned binary. This is necessary
	 * to ensure that containers won't be able to access the host binary
	 * through /proc/self/exe. See CVE-2019-5736.
	 */
	if (ensure_cloned_binary() < 0)
		bail("could not ensure we are a cloned binary");

	write_log(DEBUG, "nsexec started");

	/* Parse all of the netlink configuration. */
	nl_parse(pipenum, &config);

	/* Set oom_score_adj. This has to be done before !dumpable because
	 * /proc/self/oom_score_adj is not writeable unless you're an privileged
	 * user (if !dumpable is set). All children inherit their parent's
	 * oom_score_adj value on fork(2) so this will always be propagated
	 * properly.
	 */
	update_oom_score_adj(config.oom_score_adj, config.oom_score_adj_len);

	/*
	 * Make the process non-dumpable, to avoid various race conditions that
	 * could cause processes in namespaces we're joining to access host
	 * resources (or potentially execute code).
	 *
	 * However, if the number of namespaces we are joining is 0, we are not
	 * going to be switching to a different security context. Thus setting
	 * ourselves to be non-dumpable only breaks things (like rootless
	 * containers), which is the recommendation from the kernel folks.
	 */
	if (config.namespaces) {
		if (prctl(PR_SET_DUMPABLE, 0, 0, 0, 0) < 0)
			bail("failed to set process as non-dumpable");
	}

	/* Pipe so we can tell the child when we've finished setting up. */
	if (socketpair(AF_LOCAL, SOCK_STREAM, 0, sync_child_pipe) < 0)
		bail("failed to setup sync pipe between parent and child");

	/*
	 * We need a new socketpair to sync with grandchild so we don't have
	 * race condition with child.
	 */
	if (socketpair(AF_LOCAL, SOCK_STREAM, 0, sync_grandchild_pipe) < 0)
		bail("failed to setup sync pipe between parent and grandchild");

	/* TODO: Currently we aren't dealing with child deaths properly. */

647 648 649 650 651 652 653 654 655 656
	rootfs = getenv("_LIBCONTAINER_PAL_ROOTFS");
	if (rootfs && *rootfs != '\0') {
		char ld_path[PATH_MAX+1];

		snprintf(ld_path, sizeof(ld_path) - 1,
			 "%s/usr/lib/x86_64-linux-gnu:%s/usr/lib:%s/usr/lib64:%s/lib:%s/lib64",
			 rootfs, rootfs, rootfs, rootfs, rootfs);
		setenv("LD_LIBRARY_PATH", ld_path, 1);
	}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	/*
	 * Okay, so this is quite annoying.
	 *
	 * In order for this unsharing code to be more extensible we need to split
	 * up unshare(CLONE_NEWUSER) and clone() in various ways. The ideal case
	 * would be if we did clone(CLONE_NEWUSER) and the other namespaces
	 * separately, but because of SELinux issues we cannot really do that. But
	 * we cannot just dump the namespace flags into clone(...) because several
	 * usecases (such as rootless containers) require more granularity around
	 * the namespace setup. In addition, some older kernels had issues where
	 * CLONE_NEWUSER wasn't handled before other namespaces (but we cannot
	 * handle this while also dealing with SELinux so we choose SELinux support
	 * over broken kernel support).
	 *
	 * However, if we unshare(2) the user namespace *before* we clone(2), then
	 * all hell breaks loose.
	 *
	 * The parent no longer has permissions to do many things (unshare(2) drops
	 * all capabilities in your old namespace), and the container cannot be set
	 * up to have more than one {uid,gid} mapping. This is obviously less than
	 * ideal. In order to fix this, we have to first clone(2) and then unshare.
	 *
	 * Unfortunately, it's not as simple as that. We have to fork to enter the
	 * PID namespace (the PID namespace only applies to children). Since we'll
	 * have to double-fork, this clone_parent() call won't be able to get the
	 * PID of the _actual_ init process (without doing more synchronisation than
	 * I can deal with at the moment). So we'll just get the parent to send it
	 * for us, the only job of this process is to update
	 * /proc/pid/{setgroups,uid_map,gid_map}.
	 *
	 * And as a result of the above, we also need to setns(2) in the first child
	 * because if we join a PID namespace in the topmost parent then our child
	 * will be in that namespace (and it will not be able to give us a PID value
	 * that makes sense without resorting to sending things with cmsg).
	 *
	 * This also deals with an older issue caused by dumping cloneflags into
	 * clone(2): On old kernels, CLONE_PARENT didn't work with CLONE_NEWPID, so
	 * we have to unshare(2) before clone(2) in order to do this. This was fixed
	 * in upstream commit 1f7f4dde5c945f41a7abc2285be43d918029ecc5, and was
	 * introduced by 40a0d32d1eaffe6aac7324ca92604b6b3977eb0e. As far as we're
	 * aware, the last mainline kernel which had this bug was Linux 3.12.
	 * However, we cannot comment on which kernels the broken patch was
	 * backported to.
	 *
	 * -- Aleksa "what has my life come to?" Sarai
	 */

	switch (setjmp(env)) {
		/*
		 * Stage 0: We're in the parent. Our job is just to create a new child
		 *          (stage 1: JUMP_CHILD) process and write its uid_map and
		 *          gid_map. That process will go on to create a new process, then
		 *          it will send us its PID which we will send to the bootstrap
		 *          process.
		 */
	case JUMP_PARENT:{
			int len;
			pid_t child, first_child = -1;
			bool ready = false;

			/* For debugging. */
			prctl(PR_SET_NAME, (unsigned long)"runc:[0:PARENT]", 0, 0, 0);

			/* Start the process of getting a container. */
			child = clone_parent(&env, JUMP_CHILD);
			if (child < 0)
				bail("unable to fork: child_func");

			/*
			 * State machine for synchronisation with the children.
			 *
			 * Father only return when both child and grandchild are
			 * ready, so we can receive all possible error codes
			 * generated by children.
			 */
			while (!ready) {
				enum sync_t s;

				syncfd = sync_child_pipe[1];
				close(sync_child_pipe[0]);

				if (read(syncfd, &s, sizeof(s)) != sizeof(s))
					bail("failed to sync with child: next state");

				switch (s) {
				case SYNC_USERMAP_PLS:
					/*
					 * Enable setgroups(2) if we've been asked to. But we also
					 * have to explicitly disable setgroups(2) if we're
					 * creating a rootless container for single-entry mapping.
					 * i.e. config.is_setgroup == false.
					 * (this is required since Linux 3.19).
					 *
					 * For rootless multi-entry mapping, config.is_setgroup shall be true and
					 * newuidmap/newgidmap shall be used.
					 */

					if (config.is_rootless_euid && !config.is_setgroup)
						update_setgroups(child, SETGROUPS_DENY);

					/* Set up mappings. */
					update_uidmap(config.uidmappath, child, config.uidmap, config.uidmap_len);
					update_gidmap(config.gidmappath, child, config.gidmap, config.gidmap_len);

					s = SYNC_USERMAP_ACK;
					if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
						kill(child, SIGKILL);
						bail("failed to sync with child: write(SYNC_USERMAP_ACK)");
					}
					break;
				case SYNC_RECVPID_PLS:{
						first_child = child;

						/* Get the init_func pid. */
						if (read(syncfd, &child, sizeof(child)) != sizeof(child)) {
							kill(first_child, SIGKILL);
							bail("failed to sync with child: read(childpid)");
						}

						/* Send ACK. */
						s = SYNC_RECVPID_ACK;
						if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
							kill(first_child, SIGKILL);
							kill(child, SIGKILL);
							bail("failed to sync with child: write(SYNC_RECVPID_ACK)");
						}

						/* Send the init_func pid back to our parent.
						 *
						 * Send the init_func pid and the pid of the first child back to our parent.
						 * We need to send both back because we can't reap the first child we created (CLONE_PARENT).
						 * It becomes the responsibility of our parent to reap the first child.
						 */
						len = dprintf(pipenum, "{\"pid\": %d, \"pid_first\": %d}\n", child, first_child);
						if (len < 0) {
							kill(child, SIGKILL);
							bail("unable to generate JSON for child pid");
						}
					}
					break;
				case SYNC_CHILD_READY:
					ready = true;
					break;
				default:
					bail("unexpected sync value: %u", s);
				}
			}

			/* Now sync with grandchild. */

			ready = false;
			while (!ready) {
				enum sync_t s;

				syncfd = sync_grandchild_pipe[1];
				close(sync_grandchild_pipe[0]);

				s = SYNC_GRANDCHILD;
				if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
					kill(child, SIGKILL);
					bail("failed to sync with child: write(SYNC_GRANDCHILD)");
				}

				if (read(syncfd, &s, sizeof(s)) != sizeof(s))
					bail("failed to sync with child: next state");

				switch (s) {
				case SYNC_CHILD_READY:
					ready = true;
					break;
				default:
					bail("unexpected sync value: %u", s);
				}
			}
			exit(0);
		}

		/*
		 * Stage 1: We're in the first child process. Our job is to join any
		 *          provided namespaces in the netlink payload and unshare all
		 *          of the requested namespaces. If we've been asked to
		 *          CLONE_NEWUSER, we will ask our parent (stage 0) to set up
		 *          our user mappings for us. Then, we create a new child
		 *          (stage 2: JUMP_INIT) for PID namespace. We then send the
		 *          child's PID to our parent (stage 0).
		 */
	case JUMP_CHILD:{
			pid_t child;
			enum sync_t s;
846 847 848 849 850
			int ret;

			ret = load_enclave_runtime();
			if (ret < 0)
				bail("load_enclave_runtime() failed, ret = %d", ret);
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

			/* We're in a child and thus need to tell the parent if we die. */
			syncfd = sync_child_pipe[0];
			close(sync_child_pipe[1]);

			/* For debugging. */
			prctl(PR_SET_NAME, (unsigned long)"runc:[1:CHILD]", 0, 0, 0);

			/*
			 * We need to setns first. We cannot do this earlier (in stage 0)
			 * because of the fact that we forked to get here (the PID of
			 * [stage 2: JUMP_INIT]) would be meaningless). We could send it
			 * using cmsg(3) but that's just annoying.
			 */
			if (config.namespaces)
				join_namespaces(config.namespaces);

			/*
			 * Deal with user namespaces first. They are quite special, as they
			 * affect our ability to unshare other namespaces and are used as
			 * context for privilege checks.
			 *
			 * We don't unshare all namespaces in one go. The reason for this
			 * is that, while the kernel documentation may claim otherwise,
			 * there are certain cases where unsharing all namespaces at once
			 * will result in namespace objects being owned incorrectly.
			 * Ideally we should just fix these kernel bugs, but it's better to
			 * be safe than sorry, and fix them separately.
			 *
			 * A specific case of this is that the SELinux label of the
			 * internal kern-mount that mqueue uses will be incorrect if the
			 * UTS namespace is cloned before the USER namespace is mapped.
			 * I've also heard of similar problems with the network namespace
			 * in some scenarios. This also mirrors how LXC deals with this
			 * problem.
			 */
			if (config.cloneflags & CLONE_NEWUSER) {
				if (unshare(CLONE_NEWUSER) < 0)
					bail("failed to unshare user namespace");
				config.cloneflags &= ~CLONE_NEWUSER;

				/*
				 * We don't have the privileges to do any mapping here (see the
				 * clone_parent rant). So signal our parent to hook us up.
				 */

				/* Switching is only necessary if we joined namespaces. */
				if (config.namespaces) {
					if (prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) < 0)
						bail("failed to set process as dumpable");
				}
				s = SYNC_USERMAP_PLS;
				if (write(syncfd, &s, sizeof(s)) != sizeof(s))
					bail("failed to sync with parent: write(SYNC_USERMAP_PLS)");

				/* ... wait for mapping ... */

				if (read(syncfd, &s, sizeof(s)) != sizeof(s))
					bail("failed to sync with parent: read(SYNC_USERMAP_ACK)");
				if (s != SYNC_USERMAP_ACK)
					bail("failed to sync with parent: SYNC_USERMAP_ACK: got %u", s);
				/* Switching is only necessary if we joined namespaces. */
				if (config.namespaces) {
					if (prctl(PR_SET_DUMPABLE, 0, 0, 0, 0) < 0)
						bail("failed to set process as dumpable");
				}

				/* Become root in the namespace proper. */
				if (setresuid(0, 0, 0) < 0)
					bail("failed to become root in user namespace");
			}
			/*
			 * Unshare all of the namespaces. Now, it should be noted that this
			 * ordering might break in the future (especially with rootless
			 * containers). But for now, it's not possible to split this into
			 * CLONE_NEWUSER + [the rest] because of some RHEL SELinux issues.
			 *
			 * Note that we don't merge this with clone() because there were
			 * some old kernel versions where clone(CLONE_PARENT | CLONE_NEWPID)
			 * was broken, so we'll just do it the long way anyway.
			 */
			if (unshare(config.cloneflags & ~CLONE_NEWCGROUP) < 0)
				bail("failed to unshare namespaces");

			/*
			 * TODO: What about non-namespace clone flags that we're dropping here?
			 *
			 * We fork again because of PID namespace, setns(2) or unshare(2) don't
			 * change the PID namespace of the calling process, because doing so
			 * would change the caller's idea of its own PID (as reported by getpid()),
			 * which would break many applications and libraries, so we must fork
			 * to actually enter the new PID namespace.
			 */
			child = clone_parent(&env, JUMP_INIT);
			if (child < 0)
				bail("unable to fork: init_func");

			/* Send the child to our parent, which knows what it's doing. */
			s = SYNC_RECVPID_PLS;
			if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
				kill(child, SIGKILL);
				bail("failed to sync with parent: write(SYNC_RECVPID_PLS)");
			}
			if (write(syncfd, &child, sizeof(child)) != sizeof(child)) {
				kill(child, SIGKILL);
				bail("failed to sync with parent: write(childpid)");
			}

			/* ... wait for parent to get the pid ... */

			if (read(syncfd, &s, sizeof(s)) != sizeof(s)) {
				kill(child, SIGKILL);
				bail("failed to sync with parent: read(SYNC_RECVPID_ACK)");
			}
			if (s != SYNC_RECVPID_ACK) {
				kill(child, SIGKILL);
				bail("failed to sync with parent: SYNC_RECVPID_ACK: got %u", s);
			}

			s = SYNC_CHILD_READY;
			if (write(syncfd, &s, sizeof(s)) != sizeof(s)) {
				kill(child, SIGKILL);
				bail("failed to sync with parent: write(SYNC_CHILD_READY)");
			}

			/* Our work is done. [Stage 2: JUMP_INIT] is doing the rest of the work. */
			exit(0);
		}

		/*
		 * Stage 2: We're the final child process, and the only process that will
		 *          actually return to the Go runtime. Our job is to just do the
		 *          final cleanup steps and then return to the Go runtime to allow
		 *          init_linux.go to run.
		 */
	case JUMP_INIT:{
			/*
			 * We're inside the child now, having jumped from the
			 * start_child() code after forking in the parent.
			 */
			enum sync_t s;

			/* We're in a child and thus need to tell the parent if we die. */
			syncfd = sync_grandchild_pipe[0];
			close(sync_grandchild_pipe[1]);
			close(sync_child_pipe[0]);
			close(sync_child_pipe[1]);

			/* For debugging. */
			prctl(PR_SET_NAME, (unsigned long)"runc:[2:INIT]", 0, 0, 0);

			if (read(syncfd, &s, sizeof(s)) != sizeof(s))
				bail("failed to sync with parent: read(SYNC_GRANDCHILD)");
			if (s != SYNC_GRANDCHILD)
				bail("failed to sync with parent: SYNC_GRANDCHILD: got %u", s);

			if (setsid() < 0)
				bail("setsid failed");

			if (setuid(0) < 0)
				bail("setuid failed");

			if (setgid(0) < 0)
				bail("setgid failed");

			if (!config.is_rootless_euid && config.is_setgroup) {
				if (setgroups(0, NULL) < 0)
					bail("setgroups failed");
			}

			/* ... wait until our topmost parent has finished cgroup setup in p.manager.Apply() ... */
			if (config.cloneflags & CLONE_NEWCGROUP) {
				uint8_t value;
				if (read(pipenum, &value, sizeof(value)) != sizeof(value))
					bail("read synchronisation value failed");
				if (value == CREATECGROUPNS) {
					if (unshare(CLONE_NEWCGROUP) < 0)
						bail("failed to unshare cgroup namespace");
				} else
					bail("received unknown synchronisation value");
			}

			s = SYNC_CHILD_READY;
			if (write(syncfd, &s, sizeof(s)) != sizeof(s))
				bail("failed to sync with patent: write(SYNC_CHILD_READY)");

			/* Close sync pipes. */
			close(sync_grandchild_pipe[0]);

			/* Free netlink data. */
			nl_free(&config);

1043 1044 1045
			if (is_enclave())
				prctl(PR_SET_NAME, (unsigned long)"init-runelet", 0, 0, 0);

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			/* Finish executing, let the Go runtime take over. */
			return;
		}
	default:
		bail("unexpected jump value");
	}

	/* Should never be reached. */
	bail("should never be reached");
}