sgxsign.c 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
// Copyright(c) 2016-18 Intel Corporation.

#define _GNU_SOURCE
#include <getopt.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include "defines.h"

struct sgx_sigstruct_payload {
	struct sgx_sigstruct_header header;
	struct sgx_sigstruct_body body;
};

static bool check_crypto_errors(void)
{
	int err;
	bool had_errors = false;
	const char *filename;
	int line;
	char str[256];

	for ( ; ; ) {
		if (ERR_peek_error() == 0)
			break;

		had_errors = true;
		err = ERR_get_error_line(&filename, &line);
		ERR_error_string_n(err, str, sizeof(str));
		fprintf(stderr, "crypto: %s: %s:%d\n", str, filename, line);
	}

	return had_errors;
}

static void exit_usage(const char *program)
{
	fprintf(stderr,
		"Usage: %s/sign-le <key> <enclave> <sigstruct>\n", program);
	exit(1);
}

static inline const BIGNUM *get_modulus(RSA *key)
{
#if OPENSSL_VERSION_NUMBER < 0x10100000L
	return key->n;
#else
	const BIGNUM *n;

	RSA_get0_key(key, &n, NULL, NULL);
	return n;
#endif
}

static RSA *load_sign_key(const char *path)
{
	FILE *f;
	RSA *key;

	f = fopen(path, "rb");
	if (!f) {
		fprintf(stderr, "Unable to open %s\n", path);
		return NULL;
	}
	key = RSA_new();
	if (!PEM_read_RSAPrivateKey(f, &key, NULL, NULL))
		return NULL;
	fclose(f);

	if (BN_num_bytes(get_modulus(key)) != SGX_MODULUS_SIZE) {
		fprintf(stderr, "Invalid key size %d\n",
			BN_num_bytes(get_modulus(key)));
		RSA_free(key);
		return NULL;
	}

	return key;
}

static void reverse_bytes(void *data, int length)
{
	int i = 0;
	int j = length - 1;
	uint8_t temp;
	uint8_t *ptr = data;

	while (i < j) {
		temp = ptr[i];
		ptr[i] = ptr[j];
		ptr[j] = temp;
		i++;
		j--;
	}
}

enum mrtags {
	MRECREATE = 0x0045544145524345,
	MREADD = 0x0000000044444145,
	MREEXTEND = 0x00444E4554584545,
};

static bool mrenclave_update(EVP_MD_CTX *ctx, const void *data)
{
	if (!EVP_DigestUpdate(ctx, data, 64)) {
		fprintf(stderr, "digest update failed\n");
		return false;
	}

	return true;
}

static bool mrenclave_commit(EVP_MD_CTX *ctx, uint8_t *mrenclave)
{
	unsigned int size;

	if (!EVP_DigestFinal_ex(ctx, (unsigned char *)mrenclave, &size)) {
		fprintf(stderr, "digest commit failed\n");
		return false;
	}

	if (size != 32) {
		fprintf(stderr, "invalid digest size = %u\n", size);
		return false;
	}

	return true;
}

struct mrecreate {
	uint64_t tag;
	uint32_t ssaframesize;
	uint64_t size;
	uint8_t reserved[44];
} __attribute__((__packed__));


static bool mrenclave_ecreate(EVP_MD_CTX *ctx, uint64_t blob_size)
{
	struct mrecreate mrecreate;
	uint64_t encl_size;

	for (encl_size = 0x1000; encl_size < blob_size; )
		encl_size <<= 1;

	memset(&mrecreate, 0, sizeof(mrecreate));
	mrecreate.tag = MRECREATE;
	mrecreate.ssaframesize = 1;
	mrecreate.size = encl_size;

	if (!EVP_DigestInit_ex(ctx, EVP_sha256(), NULL))
		return false;

	return mrenclave_update(ctx, &mrecreate);
}

struct mreadd {
	uint64_t tag;
	uint64_t offset;
	uint64_t flags; /* SECINFO flags */
	uint8_t reserved[40];
} __attribute__((__packed__));

static bool mrenclave_eadd(EVP_MD_CTX *ctx, uint64_t offset, uint64_t flags)
{
	struct mreadd mreadd;

	memset(&mreadd, 0, sizeof(mreadd));
	mreadd.tag = MREADD;
	mreadd.offset = offset;
	mreadd.flags = flags;

	return mrenclave_update(ctx, &mreadd);
}

struct mreextend {
	uint64_t tag;
	uint64_t offset;
	uint8_t reserved[48];
} __attribute__((__packed__));

static bool mrenclave_eextend(EVP_MD_CTX *ctx, uint64_t offset, uint8_t *data)
{
	struct mreextend mreextend;
	int i;

	for (i = 0; i < 0x1000; i += 0x100) {
		memset(&mreextend, 0, sizeof(mreextend));
		mreextend.tag = MREEXTEND;
		mreextend.offset = offset + i;

		if (!mrenclave_update(ctx, &mreextend))
			return false;

		if (!mrenclave_update(ctx, &data[i + 0x00]))
			return false;

		if (!mrenclave_update(ctx, &data[i + 0x40]))
			return false;

		if (!mrenclave_update(ctx, &data[i + 0x80]))
			return false;

		if (!mrenclave_update(ctx, &data[i + 0xC0]))
			return false;
	}

	return true;
}

/**
 * measure_encl - measure enclave
 * @path: path to the enclave
 * @mrenclave: measurement
 *
 * Calculates MRENCLAVE. Assumes that the very first page is a TCS page and
 * following pages are regular pages. Does not measure the contents of the
 * enclave as the signing tool is used at the moment only for the launch
 * enclave, which is pass-through (everything gets a token).
 */
static bool measure_encl(const char *path, uint8_t *mrenclave)
{
	FILE *file;
	struct stat sb;
	EVP_MD_CTX *ctx;
	uint64_t flags;
	uint64_t offset;
	uint8_t data[0x1000];
	int rc;

	ctx = EVP_MD_CTX_create();
	if (!ctx)
		return false;

	file = fopen(path, "rb");
	if (!file) {
		perror("fopen");
		EVP_MD_CTX_destroy(ctx);
		return false;
	}

	rc = stat(path, &sb);
	if (rc) {
		perror("stat");
		goto out;
	}

	if (!sb.st_size || sb.st_size & 0xfff) {
		fprintf(stderr, "Invalid blob size %lu\n", sb.st_size);
		goto out;
	}

	if (!mrenclave_ecreate(ctx, sb.st_size))
		goto out;

	for (offset = 0; offset < sb.st_size; offset += 0x1000) {
		if (!offset)
			flags = SGX_SECINFO_TCS;
		else
			flags = SGX_SECINFO_REG | SGX_SECINFO_R |
				SGX_SECINFO_W | SGX_SECINFO_X;

		if (!mrenclave_eadd(ctx, offset, flags))
			goto out;

		rc = fread(data, 1, 0x1000, file);
		if (!rc)
			break;
		if (rc < 0x1000)
			goto out;

		if (!mrenclave_eextend(ctx, offset, data))
			goto out;
	}

	if (!mrenclave_commit(ctx, mrenclave))
		goto out;

	fclose(file);
	EVP_MD_CTX_destroy(ctx);
	return true;
out:
	fclose(file);
	EVP_MD_CTX_destroy(ctx);
	return false;
}

/**
 * sign_encl - sign enclave
 * @sigstruct: pointer to SIGSTRUCT
 * @key: 3072-bit RSA key
 * @signature: byte array for the signature
 *
 * Calculates EMSA-PKCSv1.5 signature for the given SIGSTRUCT. The result is
 * stored in big-endian format so that it can be further passed to OpenSSL
 * libcrypto functions.
 */
static bool sign_encl(const struct sgx_sigstruct *sigstruct, RSA *key,
		      uint8_t *signature)
{
	struct sgx_sigstruct_payload payload;
	unsigned int siglen;
	uint8_t digest[SHA256_DIGEST_LENGTH];
	bool ret;

	memcpy(&payload.header, &sigstruct->header, sizeof(sigstruct->header));
	memcpy(&payload.body, &sigstruct->body, sizeof(sigstruct->body));

	SHA256((unsigned char *)&payload, sizeof(payload), digest);

	ret = RSA_sign(NID_sha256, digest, SHA256_DIGEST_LENGTH, signature,
		       &siglen, key);

	return ret;
}

struct q1q2_ctx {
	BN_CTX *bn_ctx;
	BIGNUM *m;
	BIGNUM *s;
	BIGNUM *q1;
	BIGNUM *qr;
	BIGNUM *q2;
};

static void free_q1q2_ctx(struct q1q2_ctx *ctx)
{
	BN_CTX_free(ctx->bn_ctx);
	BN_free(ctx->m);
	BN_free(ctx->s);
	BN_free(ctx->q1);
	BN_free(ctx->qr);
	BN_free(ctx->q2);
}

static bool alloc_q1q2_ctx(const uint8_t *s, const uint8_t *m,
			   struct q1q2_ctx *ctx)
{
	ctx->bn_ctx = BN_CTX_new();
	ctx->s = BN_bin2bn(s, SGX_MODULUS_SIZE, NULL);
	ctx->m = BN_bin2bn(m, SGX_MODULUS_SIZE, NULL);
	ctx->q1 = BN_new();
	ctx->qr = BN_new();
	ctx->q2 = BN_new();

	if (!ctx->bn_ctx || !ctx->s || !ctx->m || !ctx->q1 || !ctx->qr ||
	    !ctx->q2) {
		free_q1q2_ctx(ctx);
		return false;
	}

	return true;
}

static bool calc_q1q2(const uint8_t *s, const uint8_t *m, uint8_t *q1,
		      uint8_t *q2)
{
	struct q1q2_ctx ctx;

	if (!alloc_q1q2_ctx(s, m, &ctx)) {
		fprintf(stderr, "Not enough memory for Q1Q2 calculation\n");
		return false;
	}

	if (!BN_mul(ctx.q1, ctx.s, ctx.s, ctx.bn_ctx))
		goto out;

	if (!BN_div(ctx.q1, ctx.qr, ctx.q1, ctx.m, ctx.bn_ctx))
		goto out;

	if (BN_num_bytes(ctx.q1) > SGX_MODULUS_SIZE) {
		fprintf(stderr, "Too large Q1 %d bytes\n",
			BN_num_bytes(ctx.q1));
		goto out;
	}

	if (!BN_mul(ctx.q2, ctx.s, ctx.qr, ctx.bn_ctx))
		goto out;

	if (!BN_div(ctx.q2, NULL, ctx.q2, ctx.m, ctx.bn_ctx))
		goto out;

	if (BN_num_bytes(ctx.q2) > SGX_MODULUS_SIZE) {
		fprintf(stderr, "Too large Q2 %d bytes\n",
			BN_num_bytes(ctx.q2));
		goto out;
	}

	BN_bn2bin(ctx.q1, q1);
	BN_bn2bin(ctx.q2, q2);

	free_q1q2_ctx(&ctx);
	return true;
out:
	free_q1q2_ctx(&ctx);
	return false;
}

static bool save_sigstruct(const struct sgx_sigstruct *sigstruct,
			   const char *path)
{
	FILE *f = fopen(path, "wb");

	if (!f) {
		fprintf(stderr, "Unable to open %s\n", path);
		return false;
	}

	fwrite(sigstruct, sizeof(*sigstruct), 1, f);
	fclose(f);
	return true;
}

int main(int argc, char **argv)
{
	uint64_t header1[2] = {0x000000E100000006, 0x0000000000010000};
	uint64_t header2[2] = {0x0000006000000101, 0x0000000100000060};
	struct sgx_sigstruct ss;
	const char *program;
	int opt;
	RSA *sign_key;
429 430 431
	bool enclave_debug = true;
	char* const short_options = "p";
	struct option long_options = {"product", 0, NULL, 'p'};
432 433 434 435

	program = argv[0];

	do {
436
		opt = getopt_long(argc, argv, short_options, &long_options, NULL);
437
		switch (opt) {
438 439 440
		case 'p':
			enclave_debug = false;
			break;
441 442 443 444 445 446 447 448 449 450 451 452 453
		case -1:
			break;
		default:
			exit_usage(program);
		}
	} while (opt != -1);

	argc -= optind;
	argv += optind;

	if (argc < 3)
		exit_usage(program);

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        memset(&ss, 0, sizeof(ss));
        ss.header.header1[0] = header1[0];
        ss.header.header1[1] = header1[1];
        ss.header.header2[0] = header2[0];
        ss.header.header2[1] = header2[1];
        ss.exponent = 3;

#ifndef CONFIG_EINITTOKENKEY
        ss.body.attributes = SGX_ATTR_MODE64BIT;
#else
        ss.body.attributes = SGX_ATTR_MODE64BIT | SGX_ATTR_EINITTOKENKEY;
#endif
	if (enclave_debug)
		ss.body.attributes |= SGX_ATTR_DEBUG;
	ss.body.xfrm = 7;
	ss.body.attributes_mask = ss.body.attributes;

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	/* sanity check only */
	if (check_crypto_errors())
		exit(1);

	sign_key = load_sign_key(argv[0]);
	if (!sign_key)
		goto out;

	BN_bn2bin(get_modulus(sign_key), ss.modulus);

	if (!measure_encl(argv[1], ss.body.mrenclave))
		goto out;

	if (!sign_encl(&ss, sign_key, ss.signature))
		goto out;

	if (!calc_q1q2(ss.signature, ss.modulus, ss.q1, ss.q2))
		goto out;

	/* convert to little endian */
	reverse_bytes(ss.signature, SGX_MODULUS_SIZE);
	reverse_bytes(ss.modulus, SGX_MODULUS_SIZE);
	reverse_bytes(ss.q1, SGX_MODULUS_SIZE);
	reverse_bytes(ss.q2, SGX_MODULUS_SIZE);

	if (!save_sigstruct(&ss, argv[2]))
		goto out;
	exit(0);
out:
	check_crypto_errors();
	exit(1);
}