Stroker.java 49.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/*
 * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.java2d.marlin;

import java.util.Arrays;
import static java.lang.Math.ulp;
import static java.lang.Math.sqrt;

import sun.awt.geom.PathConsumer2D;
import sun.java2d.marlin.Curve.BreakPtrIterator;


// TODO: some of the arithmetic here is too verbose and prone to hard to
// debug typos. We should consider making a small Point/Vector class that
// has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
final class Stroker implements PathConsumer2D, MarlinConst {

    private static final int MOVE_TO = 0;
    private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
    private static final int CLOSE = 2;

    /**
     * Constant value for join style.
     */
    public static final int JOIN_MITER = 0;

    /**
     * Constant value for join style.
     */
    public static final int JOIN_ROUND = 1;

    /**
     * Constant value for join style.
     */
    public static final int JOIN_BEVEL = 2;

    /**
     * Constant value for end cap style.
     */
    public static final int CAP_BUTT = 0;

    /**
     * Constant value for end cap style.
     */
    public static final int CAP_ROUND = 1;

    /**
     * Constant value for end cap style.
     */
    public static final int CAP_SQUARE = 2;

    // pisces used to use fixed point arithmetic with 16 decimal digits. I
    // didn't want to change the values of the constant below when I converted
    // it to floating point, so that's why the divisions by 2^16 are there.
    private static final float ROUND_JOIN_THRESHOLD = 1000/65536f;

    private static final float C = 0.5522847498307933f;

    private static final int MAX_N_CURVES = 11;

    private PathConsumer2D out;

    private int capStyle;
    private int joinStyle;

    private float lineWidth2;
90
    private float invHalfLineWidth2Sq;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    private final float[] offset0 = new float[2];
    private final float[] offset1 = new float[2];
    private final float[] offset2 = new float[2];
    private final float[] miter = new float[2];
    private float miterLimitSq;

    private int prev;

    // The starting point of the path, and the slope there.
    private float sx0, sy0, sdx, sdy;
    // the current point and the slope there.
    private float cx0, cy0, cdx, cdy; // c stands for current
    // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the
    // first and last points on the left parallel path. Since this path is
    // parallel, it's slope at any point is parallel to the slope of the
    // original path (thought they may have different directions), so these
    // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that
    // would be error prone and hard to read, so we keep these anyway.
    private float smx, smy, cmx, cmy;

    private final PolyStack reverse;

    // This is where the curve to be processed is put. We give it
    // enough room to store 2 curves: one for the current subdivision, the
    // other for the rest of the curve.
    private final float[] middle = new float[2 * 8];
    private final float[] lp = new float[8];
    private final float[] rp = new float[8];
    private final float[] subdivTs = new float[MAX_N_CURVES - 1];

    // per-thread renderer context
    final RendererContext rdrCtx;

    // dirty curve
    final Curve curve;

    /**
     * Constructs a <code>Stroker</code>.
     * @param rdrCtx per-thread renderer context
     */
    Stroker(final RendererContext rdrCtx) {
        this.rdrCtx = rdrCtx;

        this.reverse = new PolyStack(rdrCtx);
        this.curve = rdrCtx.curve;
    }

    /**
     * Inits the <code>Stroker</code>.
     *
     * @param pc2d an output <code>PathConsumer2D</code>.
     * @param lineWidth the desired line width in pixels
     * @param capStyle the desired end cap style, one of
     * <code>CAP_BUTT</code>, <code>CAP_ROUND</code> or
     * <code>CAP_SQUARE</code>.
     * @param joinStyle the desired line join style, one of
     * <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or
     * <code>JOIN_BEVEL</code>.
     * @param miterLimit the desired miter limit
     * @return this instance
     */
    Stroker init(PathConsumer2D pc2d,
              float lineWidth,
              int capStyle,
              int joinStyle,
              float miterLimit)
    {
        this.out = pc2d;

        this.lineWidth2 = lineWidth / 2f;
162
        this.invHalfLineWidth2Sq = 1f / (2f * lineWidth2 * lineWidth2);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        this.capStyle = capStyle;
        this.joinStyle = joinStyle;

        float limit = miterLimit * lineWidth2;
        this.miterLimitSq = limit * limit;

        this.prev = CLOSE;

        rdrCtx.stroking = 1;

        return this; // fluent API
    }

    /**
     * Disposes this stroker:
     * clean up before reusing this instance
     */
    void dispose() {
        reverse.dispose();

        if (doCleanDirty) {
            // Force zero-fill dirty arrays:
            Arrays.fill(offset0, 0f);
            Arrays.fill(offset1, 0f);
            Arrays.fill(offset2, 0f);
            Arrays.fill(miter, 0f);
            Arrays.fill(middle, 0f);
            Arrays.fill(lp, 0f);
            Arrays.fill(rp, 0f);
            Arrays.fill(subdivTs, 0f);
        }
    }

    private static void computeOffset(final float lx, final float ly,
                                      final float w, final float[] m)
    {
        float len = lx*lx + ly*ly;
        if (len == 0f) {
            m[0] = 0f;
            m[1] = 0f;
        } else {
            len = (float) sqrt(len);
            m[0] =  (ly * w) / len;
            m[1] = -(lx * w) / len;
        }
    }

    // Returns true if the vectors (dx1, dy1) and (dx2, dy2) are
    // clockwise (if dx1,dy1 needs to be rotated clockwise to close
    // the smallest angle between it and dx2,dy2).
    // This is equivalent to detecting whether a point q is on the right side
    // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and
    // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a
    // clockwise order.
    // NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left.
    private static boolean isCW(final float dx1, final float dy1,
                                final float dx2, final float dy2)
    {
        return dx1 * dy2 <= dy1 * dx2;
    }

    private void drawRoundJoin(float x, float y,
                               float omx, float omy, float mx, float my,
                               boolean rev,
                               float threshold)
    {
        if ((omx == 0 && omy == 0) || (mx == 0 && my == 0)) {
            return;
        }

        float domx = omx - mx;
        float domy = omy - my;
        float len = domx*domx + domy*domy;
        if (len < threshold) {
            return;
        }

        if (rev) {
            omx = -omx;
            omy = -omy;
            mx  = -mx;
            my  = -my;
        }
        drawRoundJoin(x, y, omx, omy, mx, my, rev);
    }

    private void drawRoundJoin(float cx, float cy,
                               float omx, float omy,
                               float mx, float my,
                               boolean rev)
    {
        // The sign of the dot product of mx,my and omx,omy is equal to the
        // the sign of the cosine of ext
        // (ext is the angle between omx,omy and mx,my).
257
        final float cosext = omx * mx + omy * my;
258 259 260
        // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
        // need 1 curve to approximate the circle section that joins omx,omy
        // and mx,my.
261
        final int numCurves = (cosext >= 0f) ? 1 : 2;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

        switch (numCurves) {
        case 1:
            drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);
            break;
        case 2:
            // we need to split the arc into 2 arcs spanning the same angle.
            // The point we want will be one of the 2 intersections of the
            // perpendicular bisector of the chord (omx,omy)->(mx,my) and the
            // circle. We could find this by scaling the vector
            // (omx+mx, omy+my)/2 so that it has length=lineWidth2 (and thus lies
            // on the circle), but that can have numerical problems when the angle
            // between omx,omy and mx,my is close to 180 degrees. So we compute a
            // normal of (omx,omy)-(mx,my). This will be the direction of the
            // perpendicular bisector. To get one of the intersections, we just scale
            // this vector that its length is lineWidth2 (this works because the
            // perpendicular bisector goes through the origin). This scaling doesn't
            // have numerical problems because we know that lineWidth2 divided by
            // this normal's length is at least 0.5 and at most sqrt(2)/2 (because
            // we know the angle of the arc is > 90 degrees).
            float nx = my - omy, ny = omx - mx;
            float nlen = (float) sqrt(nx*nx + ny*ny);
            float scale = lineWidth2/nlen;
            float mmx = nx * scale, mmy = ny * scale;

            // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've
            // computed the wrong intersection so we get the other one.
            // The test above is equivalent to if (rev).
            if (rev) {
                mmx = -mmx;
                mmy = -mmy;
            }
            drawBezApproxForArc(cx, cy, omx, omy, mmx, mmy, rev);
            drawBezApproxForArc(cx, cy, mmx, mmy, mx, my, rev);
            break;
        default:
        }
    }

    // the input arc defined by omx,omy and mx,my must span <= 90 degrees.
    private void drawBezApproxForArc(final float cx, final float cy,
                                     final float omx, final float omy,
                                     final float mx, final float my,
                                     boolean rev)
    {
307 308 309 310 311 312 313 314 315
        final float cosext2 = (omx * mx + omy * my) * invHalfLineWidth2Sq;

        // check round off errors producing cos(ext) > 1 and a NaN below
        // cos(ext) == 1 implies colinear segments and an empty join anyway
        if (cosext2 >= 0.5f) {
            // just return to avoid generating a flat curve:
            return;
        }

316 317 318 319 320
        // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc
        // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that
        // define the bezier curve we're computing.
        // It is computed using the constraints that P1-P0 and P3-P2 are parallel
        // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
321 322
        float cv = (float) ((4.0 / 3.0) * sqrt(0.5 - cosext2) /
                            (1.0 + sqrt(cosext2 + 0.5)));
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        // if clockwise, we need to negate cv.
        if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
            cv = -cv;
        }
        final float x1 = cx + omx;
        final float y1 = cy + omy;
        final float x2 = x1 - cv * omy;
        final float y2 = y1 + cv * omx;

        final float x4 = cx + mx;
        final float y4 = cy + my;
        final float x3 = x4 + cv * my;
        final float y3 = y4 - cv * mx;

        emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
    }

    private void drawRoundCap(float cx, float cy, float mx, float my) {
        // the first and second arguments of the following two calls
        // are really will be ignored by emitCurveTo (because of the false),
        // but we put them in anyway, as opposed to just giving it 4 zeroes,
        // because it's just 4 additions and it's not good to rely on this
        // sort of assumption (right now it's true, but that may change).
        emitCurveTo(cx+mx-C*my, cy+my+C*mx,
                    cx-my+C*mx, cy+mx+C*my,
                    cx-my,      cy+mx);
        emitCurveTo(cx-my-C*mx, cy+mx-C*my,
                    cx-mx-C*my, cy-my+C*mx,
                    cx-mx,      cy-my);
    }

    // Put the intersection point of the lines (x0, y0) -> (x1, y1)
    // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1].
    // If the lines are parallel, it will put a non finite number in m.
    private static void computeIntersection(final float x0, final float y0,
                                            final float x1, final float y1,
                                            final float x0p, final float y0p,
                                            final float x1p, final float y1p,
                                            final float[] m, int off)
    {
        float x10 = x1 - x0;
        float y10 = y1 - y0;
        float x10p = x1p - x0p;
        float y10p = y1p - y0p;

        float den = x10*y10p - x10p*y10;
        float t = x10p*(y0-y0p) - y10p*(x0-x0p);
        t /= den;
        m[off++] = x0 + t*x10;
        m[off]   = y0 + t*y10;
    }

    private void drawMiter(final float pdx, final float pdy,
                           final float x0, final float y0,
                           final float dx, final float dy,
                           float omx, float omy, float mx, float my,
                           boolean rev)
    {
        if ((mx == omx && my == omy) ||
            (pdx == 0f && pdy == 0f) ||
            (dx == 0f && dy == 0f))
        {
            return;
        }

        if (rev) {
            omx = -omx;
            omy = -omy;
            mx  = -mx;
            my  = -my;
        }

        computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
                            (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
                            miter, 0);

        final float miterX = miter[0];
        final float miterY = miter[1];
        float lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);

        // If the lines are parallel, lenSq will be either NaN or +inf
        // (actually, I'm not sure if the latter is possible. The important
        // thing is that -inf is not possible, because lenSq is a square).
        // For both of those values, the comparison below will fail and
        // no miter will be drawn, which is correct.
        if (lenSq < miterLimitSq) {
            emitLineTo(miterX, miterY, rev);
        }
    }

    @Override
    public void moveTo(float x0, float y0) {
        if (prev == DRAWING_OP_TO) {
            finish();
        }
        this.sx0 = this.cx0 = x0;
        this.sy0 = this.cy0 = y0;
        this.cdx = this.sdx = 1;
        this.cdy = this.sdy = 0;
        this.prev = MOVE_TO;
    }

    @Override
    public void lineTo(float x1, float y1) {
        float dx = x1 - cx0;
        float dy = y1 - cy0;
        if (dx == 0f && dy == 0f) {
            dx = 1f;
        }
        computeOffset(dx, dy, lineWidth2, offset0);
        final float mx = offset0[0];
        final float my = offset0[1];

        drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my);

        emitLineTo(cx0 + mx, cy0 + my);
        emitLineTo( x1 + mx,  y1 + my);

        emitLineToRev(cx0 - mx, cy0 - my);
        emitLineToRev( x1 - mx,  y1 - my);

        this.cmx = mx;
        this.cmy = my;
        this.cdx = dx;
        this.cdy = dy;
        this.cx0 = x1;
        this.cy0 = y1;
        this.prev = DRAWING_OP_TO;
    }

    @Override
    public void closePath() {
        if (prev != DRAWING_OP_TO) {
            if (prev == CLOSE) {
                return;
            }
            emitMoveTo(cx0, cy0 - lineWidth2);
            this.cmx = this.smx = 0;
            this.cmy = this.smy = -lineWidth2;
            this.cdx = this.sdx = 1;
            this.cdy = this.sdy = 0;
            finish();
            return;
        }

        if (cx0 != sx0 || cy0 != sy0) {
            lineTo(sx0, sy0);
        }

        drawJoin(cdx, cdy, cx0, cy0, sdx, sdy, cmx, cmy, smx, smy);

        emitLineTo(sx0 + smx, sy0 + smy);

        emitMoveTo(sx0 - smx, sy0 - smy);
        emitReverse();

        this.prev = CLOSE;
        emitClose();
    }

    private void emitReverse() {
        reverse.popAll(out);
    }

    @Override
    public void pathDone() {
        if (prev == DRAWING_OP_TO) {
            finish();
        }

        out.pathDone();

        // this shouldn't matter since this object won't be used
        // after the call to this method.
        this.prev = CLOSE;

        // Dispose this instance:
        dispose();
    }

    private void finish() {
        if (capStyle == CAP_ROUND) {
            drawRoundCap(cx0, cy0, cmx, cmy);
        } else if (capStyle == CAP_SQUARE) {
            emitLineTo(cx0 - cmy + cmx, cy0 + cmx + cmy);
            emitLineTo(cx0 - cmy - cmx, cy0 + cmx - cmy);
        }

        emitReverse();

        if (capStyle == CAP_ROUND) {
            drawRoundCap(sx0, sy0, -smx, -smy);
        } else if (capStyle == CAP_SQUARE) {
            emitLineTo(sx0 + smy - smx, sy0 - smx - smy);
            emitLineTo(sx0 + smy + smx, sy0 - smx + smy);
        }

        emitClose();
    }

    private void emitMoveTo(final float x0, final float y0) {
        out.moveTo(x0, y0);
    }

    private void emitLineTo(final float x1, final float y1) {
        out.lineTo(x1, y1);
    }

    private void emitLineToRev(final float x1, final float y1) {
        reverse.pushLine(x1, y1);
    }

    private void emitLineTo(final float x1, final float y1,
                            final boolean rev)
    {
        if (rev) {
            emitLineToRev(x1, y1);
        } else {
            emitLineTo(x1, y1);
        }
    }

    private void emitQuadTo(final float x1, final float y1,
                            final float x2, final float y2)
    {
        out.quadTo(x1, y1, x2, y2);
    }

    private void emitQuadToRev(final float x0, final float y0,
                               final float x1, final float y1)
    {
        reverse.pushQuad(x0, y0, x1, y1);
    }

    private void emitCurveTo(final float x1, final float y1,
                             final float x2, final float y2,
                             final float x3, final float y3)
    {
        out.curveTo(x1, y1, x2, y2, x3, y3);
    }

    private void emitCurveToRev(final float x0, final float y0,
                                final float x1, final float y1,
                                final float x2, final float y2)
    {
        reverse.pushCubic(x0, y0, x1, y1, x2, y2);
    }

    private void emitCurveTo(final float x0, final float y0,
                             final float x1, final float y1,
                             final float x2, final float y2,
                             final float x3, final float y3, final boolean rev)
    {
        if (rev) {
            reverse.pushCubic(x0, y0, x1, y1, x2, y2);
        } else {
            out.curveTo(x1, y1, x2, y2, x3, y3);
        }
    }

    private void emitClose() {
        out.closePath();
    }

    private void drawJoin(float pdx, float pdy,
                          float x0, float y0,
                          float dx, float dy,
                          float omx, float omy,
                          float mx, float my)
    {
        if (prev != DRAWING_OP_TO) {
            emitMoveTo(x0 + mx, y0 + my);
            this.sdx = dx;
            this.sdy = dy;
            this.smx = mx;
            this.smy = my;
        } else {
            boolean cw = isCW(pdx, pdy, dx, dy);
            if (joinStyle == JOIN_MITER) {
                drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw);
            } else if (joinStyle == JOIN_ROUND) {
                drawRoundJoin(x0, y0,
                              omx, omy,
                              mx, my, cw,
                              ROUND_JOIN_THRESHOLD);
            }
            emitLineTo(x0, y0, !cw);
        }
        prev = DRAWING_OP_TO;
    }

    private static boolean within(final float x1, final float y1,
                                  final float x2, final float y2,
                                  final float ERR)
    {
        assert ERR > 0 : "";
        // compare taxicab distance. ERR will always be small, so using
        // true distance won't give much benefit
        return (Helpers.within(x1, x2, ERR) &&  // we want to avoid calling Math.abs
                Helpers.within(y1, y2, ERR)); // this is just as good.
    }

    private void getLineOffsets(float x1, float y1,
                                float x2, float y2,
                                float[] left, float[] right) {
        computeOffset(x2 - x1, y2 - y1, lineWidth2, offset0);
        final float mx = offset0[0];
        final float my = offset0[1];
        left[0] = x1 + mx;
        left[1] = y1 + my;
        left[2] = x2 + mx;
        left[3] = y2 + my;
        right[0] = x1 - mx;
        right[1] = y1 - my;
        right[2] = x2 - mx;
        right[3] = y2 - my;
    }

    private int computeOffsetCubic(float[] pts, final int off,
                                   float[] leftOff, float[] rightOff)
    {
        // if p1=p2 or p3=p4 it means that the derivative at the endpoint
        // vanishes, which creates problems with computeOffset. Usually
        // this happens when this stroker object is trying to winden
        // a curve with a cusp. What happens is that curveTo splits
        // the input curve at the cusp, and passes it to this function.
        // because of inaccuracies in the splitting, we consider points
        // equal if they're very close to each other.
        final float x1 = pts[off + 0], y1 = pts[off + 1];
        final float x2 = pts[off + 2], y2 = pts[off + 3];
        final float x3 = pts[off + 4], y3 = pts[off + 5];
        final float x4 = pts[off + 6], y4 = pts[off + 7];

        float dx4 = x4 - x3;
        float dy4 = y4 - y3;
        float dx1 = x2 - x1;
        float dy1 = y2 - y1;

        // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
        // in which case ignore if p1 == p2
        final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * ulp(y2));
        final boolean p3eqp4 = within(x3,y3,x4,y4, 6f * ulp(y4));
        if (p1eqp2 && p3eqp4) {
            getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
            return 4;
        } else if (p1eqp2) {
            dx1 = x3 - x1;
            dy1 = y3 - y1;
        } else if (p3eqp4) {
            dx4 = x4 - x2;
            dy4 = y4 - y2;
        }

        // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
        float dotsq = (dx1 * dx4 + dy1 * dy4);
        dotsq *= dotsq;
        float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
        if (Helpers.within(dotsq, l1sq * l4sq, 4f * ulp(dotsq))) {
            getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
            return 4;
        }

//      What we're trying to do in this function is to approximate an ideal
//      offset curve (call it I) of the input curve B using a bezier curve Bp.
//      The constraints I use to get the equations are:
//
//      1. The computed curve Bp should go through I(0) and I(1). These are
//      x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find
//      4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p).
//
//      2. Bp should have slope equal in absolute value to I at the endpoints. So,
//      (by the way, the operator || in the comments below means "aligned with".
//      It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that
//      vectors I'(0) and Bp'(0) are aligned, which is the same as saying
//      that the tangent lines of I and Bp at 0 are parallel. Mathematically
//      this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some
//      nonzero constant.)
//      I'(0) || Bp'(0) and I'(1) || Bp'(1). Obviously, I'(0) || B'(0) and
//      I'(1) || B'(1); therefore, Bp'(0) || B'(0) and Bp'(1) || B'(1).
//      We know that Bp'(0) || (p2p-p1p) and Bp'(1) || (p4p-p3p) and the same
//      is true for any bezier curve; therefore, we get the equations
//          (1) p2p = c1 * (p2-p1) + p1p
//          (2) p3p = c2 * (p4-p3) + p4p
//      We know p1p, p4p, p2, p1, p3, and p4; therefore, this reduces the number
//      of unknowns from 4 to 2 (i.e. just c1 and c2).
//      To eliminate these 2 unknowns we use the following constraint:
//
//      3. Bp(0.5) == I(0.5). Bp(0.5)=(x,y) and I(0.5)=(xi,yi), and I should note
//      that I(0.5) is *the only* reason for computing dxm,dym. This gives us
//          (3) Bp(0.5) = (p1p + 3 * (p2p + p3p) + p4p)/8, which is equivalent to
//          (4) p2p + p3p = (Bp(0.5)*8 - p1p - p4p) / 3
//      We can substitute (1) and (2) from above into (4) and we get:
//          (5) c1*(p2-p1) + c2*(p4-p3) = (Bp(0.5)*8 - p1p - p4p)/3 - p1p - p4p
//      which is equivalent to
//          (6) c1*(p2-p1) + c2*(p4-p3) = (4/3) * (Bp(0.5) * 2 - p1p - p4p)
//
//      The right side of this is a 2D vector, and we know I(0.5), which gives us
//      Bp(0.5), which gives us the value of the right side.
//      The left side is just a matrix vector multiplication in disguise. It is
//
//      [x2-x1, x4-x3][c1]
//      [y2-y1, y4-y3][c2]
//      which, is equal to
//      [dx1, dx4][c1]
//      [dy1, dy4][c2]
//      At this point we are left with a simple linear system and we solve it by
//      getting the inverse of the matrix above. Then we use [c1,c2] to compute
//      p2p and p3p.

        float x = (x1 + 3f * (x2 + x3) + x4) / 8f;
        float y = (y1 + 3f * (y2 + y3) + y4) / 8f;
        // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to
        // c*B'(0.5) for some constant c.
        float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;

        // this computes the offsets at t=0, 0.5, 1, using the property that
        // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
        // the (dx/dt, dy/dt) vectors at the endpoints.
        computeOffset(dx1, dy1, lineWidth2, offset0);
        computeOffset(dxm, dym, lineWidth2, offset1);
        computeOffset(dx4, dy4, lineWidth2, offset2);
        float x1p = x1 + offset0[0]; // start
        float y1p = y1 + offset0[1]; // point
        float xi  = x  + offset1[0]; // interpolation
        float yi  = y  + offset1[1]; // point
        float x4p = x4 + offset2[0]; // end
        float y4p = y4 + offset2[1]; // point

        float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4));

        float two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;
        float two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;
        float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
        float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);

        float x2p, y2p, x3p, y3p;
        x2p = x1p + c1*dx1;
        y2p = y1p + c1*dy1;
        x3p = x4p + c2*dx4;
        y3p = y4p + c2*dy4;

        leftOff[0] = x1p; leftOff[1] = y1p;
        leftOff[2] = x2p; leftOff[3] = y2p;
        leftOff[4] = x3p; leftOff[5] = y3p;
        leftOff[6] = x4p; leftOff[7] = y4p;

        x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
        xi = xi - 2f * offset1[0]; yi = yi - 2f * offset1[1];
        x4p = x4 - offset2[0]; y4p = y4 - offset2[1];

        two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;
        two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;
        c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
        c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);

        x2p = x1p + c1*dx1;
        y2p = y1p + c1*dy1;
        x3p = x4p + c2*dx4;
        y3p = y4p + c2*dy4;

        rightOff[0] = x1p; rightOff[1] = y1p;
        rightOff[2] = x2p; rightOff[3] = y2p;
        rightOff[4] = x3p; rightOff[5] = y3p;
        rightOff[6] = x4p; rightOff[7] = y4p;
        return 8;
    }

    // return the kind of curve in the right and left arrays.
    private int computeOffsetQuad(float[] pts, final int off,
                                  float[] leftOff, float[] rightOff)
    {
        final float x1 = pts[off + 0], y1 = pts[off + 1];
        final float x2 = pts[off + 2], y2 = pts[off + 3];
        final float x3 = pts[off + 4], y3 = pts[off + 5];

        final float dx3 = x3 - x2;
        final float dy3 = y3 - y2;
        final float dx1 = x2 - x1;
        final float dy1 = y2 - y1;

        // this computes the offsets at t = 0, 1
        computeOffset(dx1, dy1, lineWidth2, offset0);
        computeOffset(dx3, dy3, lineWidth2, offset1);

        leftOff[0]  = x1 + offset0[0]; leftOff[1]  = y1 + offset0[1];
        leftOff[4]  = x3 + offset1[0]; leftOff[5]  = y3 + offset1[1];
        rightOff[0] = x1 - offset0[0]; rightOff[1] = y1 - offset0[1];
        rightOff[4] = x3 - offset1[0]; rightOff[5] = y3 - offset1[1];

        float x1p = leftOff[0]; // start
        float y1p = leftOff[1]; // point
        float x3p = leftOff[4]; // end
        float y3p = leftOff[5]; // point

        // Corner cases:
        // 1. If the two control vectors are parallel, we'll end up with NaN's
        //    in leftOff (and rightOff in the body of the if below), so we'll
        //    do getLineOffsets, which is right.
        // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0)
        //    or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1)
        //    or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that
        //    computeIntersection will put NaN's in leftOff and right off, and
        //    we will do getLineOffsets, which is right.
        computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
        float cx = leftOff[2];
        float cy = leftOff[3];

        if (!(isFinite(cx) && isFinite(cy))) {
            // maybe the right path is not degenerate.
            x1p = rightOff[0];
            y1p = rightOff[1];
            x3p = rightOff[4];
            y3p = rightOff[5];
            computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
            cx = rightOff[2];
            cy = rightOff[3];
            if (!(isFinite(cx) && isFinite(cy))) {
                // both are degenerate. This curve is a line.
                getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
                return 4;
            }
            // {left,right}Off[0,1,4,5] are already set to the correct values.
            leftOff[2] = 2f * x2 - cx;
            leftOff[3] = 2f * y2 - cy;
            return 6;
        }

        // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2))
        // == 2*(x2, y2) - (left_x2, left_y2)
        rightOff[2] = 2f * x2 - cx;
        rightOff[3] = 2f * y2 - cy;
        return 6;
    }

    private static boolean isFinite(float x) {
        return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY);
    }

    // If this class is compiled with ecj, then Hotspot crashes when OSR
    // compiling this function. See bugs 7004570 and 6675699
    // TODO: until those are fixed, we should work around that by
    // manually inlining this into curveTo and quadTo.
/******************************* WORKAROUND **********************************
    private void somethingTo(final int type) {
        // need these so we can update the state at the end of this method
        final float xf = middle[type-2], yf = middle[type-1];
        float dxs = middle[2] - middle[0];
        float dys = middle[3] - middle[1];
        float dxf = middle[type - 2] - middle[type - 4];
        float dyf = middle[type - 1] - middle[type - 3];
        switch(type) {
        case 6:
            if ((dxs == 0f && dys == 0f) ||
                (dxf == 0f && dyf == 0f)) {
               dxs = dxf = middle[4] - middle[0];
               dys = dyf = middle[5] - middle[1];
            }
            break;
        case 8:
            boolean p1eqp2 = (dxs == 0f && dys == 0f);
            boolean p3eqp4 = (dxf == 0f && dyf == 0f);
            if (p1eqp2) {
                dxs = middle[4] - middle[0];
                dys = middle[5] - middle[1];
                if (dxs == 0f && dys == 0f) {
                    dxs = middle[6] - middle[0];
                    dys = middle[7] - middle[1];
                }
            }
            if (p3eqp4) {
                dxf = middle[6] - middle[2];
                dyf = middle[7] - middle[3];
                if (dxf == 0f && dyf == 0f) {
                    dxf = middle[6] - middle[0];
                    dyf = middle[7] - middle[1];
                }
            }
        }
        if (dxs == 0f && dys == 0f) {
            // this happens iff the "curve" is just a point
            lineTo(middle[0], middle[1]);
            return;
        }
        // if these vectors are too small, normalize them, to avoid future
        // precision problems.
        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
            float len = (float) sqrt(dxs*dxs + dys*dys);
            dxs /= len;
            dys /= len;
        }
        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
            float len = (float) sqrt(dxf*dxf + dyf*dyf);
            dxf /= len;
            dyf /= len;
        }

        computeOffset(dxs, dys, lineWidth2, offset0);
        final float mx = offset0[0];
        final float my = offset0[1];
        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);

        int nSplits = findSubdivPoints(curve, middle, subdivTs, type, lineWidth2);

        int kind = 0;
        BreakPtrIterator it = curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
        while(it.hasNext()) {
            int curCurveOff = it.next();

            switch (type) {
            case 8:
                kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
                break;
            case 6:
                kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
                break;
            }
            emitLineTo(lp[0], lp[1]);
            switch(kind) {
            case 8:
                emitCurveTo(lp[2], lp[3], lp[4], lp[5], lp[6], lp[7]);
                emitCurveToRev(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5]);
                break;
            case 6:
                emitQuadTo(lp[2], lp[3], lp[4], lp[5]);
                emitQuadToRev(rp[0], rp[1], rp[2], rp[3]);
                break;
            case 4:
                emitLineTo(lp[2], lp[3]);
                emitLineTo(rp[0], rp[1], true);
                break;
            }
            emitLineTo(rp[kind - 2], rp[kind - 1], true);
        }

        this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
        this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
        this.cdx = dxf;
        this.cdy = dyf;
        this.cx0 = xf;
        this.cy0 = yf;
        this.prev = DRAWING_OP_TO;
    }
****************************** END WORKAROUND *******************************/

    // finds values of t where the curve in pts should be subdivided in order
    // to get good offset curves a distance of w away from the middle curve.
    // Stores the points in ts, and returns how many of them there were.
    private static int findSubdivPoints(final Curve c, float[] pts, float[] ts,
                                        final int type, final float w)
    {
        final float x12 = pts[2] - pts[0];
        final float y12 = pts[3] - pts[1];
        // if the curve is already parallel to either axis we gain nothing
        // from rotating it.
        if (y12 != 0f && x12 != 0f) {
            // we rotate it so that the first vector in the control polygon is
            // parallel to the x-axis. This will ensure that rotated quarter
            // circles won't be subdivided.
            final float hypot = (float) sqrt(x12 * x12 + y12 * y12);
            final float cos = x12 / hypot;
            final float sin = y12 / hypot;
            final float x1 = cos * pts[0] + sin * pts[1];
            final float y1 = cos * pts[1] - sin * pts[0];
            final float x2 = cos * pts[2] + sin * pts[3];
            final float y2 = cos * pts[3] - sin * pts[2];
            final float x3 = cos * pts[4] + sin * pts[5];
            final float y3 = cos * pts[5] - sin * pts[4];

            switch(type) {
            case 8:
                final float x4 = cos * pts[6] + sin * pts[7];
                final float y4 = cos * pts[7] - sin * pts[6];
                c.set(x1, y1, x2, y2, x3, y3, x4, y4);
                break;
            case 6:
                c.set(x1, y1, x2, y2, x3, y3);
                break;
            default:
            }
        } else {
            c.set(pts, type);
        }

        int ret = 0;
        // we subdivide at values of t such that the remaining rotated
        // curves are monotonic in x and y.
        ret += c.dxRoots(ts, ret);
        ret += c.dyRoots(ts, ret);
        // subdivide at inflection points.
        if (type == 8) {
            // quadratic curves can't have inflection points
            ret += c.infPoints(ts, ret);
        }

        // now we must subdivide at points where one of the offset curves will have
        // a cusp. This happens at ts where the radius of curvature is equal to w.
        ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f);

        ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);
        Helpers.isort(ts, 0, ret);
        return ret;
    }

    @Override public void curveTo(float x1, float y1,
                                  float x2, float y2,
                                  float x3, float y3)
    {
        final float[] mid = middle;

        mid[0] = cx0; mid[1] = cy0;
        mid[2] = x1;  mid[3] = y1;
        mid[4] = x2;  mid[5] = y2;
        mid[6] = x3;  mid[7] = y3;

        // inlined version of somethingTo(8);
        // See the TODO on somethingTo

        // need these so we can update the state at the end of this method
        final float xf = mid[6], yf = mid[7];
        float dxs = mid[2] - mid[0];
        float dys = mid[3] - mid[1];
        float dxf = mid[6] - mid[4];
        float dyf = mid[7] - mid[5];

        boolean p1eqp2 = (dxs == 0f && dys == 0f);
        boolean p3eqp4 = (dxf == 0f && dyf == 0f);
        if (p1eqp2) {
            dxs = mid[4] - mid[0];
            dys = mid[5] - mid[1];
            if (dxs == 0f && dys == 0f) {
                dxs = mid[6] - mid[0];
                dys = mid[7] - mid[1];
            }
        }
        if (p3eqp4) {
            dxf = mid[6] - mid[2];
            dyf = mid[7] - mid[3];
            if (dxf == 0f && dyf == 0f) {
                dxf = mid[6] - mid[0];
                dyf = mid[7] - mid[1];
            }
        }
        if (dxs == 0f && dys == 0f) {
            // this happens if the "curve" is just a point
            lineTo(mid[0], mid[1]);
            return;
        }

        // if these vectors are too small, normalize them, to avoid future
        // precision problems.
        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
            float len = (float) sqrt(dxs*dxs + dys*dys);
            dxs /= len;
            dys /= len;
        }
        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
            float len = (float) sqrt(dxf*dxf + dyf*dyf);
            dxf /= len;
            dyf /= len;
        }

        computeOffset(dxs, dys, lineWidth2, offset0);
        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);

        int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);

        final float[] l = lp;
        final float[] r = rp;

        int kind = 0;
        BreakPtrIterator it = curve.breakPtsAtTs(mid, 8, subdivTs, nSplits);
        while(it.hasNext()) {
            int curCurveOff = it.next();

            kind = computeOffsetCubic(mid, curCurveOff, l, r);
            emitLineTo(l[0], l[1]);

            switch(kind) {
            case 8:
                emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
                emitCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);
                break;
            case 4:
                emitLineTo(l[2], l[3]);
                emitLineToRev(r[0], r[1]);
                break;
            default:
            }
            emitLineToRev(r[kind - 2], r[kind - 1]);
        }

        this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;
        this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;
        this.cdx = dxf;
        this.cdy = dyf;
        this.cx0 = xf;
        this.cy0 = yf;
        this.prev = DRAWING_OP_TO;
    }

    @Override public void quadTo(float x1, float y1, float x2, float y2) {
        final float[] mid = middle;

        mid[0] = cx0; mid[1] = cy0;
        mid[2] = x1;  mid[3] = y1;
        mid[4] = x2;  mid[5] = y2;

        // inlined version of somethingTo(8);
        // See the TODO on somethingTo

        // need these so we can update the state at the end of this method
        final float xf = mid[4], yf = mid[5];
        float dxs = mid[2] - mid[0];
        float dys = mid[3] - mid[1];
        float dxf = mid[4] - mid[2];
        float dyf = mid[5] - mid[3];
        if ((dxs == 0f && dys == 0f) || (dxf == 0f && dyf == 0f)) {
            dxs = dxf = mid[4] - mid[0];
            dys = dyf = mid[5] - mid[1];
        }
        if (dxs == 0f && dys == 0f) {
            // this happens if the "curve" is just a point
            lineTo(mid[0], mid[1]);
            return;
        }
        // if these vectors are too small, normalize them, to avoid future
        // precision problems.
        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
            float len = (float) sqrt(dxs*dxs + dys*dys);
            dxs /= len;
            dys /= len;
        }
        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
            float len = (float) sqrt(dxf*dxf + dyf*dyf);
            dxf /= len;
            dyf /= len;
        }

        computeOffset(dxs, dys, lineWidth2, offset0);
        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);

        int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2);

        final float[] l = lp;
        final float[] r = rp;

        int kind = 0;
        BreakPtrIterator it = curve.breakPtsAtTs(mid, 6, subdivTs, nSplits);
        while(it.hasNext()) {
            int curCurveOff = it.next();

            kind = computeOffsetQuad(mid, curCurveOff, l, r);
            emitLineTo(l[0], l[1]);

            switch(kind) {
            case 6:
                emitQuadTo(l[2], l[3], l[4], l[5]);
                emitQuadToRev(r[0], r[1], r[2], r[3]);
                break;
            case 4:
                emitLineTo(l[2], l[3]);
                emitLineToRev(r[0], r[1]);
                break;
            default:
            }
            emitLineToRev(r[kind - 2], r[kind - 1]);
        }

        this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;
        this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;
        this.cdx = dxf;
        this.cdy = dyf;
        this.cx0 = xf;
        this.cy0 = yf;
        this.prev = DRAWING_OP_TO;
    }

    @Override public long getNativeConsumer() {
        throw new InternalError("Stroker doesn't use a native consumer");
    }

    // a stack of polynomial curves where each curve shares endpoints with
    // adjacent ones.
    static final class PolyStack {
        private static final byte TYPE_LINETO  = (byte) 0;
        private static final byte TYPE_QUADTO  = (byte) 1;
        private static final byte TYPE_CUBICTO = (byte) 2;

        float[] curves;
        int end;
        byte[] curveTypes;
        int numCurves;

        // per-thread renderer context
        final RendererContext rdrCtx;

        // per-thread initial arrays (large enough to satisfy most usages: 8192)
        // +1 to avoid recycling in Helpers.widenArray()
        private final float[] curves_initial = new float[INITIAL_LARGE_ARRAY + 1]; // 32K
        private final byte[] curveTypes_initial = new byte[INITIAL_LARGE_ARRAY + 1]; // 8K

        // used marks (stats only)
        int curveTypesUseMark;
        int curvesUseMark;

        /**
         * Constructor
         * @param rdrCtx per-thread renderer context
         */
        PolyStack(final RendererContext rdrCtx) {
            this.rdrCtx = rdrCtx;

            curves = curves_initial;
            curveTypes = curveTypes_initial;
            end = 0;
            numCurves = 0;

            if (doStats) {
                curveTypesUseMark = 0;
                curvesUseMark = 0;
            }
        }

        /**
         * Disposes this PolyStack:
         * clean up before reusing this instance
         */
        void dispose() {
            end = 0;
            numCurves = 0;

            if (doStats) {
                RendererContext.stats.stat_rdr_poly_stack_types
                    .add(curveTypesUseMark);
                RendererContext.stats.stat_rdr_poly_stack_curves
                    .add(curvesUseMark);
                // reset marks
                curveTypesUseMark = 0;
                curvesUseMark = 0;
            }

            // Return arrays:
            // curves and curveTypes are kept dirty
            if (curves != curves_initial) {
                rdrCtx.putDirtyFloatArray(curves);
                curves = curves_initial;
            }

            if (curveTypes != curveTypes_initial) {
                rdrCtx.putDirtyByteArray(curveTypes);
                curveTypes = curveTypes_initial;
            }
        }

        private void ensureSpace(final int n) {
1278 1279
            // use substraction to avoid integer overflow:
            if (curves.length - end < n) {
1280 1281 1282 1283 1284 1285
                if (doStats) {
                    RendererContext.stats.stat_array_stroker_polystack_curves
                        .add(end + n);
                }
                curves = rdrCtx.widenDirtyFloatArray(curves, end, end + n);
            }
1286
            if (curveTypes.length <= numCurves) {
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
                if (doStats) {
                    RendererContext.stats.stat_array_stroker_polystack_curveTypes
                        .add(numCurves + 1);
                }
                curveTypes = rdrCtx.widenDirtyByteArray(curveTypes,
                                                        numCurves,
                                                        numCurves + 1);
            }
        }

        void pushCubic(float x0, float y0,
                       float x1, float y1,
                       float x2, float y2)
        {
            ensureSpace(6);
            curveTypes[numCurves++] = TYPE_CUBICTO;
            // we reverse the coordinate order to make popping easier
            final float[] _curves = curves;
            int e = end;
            _curves[e++] = x2;    _curves[e++] = y2;
            _curves[e++] = x1;    _curves[e++] = y1;
            _curves[e++] = x0;    _curves[e++] = y0;
            end = e;
        }

        void pushQuad(float x0, float y0,
                      float x1, float y1)
        {
            ensureSpace(4);
            curveTypes[numCurves++] = TYPE_QUADTO;
            final float[] _curves = curves;
            int e = end;
            _curves[e++] = x1;    _curves[e++] = y1;
            _curves[e++] = x0;    _curves[e++] = y0;
            end = e;
        }

        void pushLine(float x, float y) {
            ensureSpace(2);
            curveTypes[numCurves++] = TYPE_LINETO;
            curves[end++] = x;    curves[end++] = y;
        }

        void popAll(PathConsumer2D io) {
            if (doStats) {
                // update used marks:
                if (numCurves > curveTypesUseMark) {
                    curveTypesUseMark = numCurves;
                }
                if (end > curvesUseMark) {
                    curvesUseMark = end;
                }
            }
            final byte[]  _curveTypes = curveTypes;
            final float[] _curves = curves;
            int nc = numCurves;
            int e  = end;

            while (nc != 0) {
                switch(_curveTypes[--nc]) {
                case TYPE_LINETO:
                    e -= 2;
                    io.lineTo(_curves[e], _curves[e+1]);
                    continue;
                case TYPE_QUADTO:
                    e -= 4;
                    io.quadTo(_curves[e+0], _curves[e+1],
                              _curves[e+2], _curves[e+3]);
                    continue;
                case TYPE_CUBICTO:
                    e -= 6;
                    io.curveTo(_curves[e+0], _curves[e+1],
                               _curves[e+2], _curves[e+3],
                               _curves[e+4], _curves[e+5]);
                    continue;
                default:
                }
            }
            numCurves = 0;
            end = 0;
        }

        @Override
        public String toString() {
            String ret = "";
            int nc = numCurves;
            int e  = end;
            int len;
            while (nc != 0) {
                switch(curveTypes[--nc]) {
                case TYPE_LINETO:
                    len = 2;
                    ret += "line: ";
                    break;
                case TYPE_QUADTO:
                    len = 4;
                    ret += "quad: ";
                    break;
                case TYPE_CUBICTO:
                    len = 6;
                    ret += "cubic: ";
                    break;
                default:
                    len = 0;
                }
                e -= len;
                ret += Arrays.toString(Arrays.copyOfRange(curves, e, e+len))
                                       + "\n";
            }
            return ret;
        }
    }
}