bytes_ppc.hpp 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2012, 2013 SAP AG. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef CPU_PPC_VM_BYTES_PPC_HPP
#define CPU_PPC_VM_BYTES_PPC_HPP

#include "memory/allocation.hpp"

class Bytes: AllStatic {
 public:
  // Efficient reading and writing of unaligned unsigned data in platform-specific byte ordering
  // PowerPC needs to check for alignment.

36
  // Can I count on address always being a pointer to an unsigned char? Yes.
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#if defined(VM_LITTLE_ENDIAN)

  // Returns true, if the byte ordering used by Java is different from the native byte ordering
  // of the underlying machine. For example, true for Intel x86, False, for Solaris on Sparc.
  static inline bool is_Java_byte_ordering_different() { return true; }

  // Forward declarations of the compiler-dependent implementation
  static inline u2 swap_u2(u2 x);
  static inline u4 swap_u4(u4 x);
  static inline u8 swap_u8(u8 x);

  static inline u2   get_native_u2(address p) {
    return (intptr_t(p) & 1) == 0
             ?   *(u2*)p
             :   ( u2(p[1]) << 8 )
               | ( u2(p[0])      );
  }

  static inline u4   get_native_u4(address p) {
    switch (intptr_t(p) & 3) {
     case 0:  return *(u4*)p;

     case 2:  return (  u4( ((u2*)p)[1] ) << 16  )
                   | (  u4( ((u2*)p)[0] )        );

    default:  return ( u4(p[3]) << 24 )
                   | ( u4(p[2]) << 16 )
                   | ( u4(p[1]) <<  8 )
                   |   u4(p[0]);
    }
  }

  static inline u8   get_native_u8(address p) {
    switch (intptr_t(p) & 7) {
      case 0:  return *(u8*)p;

      case 4:  return (  u8( ((u4*)p)[1] ) << 32  )
                    | (  u8( ((u4*)p)[0] )        );

      case 2:  return (  u8( ((u2*)p)[3] ) << 48  )
                    | (  u8( ((u2*)p)[2] ) << 32  )
                    | (  u8( ((u2*)p)[1] ) << 16  )
                    | (  u8( ((u2*)p)[0] )        );

     default:  return ( u8(p[7]) << 56 )
                    | ( u8(p[6]) << 48 )
                    | ( u8(p[5]) << 40 )
                    | ( u8(p[4]) << 32 )
                    | ( u8(p[3]) << 24 )
                    | ( u8(p[2]) << 16 )
                    | ( u8(p[1]) <<  8 )
                    |   u8(p[0]);
    }
  }



  static inline void put_native_u2(address p, u2 x) {
    if ( (intptr_t(p) & 1) == 0 )  *(u2*)p = x;
    else {
      p[1] = x >> 8;
      p[0] = x;
    }
  }

  static inline void put_native_u4(address p, u4 x) {
    switch ( intptr_t(p) & 3 ) {
    case 0:  *(u4*)p = x;
              break;

    case 2:  ((u2*)p)[1] = x >> 16;
             ((u2*)p)[0] = x;
             break;

    default: ((u1*)p)[3] = x >> 24;
             ((u1*)p)[2] = x >> 16;
             ((u1*)p)[1] = x >>  8;
             ((u1*)p)[0] = x;
             break;
    }
  }

  static inline void put_native_u8(address p, u8 x) {
    switch ( intptr_t(p) & 7 ) {
    case 0:  *(u8*)p = x;
             break;

    case 4:  ((u4*)p)[1] = x >> 32;
             ((u4*)p)[0] = x;
             break;

    case 2:  ((u2*)p)[3] = x >> 48;
             ((u2*)p)[2] = x >> 32;
             ((u2*)p)[1] = x >> 16;
             ((u2*)p)[0] = x;
             break;

    default: ((u1*)p)[7] = x >> 56;
             ((u1*)p)[6] = x >> 48;
             ((u1*)p)[5] = x >> 40;
             ((u1*)p)[4] = x >> 32;
             ((u1*)p)[3] = x >> 24;
             ((u1*)p)[2] = x >> 16;
             ((u1*)p)[1] = x >>  8;
             ((u1*)p)[0] = x;
    }
  }

  // Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering)
  // (no byte-order reversal is needed since Power CPUs are big-endian oriented).
  static inline u2   get_Java_u2(address p) { return swap_u2(get_native_u2(p)); }
  static inline u4   get_Java_u4(address p) { return swap_u4(get_native_u4(p)); }
  static inline u8   get_Java_u8(address p) { return swap_u8(get_native_u8(p)); }

  static inline void put_Java_u2(address p, u2 x)     { put_native_u2(p, swap_u2(x)); }
  static inline void put_Java_u4(address p, u4 x)     { put_native_u4(p, swap_u4(x)); }
  static inline void put_Java_u8(address p, u8 x)     { put_native_u8(p, swap_u8(x)); }

#else // !defined(VM_LITTLE_ENDIAN)

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  // Returns true, if the byte ordering used by Java is different from the nativ byte ordering
  // of the underlying machine. For example, true for Intel x86, False, for Solaris on Sparc.
  static inline bool is_Java_byte_ordering_different() { return false; }

  // Thus, a swap between native and Java ordering is always a no-op:
  static inline u2   swap_u2(u2 x)  { return x; }
  static inline u4   swap_u4(u4 x)  { return x; }
  static inline u8   swap_u8(u8 x)  { return x; }

  static inline u2   get_native_u2(address p) {
    return (intptr_t(p) & 1) == 0
             ?   *(u2*)p
             :   ( u2(p[0]) << 8 )
               | ( u2(p[1])      );
  }

  static inline u4   get_native_u4(address p) {
    switch (intptr_t(p) & 3) {
     case 0:  return *(u4*)p;

     case 2:  return (  u4( ((u2*)p)[0] ) << 16  )
                   | (  u4( ((u2*)p)[1] )        );

    default:  return ( u4(p[0]) << 24 )
                   | ( u4(p[1]) << 16 )
                   | ( u4(p[2]) <<  8 )
                   |   u4(p[3]);
    }
  }

  static inline u8   get_native_u8(address p) {
    switch (intptr_t(p) & 7) {
      case 0:  return *(u8*)p;

      case 4:  return (  u8( ((u4*)p)[0] ) << 32  )
                    | (  u8( ((u4*)p)[1] )        );

      case 2:  return (  u8( ((u2*)p)[0] ) << 48  )
                    | (  u8( ((u2*)p)[1] ) << 32  )
                    | (  u8( ((u2*)p)[2] ) << 16  )
                    | (  u8( ((u2*)p)[3] )        );

     default:  return ( u8(p[0]) << 56 )
                    | ( u8(p[1]) << 48 )
                    | ( u8(p[2]) << 40 )
                    | ( u8(p[3]) << 32 )
                    | ( u8(p[4]) << 24 )
                    | ( u8(p[5]) << 16 )
                    | ( u8(p[6]) <<  8 )
                    |   u8(p[7]);
    }
  }



  static inline void put_native_u2(address p, u2 x) {
    if ( (intptr_t(p) & 1) == 0 ) { *(u2*)p = x; }
    else {
      p[0] = x >> 8;
      p[1] = x;
    }
  }

  static inline void put_native_u4(address p, u4 x) {
    switch ( intptr_t(p) & 3 ) {
    case 0:  *(u4*)p = x;
              break;

    case 2:  ((u2*)p)[0] = x >> 16;
             ((u2*)p)[1] = x;
             break;

    default: ((u1*)p)[0] = x >> 24;
             ((u1*)p)[1] = x >> 16;
             ((u1*)p)[2] = x >>  8;
             ((u1*)p)[3] = x;
             break;
    }
  }

  static inline void put_native_u8(address p, u8 x) {
    switch ( intptr_t(p) & 7 ) {
    case 0:  *(u8*)p = x;
             break;

    case 4:  ((u4*)p)[0] = x >> 32;
             ((u4*)p)[1] = x;
             break;

    case 2:  ((u2*)p)[0] = x >> 48;
             ((u2*)p)[1] = x >> 32;
             ((u2*)p)[2] = x >> 16;
             ((u2*)p)[3] = x;
             break;

    default: ((u1*)p)[0] = x >> 56;
             ((u1*)p)[1] = x >> 48;
             ((u1*)p)[2] = x >> 40;
             ((u1*)p)[3] = x >> 32;
             ((u1*)p)[4] = x >> 24;
             ((u1*)p)[5] = x >> 16;
             ((u1*)p)[6] = x >>  8;
             ((u1*)p)[7] = x;
    }
  }

  // Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering)
  // (no byte-order reversal is needed since Power CPUs are big-endian oriented).
  static inline u2   get_Java_u2(address p) { return get_native_u2(p); }
  static inline u4   get_Java_u4(address p) { return get_native_u4(p); }
  static inline u8   get_Java_u8(address p) { return get_native_u8(p); }

  static inline void put_Java_u2(address p, u2 x)     { put_native_u2(p, x); }
  static inline void put_Java_u4(address p, u4 x)     { put_native_u4(p, x); }
  static inline void put_Java_u8(address p, u8 x)     { put_native_u8(p, x); }
273 274

#endif // VM_LITTLE_ENDIAN
275 276
};

277 278 279 280
#if defined(TARGET_OS_ARCH_linux_ppc)
#include "bytes_linux_ppc.inline.hpp"
#endif

281
#endif // CPU_PPC_VM_BYTES_PPC_HPP