/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * Copyright 2012, 2013 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_PPC_VM_BYTES_PPC_HPP #define CPU_PPC_VM_BYTES_PPC_HPP #include "memory/allocation.hpp" class Bytes: AllStatic { public: // Efficient reading and writing of unaligned unsigned data in platform-specific byte ordering // PowerPC needs to check for alignment. // Can I count on address always being a pointer to an unsigned char? Yes. #if defined(VM_LITTLE_ENDIAN) // Returns true, if the byte ordering used by Java is different from the native byte ordering // of the underlying machine. For example, true for Intel x86, False, for Solaris on Sparc. static inline bool is_Java_byte_ordering_different() { return true; } // Forward declarations of the compiler-dependent implementation static inline u2 swap_u2(u2 x); static inline u4 swap_u4(u4 x); static inline u8 swap_u8(u8 x); static inline u2 get_native_u2(address p) { return (intptr_t(p) & 1) == 0 ? *(u2*)p : ( u2(p[1]) << 8 ) | ( u2(p[0]) ); } static inline u4 get_native_u4(address p) { switch (intptr_t(p) & 3) { case 0: return *(u4*)p; case 2: return ( u4( ((u2*)p)[1] ) << 16 ) | ( u4( ((u2*)p)[0] ) ); default: return ( u4(p[3]) << 24 ) | ( u4(p[2]) << 16 ) | ( u4(p[1]) << 8 ) | u4(p[0]); } } static inline u8 get_native_u8(address p) { switch (intptr_t(p) & 7) { case 0: return *(u8*)p; case 4: return ( u8( ((u4*)p)[1] ) << 32 ) | ( u8( ((u4*)p)[0] ) ); case 2: return ( u8( ((u2*)p)[3] ) << 48 ) | ( u8( ((u2*)p)[2] ) << 32 ) | ( u8( ((u2*)p)[1] ) << 16 ) | ( u8( ((u2*)p)[0] ) ); default: return ( u8(p[7]) << 56 ) | ( u8(p[6]) << 48 ) | ( u8(p[5]) << 40 ) | ( u8(p[4]) << 32 ) | ( u8(p[3]) << 24 ) | ( u8(p[2]) << 16 ) | ( u8(p[1]) << 8 ) | u8(p[0]); } } static inline void put_native_u2(address p, u2 x) { if ( (intptr_t(p) & 1) == 0 ) *(u2*)p = x; else { p[1] = x >> 8; p[0] = x; } } static inline void put_native_u4(address p, u4 x) { switch ( intptr_t(p) & 3 ) { case 0: *(u4*)p = x; break; case 2: ((u2*)p)[1] = x >> 16; ((u2*)p)[0] = x; break; default: ((u1*)p)[3] = x >> 24; ((u1*)p)[2] = x >> 16; ((u1*)p)[1] = x >> 8; ((u1*)p)[0] = x; break; } } static inline void put_native_u8(address p, u8 x) { switch ( intptr_t(p) & 7 ) { case 0: *(u8*)p = x; break; case 4: ((u4*)p)[1] = x >> 32; ((u4*)p)[0] = x; break; case 2: ((u2*)p)[3] = x >> 48; ((u2*)p)[2] = x >> 32; ((u2*)p)[1] = x >> 16; ((u2*)p)[0] = x; break; default: ((u1*)p)[7] = x >> 56; ((u1*)p)[6] = x >> 48; ((u1*)p)[5] = x >> 40; ((u1*)p)[4] = x >> 32; ((u1*)p)[3] = x >> 24; ((u1*)p)[2] = x >> 16; ((u1*)p)[1] = x >> 8; ((u1*)p)[0] = x; } } // Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering) // (no byte-order reversal is needed since Power CPUs are big-endian oriented). static inline u2 get_Java_u2(address p) { return swap_u2(get_native_u2(p)); } static inline u4 get_Java_u4(address p) { return swap_u4(get_native_u4(p)); } static inline u8 get_Java_u8(address p) { return swap_u8(get_native_u8(p)); } static inline void put_Java_u2(address p, u2 x) { put_native_u2(p, swap_u2(x)); } static inline void put_Java_u4(address p, u4 x) { put_native_u4(p, swap_u4(x)); } static inline void put_Java_u8(address p, u8 x) { put_native_u8(p, swap_u8(x)); } #else // !defined(VM_LITTLE_ENDIAN) // Returns true, if the byte ordering used by Java is different from the nativ byte ordering // of the underlying machine. For example, true for Intel x86, False, for Solaris on Sparc. static inline bool is_Java_byte_ordering_different() { return false; } // Thus, a swap between native and Java ordering is always a no-op: static inline u2 swap_u2(u2 x) { return x; } static inline u4 swap_u4(u4 x) { return x; } static inline u8 swap_u8(u8 x) { return x; } static inline u2 get_native_u2(address p) { return (intptr_t(p) & 1) == 0 ? *(u2*)p : ( u2(p[0]) << 8 ) | ( u2(p[1]) ); } static inline u4 get_native_u4(address p) { switch (intptr_t(p) & 3) { case 0: return *(u4*)p; case 2: return ( u4( ((u2*)p)[0] ) << 16 ) | ( u4( ((u2*)p)[1] ) ); default: return ( u4(p[0]) << 24 ) | ( u4(p[1]) << 16 ) | ( u4(p[2]) << 8 ) | u4(p[3]); } } static inline u8 get_native_u8(address p) { switch (intptr_t(p) & 7) { case 0: return *(u8*)p; case 4: return ( u8( ((u4*)p)[0] ) << 32 ) | ( u8( ((u4*)p)[1] ) ); case 2: return ( u8( ((u2*)p)[0] ) << 48 ) | ( u8( ((u2*)p)[1] ) << 32 ) | ( u8( ((u2*)p)[2] ) << 16 ) | ( u8( ((u2*)p)[3] ) ); default: return ( u8(p[0]) << 56 ) | ( u8(p[1]) << 48 ) | ( u8(p[2]) << 40 ) | ( u8(p[3]) << 32 ) | ( u8(p[4]) << 24 ) | ( u8(p[5]) << 16 ) | ( u8(p[6]) << 8 ) | u8(p[7]); } } static inline void put_native_u2(address p, u2 x) { if ( (intptr_t(p) & 1) == 0 ) { *(u2*)p = x; } else { p[0] = x >> 8; p[1] = x; } } static inline void put_native_u4(address p, u4 x) { switch ( intptr_t(p) & 3 ) { case 0: *(u4*)p = x; break; case 2: ((u2*)p)[0] = x >> 16; ((u2*)p)[1] = x; break; default: ((u1*)p)[0] = x >> 24; ((u1*)p)[1] = x >> 16; ((u1*)p)[2] = x >> 8; ((u1*)p)[3] = x; break; } } static inline void put_native_u8(address p, u8 x) { switch ( intptr_t(p) & 7 ) { case 0: *(u8*)p = x; break; case 4: ((u4*)p)[0] = x >> 32; ((u4*)p)[1] = x; break; case 2: ((u2*)p)[0] = x >> 48; ((u2*)p)[1] = x >> 32; ((u2*)p)[2] = x >> 16; ((u2*)p)[3] = x; break; default: ((u1*)p)[0] = x >> 56; ((u1*)p)[1] = x >> 48; ((u1*)p)[2] = x >> 40; ((u1*)p)[3] = x >> 32; ((u1*)p)[4] = x >> 24; ((u1*)p)[5] = x >> 16; ((u1*)p)[6] = x >> 8; ((u1*)p)[7] = x; } } // Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering) // (no byte-order reversal is needed since Power CPUs are big-endian oriented). static inline u2 get_Java_u2(address p) { return get_native_u2(p); } static inline u4 get_Java_u4(address p) { return get_native_u4(p); } static inline u8 get_Java_u8(address p) { return get_native_u8(p); } static inline void put_Java_u2(address p, u2 x) { put_native_u2(p, x); } static inline void put_Java_u4(address p, u4 x) { put_native_u4(p, x); } static inline void put_Java_u8(address p, u8 x) { put_native_u8(p, x); } #endif // VM_LITTLE_ENDIAN }; #if defined(TARGET_OS_ARCH_linux_ppc) #include "bytes_linux_ppc.inline.hpp" #endif #endif // CPU_PPC_VM_BYTES_PPC_HPP