divnode.cpp 48.5 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/connode.hpp"
#include "opto/divnode.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"

D
duke 已提交
36 37 38 39 40 41
// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

#include <math.h>

R
rasbold 已提交
42 43 44 45 46
//----------------------magic_int_divide_constants-----------------------------
// Compute magic multiplier and shift constant for converting a 32 bit divide
// by constant into a multiply/shift/add series. Return false if calculations
// fail.
//
T
twisti 已提交
47
// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
R
rasbold 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
// minor type name and parameter changes.
static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
  int32_t p;
  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint32_t two31 = 0x80000000L;     // 2**31.

  ad = ABS(d);
  if (d == 0 || d == 1) return false;
  t = two31 + ((uint32_t)d >> 31);
  anc = t - 1 - t%ad;     // Absolute value of nc.
  p = 31;                 // Init. p.
  q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
  r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  q2 = two31/ad;          // Init. q2 = 2**p/|d|.
  r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  do {
    p = p + 1;
    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    if (r1 >= anc) {      // (Must be an unsigned
      q1 = q1 + 1;        // comparison here).
      r1 = r1 - anc;
    }
    q2 = 2*q2;            // Update q2 = 2**p/|d|.
    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    if (r2 >= ad) {       // (Must be an unsigned
      q2 = q2 + 1;        // comparison here).
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));

  M = q2 + 1;
  if (d < 0) M = -M;      // Magic number and
  s = p - 32;             // shift amount to return.

  return true;
}

//--------------------------transform_int_divide-------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
D
duke 已提交
91 92

  // Check for invalid divisors
R
rasbold 已提交
93 94
  assert( divisor != 0 && divisor != min_jint,
          "bad divisor for transforming to long multiply" );
D
duke 已提交
95 96

  bool d_pos = divisor >= 0;
R
rasbold 已提交
97
  jint d = d_pos ? divisor : -divisor;
D
duke 已提交
98 99 100
  const int N = 32;

  // Result
R
rasbold 已提交
101
  Node *q = NULL;
D
duke 已提交
102 103

  if (d == 1) {
R
rasbold 已提交
104 105 106
    // division by +/- 1
    if (!d_pos) {
      // Just negate the value
D
duke 已提交
107 108
      q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
    }
R
rasbold 已提交
109 110
  } else if ( is_power_of_2(d) ) {
    // division by +/- a power of 2
D
duke 已提交
111 112 113 114 115

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeInt *dti = dt->isa_int();
R
rasbold 已提交
116 117
    if (dti && dti->_lo >= 0) {
      // we don't need to round a positive dividend
D
duke 已提交
118
      needs_rounding = false;
R
rasbold 已提交
119 120 121
    } else if( dividend->Opcode() == Op_AndI ) {
      // An AND mask of sufficient size clears the low bits and
      // I can avoid rounding.
122 123 124 125
      const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
      if( andconi_t && andconi_t->is_con() ) {
        jint andconi = andconi_t->get_con();
        if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
126 127
          if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
            dividend = dividend->in(1);
128 129
          needs_rounding = false;
        }
D
duke 已提交
130 131 132 133
      }
    }

    // Add rounding to the shift to handle the sign bit
R
rasbold 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    int l = log2_intptr(d-1)+1;
    if (needs_rounding) {
      // Divide-by-power-of-2 can be made into a shift, but you have to do
      // more math for the rounding.  You need to add 0 for positive
      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
      // shift is by 2.  You need to add 3 to negative dividends and 0 to
      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
      // (-2+3)>>2 becomes 0, etc.

      // Compute 0 or -1, based on sign bit
      Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
      // Mask sign bit to the low sign bits
      Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
      // Round up before shifting
      dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
D
duke 已提交
149 150
    }

R
rasbold 已提交
151
    // Shift for division
D
duke 已提交
152 153
    q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));

R
rasbold 已提交
154
    if (!d_pos) {
D
duke 已提交
155
      q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
R
rasbold 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    }
  } else {
    // Attempt the jint constant divide -> multiply transform found in
    //   "Division by Invariant Integers using Multiplication"
    //     by Granlund and Montgomery
    // See also "Hacker's Delight", chapter 10 by Warren.

    jint magic_const;
    jint shift_const;
    if (magic_int_divide_constants(d, magic_const, shift_const)) {
      Node *magic = phase->longcon(magic_const);
      Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));

      // Compute the high half of the dividend x magic multiplication
      Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));

      if (magic_const < 0) {
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
        mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));

        // The magic multiplier is too large for a 32 bit constant. We've adjusted
        // it down by 2^32, but have to add 1 dividend back in after the multiplication.
        // This handles the "overflow" case described by Granlund and Montgomery.
        mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));

        // Shift over the (adjusted) mulhi
        if (shift_const != 0) {
          mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
        }
      } else {
        // No add is required, we can merge the shifts together.
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
        mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
      }

      // Get a 0 or -1 from the sign of the dividend.
      Node *addend0 = mul_hi;
      Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));

      // If the divisor is negative, swap the order of the input addends;
      // this has the effect of negating the quotient.
      if (!d_pos) {
        Node *temp = addend0; addend0 = addend1; addend1 = temp;
      }

      // Adjust the final quotient by subtracting -1 (adding 1)
      // from the mul_hi.
      q = new (phase->C, 3) SubINode(addend0, addend1);
    }
D
duke 已提交
205 206
  }

R
rasbold 已提交
207 208 209 210 211 212 213 214
  return q;
}

//---------------------magic_long_divide_constants-----------------------------
// Compute magic multiplier and shift constant for converting a 64 bit divide
// by constant into a multiply/shift/add series. Return false if calculations
// fail.
//
T
twisti 已提交
215
// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
R
rasbold 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
// minor type name and parameter changes.  Adjusted to 64 bit word width.
static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
  int64_t p;
  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint64_t two63 = 0x8000000000000000LL;     // 2**63.

  ad = ABS(d);
  if (d == 0 || d == 1) return false;
  t = two63 + ((uint64_t)d >> 63);
  anc = t - 1 - t%ad;     // Absolute value of nc.
  p = 63;                 // Init. p.
  q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
  r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  q2 = two63/ad;          // Init. q2 = 2**p/|d|.
  r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  do {
    p = p + 1;
    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    if (r1 >= anc) {      // (Must be an unsigned
      q1 = q1 + 1;        // comparison here).
      r1 = r1 - anc;
    }
    q2 = 2*q2;            // Update q2 = 2**p/|d|.
    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    if (r2 >= ad) {       // (Must be an unsigned
      q2 = q2 + 1;        // comparison here).
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));

  M = q2 + 1;
  if (d < 0) M = -M;      // Magic number and
  s = p - 64;             // shift amount to return.

  return true;
}
D
duke 已提交
254

R
rasbold 已提交
255 256
//---------------------long_by_long_mulhi--------------------------------------
// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
257
static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
R
rasbold 已提交
258 259 260
  // If the architecture supports a 64x64 mulhi, there is
  // no need to synthesize it in ideal nodes.
  if (Matcher::has_match_rule(Op_MulHiL)) {
261
    Node* v = phase->longcon(magic_const);
R
rasbold 已提交
262
    return new (phase->C, 3) MulHiLNode(dividend, v);
D
duke 已提交
263 264
  }

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
  // (http://www.hackersdelight.org/HDcode/mulhs.c)
  //
  // int mulhs(int u, int v) {
  //    unsigned u0, v0, w0;
  //    int u1, v1, w1, w2, t;
  //
  //    u0 = u & 0xFFFF;  u1 = u >> 16;
  //    v0 = v & 0xFFFF;  v1 = v >> 16;
  //    w0 = u0*v0;
  //    t  = u1*v0 + (w0 >> 16);
  //    w1 = t & 0xFFFF;
  //    w2 = t >> 16;
  //    w1 = u0*v1 + w1;
  //    return u1*v1 + w2 + (w1 >> 16);
  // }
  //
  // Note: The version above is for 32x32 multiplications, while the
  // following inline comments are adapted to 64x64.

R
rasbold 已提交
285 286
  const int N = 64;

287 288 289
  // Dummy node to keep intermediate nodes alive during construction
  Node* hook = new (phase->C, 4) Node(4);

290 291 292
  // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
  Node* u0 = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
  Node* u1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
293 294
  hook->init_req(0, u0);
  hook->init_req(1, u1);
295 296 297 298 299 300 301 302 303 304 305 306

  // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
  Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
  Node* v1 = phase->longcon(magic_const >> (N / 2));

  // w0 = u0*v0;
  Node* w0 = phase->transform(new (phase->C, 3) MulLNode(u0, v0));

  // t = u1*v0 + (w0 >> 32);
  Node* u1v0 = phase->transform(new (phase->C, 3) MulLNode(u1, v0));
  Node* temp = phase->transform(new (phase->C, 3) URShiftLNode(w0, phase->intcon(N / 2)));
  Node* t    = phase->transform(new (phase->C, 3) AddLNode(u1v0, temp));
307
  hook->init_req(2, t);
R
rasbold 已提交
308

309
  // w1 = t & 0xFFFFFFFF;
310 311
  Node* w1 = phase->transform(new (phase->C, 3) AndLNode(t, phase->longcon(0xFFFFFFFF)));
  hook->init_req(3, w1);
R
rasbold 已提交
312

313
  // w2 = t >> 32;
314
  Node* w2 = phase->transform(new (phase->C, 3) RShiftLNode(t, phase->intcon(N / 2)));
315

316 317 318
  // w1 = u0*v1 + w1;
  Node* u0v1 = phase->transform(new (phase->C, 3) MulLNode(u0, v1));
  w1         = phase->transform(new (phase->C, 3) AddLNode(u0v1, w1));
319

320 321 322 323
  // return u1*v1 + w2 + (w1 >> 32);
  Node* u1v1  = phase->transform(new (phase->C, 3) MulLNode(u1, v1));
  Node* temp1 = phase->transform(new (phase->C, 3) AddLNode(u1v1, w2));
  Node* temp2 = phase->transform(new (phase->C, 3) RShiftLNode(w1, phase->intcon(N / 2)));
R
rasbold 已提交
324

325 326 327 328 329 330 331 332 333 334
  // Remove the bogus extra edges used to keep things alive
  PhaseIterGVN* igvn = phase->is_IterGVN();
  if (igvn != NULL) {
    igvn->remove_dead_node(hook);
  } else {
    for (int i = 0; i < 4; i++) {
      hook->set_req(i, NULL);
    }
  }

335
  return new (phase->C, 3) AddLNode(temp1, temp2);
R
rasbold 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}


//--------------------------transform_long_divide------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
  // Check for invalid divisors
  assert( divisor != 0L && divisor != min_jlong,
          "bad divisor for transforming to long multiply" );

  bool d_pos = divisor >= 0;
  jlong d = d_pos ? divisor : -divisor;
  const int N = 64;

  // Result
  Node *q = NULL;

  if (d == 1) {
    // division by +/- 1
    if (!d_pos) {
      // Just negate the value
      q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
    }
  } else if ( is_power_of_2_long(d) ) {

    // division by +/- a power of 2

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeLong *dtl = dt->isa_long();

    if (dtl && dtl->_lo > 0) {
      // we don't need to round a positive dividend
      needs_rounding = false;
    } else if( dividend->Opcode() == Op_AndL ) {
      // An AND mask of sufficient size clears the low bits and
      // I can avoid rounding.
375 376 377 378
      const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
      if( andconl_t && andconl_t->is_con() ) {
        jlong andconl = andconl_t->get_con();
        if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
379 380
          if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
            dividend = dividend->in(1);
381 382
          needs_rounding = false;
        }
R
rasbold 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
      }
    }

    // Add rounding to the shift to handle the sign bit
    int l = log2_long(d-1)+1;
    if (needs_rounding) {
      // Divide-by-power-of-2 can be made into a shift, but you have to do
      // more math for the rounding.  You need to add 0 for positive
      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
      // shift is by 2.  You need to add 3 to negative dividends and 0 to
      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
      // (-2+3)>>2 becomes 0, etc.

      // Compute 0 or -1, based on sign bit
      Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
      // Mask sign bit to the low sign bits
      Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
      // Round up before shifting
      dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
    }

    // Shift for division
    q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));

    if (!d_pos) {
      q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
    }
410 411
  } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
                                                       // it is faster than code generated below.
R
rasbold 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    // Attempt the jlong constant divide -> multiply transform found in
    //   "Division by Invariant Integers using Multiplication"
    //     by Granlund and Montgomery
    // See also "Hacker's Delight", chapter 10 by Warren.

    jlong magic_const;
    jint shift_const;
    if (magic_long_divide_constants(d, magic_const, shift_const)) {
      // Compute the high half of the dividend x magic multiplication
      Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));

      // The high half of the 128-bit multiply is computed.
      if (magic_const < 0) {
        // The magic multiplier is too large for a 64 bit constant. We've adjusted
        // it down by 2^64, but have to add 1 dividend back in after the multiplication.
        // This handles the "overflow" case described by Granlund and Montgomery.
        mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
      }

      // Shift over the (adjusted) mulhi
      if (shift_const != 0) {
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
      }

      // Get a 0 or -1 from the sign of the dividend.
      Node *addend0 = mul_hi;
      Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));

      // If the divisor is negative, swap the order of the input addends;
      // this has the effect of negating the quotient.
      if (!d_pos) {
        Node *temp = addend0; addend0 = addend1; addend1 = temp;
      }

      // Adjust the final quotient by subtracting -1 (adding 1)
      // from the mul_hi.
      q = new (phase->C, 3) SubLNode(addend0, addend1);
    }
D
duke 已提交
450 451
  }

R
rasbold 已提交
452
  return q;
D
duke 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465
}

//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivINode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Divides can be changed to multiplies and/or shifts
Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
466 467
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
468 469 470 471 472 473 474 475

  const Type *t = phase->type( in(2) );
  if( t == TypeInt::ONE )       // Identity?
    return NULL;                // Skip it

  const TypeInt *ti = t->isa_int();
  if( !ti ) return NULL;
  if( !ti->is_con() ) return NULL;
R
rasbold 已提交
476
  jint i = ti->get_con();       // Get divisor
D
duke 已提交
477 478 479 480 481 482 483 484

  if (i == 0) return NULL;      // Dividing by zero constant does not idealize

  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting

  // Dividing by MININT does not optimize as a power-of-2 shift.
  if( i == min_jint ) return NULL;

R
rasbold 已提交
485
  return transform_int_divide( phase, in(1), i );
D
duke 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
}

//------------------------------Value------------------------------------------
// A DivINode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeInt::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    int32 d = i2->get_con(); // Divisor
    jint lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == -1 && i1->_lo == min_jint ) {
        // 'min_jint/-1' throws arithmetic exception during compilation
        lo = min_jint;
        // do not support holes, 'hi' must go to either min_jint or max_jint:
        // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
        hi = i1->_hi == min_jint ? min_jint : max_jint;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeInt::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    int32 d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jint ) {
        //  (-min_jint) == min_jint == (min_jint / -1)
        return TypeInt::make(min_jint, max_jint/2 + 1, widen);
      } else {
        return TypeInt::make(d, -d, widen);
      }
    }
    return TypeInt::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeInt::INT;
}


//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivLNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Dividing by a power of 2 is a shift.
Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
565 566
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
567 568

  const Type *t = phase->type( in(2) );
R
rasbold 已提交
569
  if( t == TypeLong::ONE )      // Identity?
D
duke 已提交
570 571
    return NULL;                // Skip it

R
rasbold 已提交
572 573 574 575
  const TypeLong *tl = t->isa_long();
  if( !tl ) return NULL;
  if( !tl->is_con() ) return NULL;
  jlong l = tl->get_con();      // Get divisor
D
duke 已提交
576

R
rasbold 已提交
577
  if (l == 0) return NULL;      // Dividing by zero constant does not idealize
D
duke 已提交
578

R
rasbold 已提交
579
  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
D
duke 已提交
580

581
  // Dividing by MINLONG does not optimize as a power-of-2 shift.
R
rasbold 已提交
582
  if( l == min_jlong ) return NULL;
D
duke 已提交
583

R
rasbold 已提交
584
  return transform_long_divide( phase, in(1), l );
D
duke 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

//------------------------------Value------------------------------------------
// A DivLNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeLong::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    jlong d = i2->get_con();    // Divisor
    jlong lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == CONST64(-1) && i1->_lo == min_jlong ) {
        // 'min_jlong/-1' throws arithmetic exception during compilation
        lo = min_jlong;
        // do not support holes, 'hi' must go to either min_jlong or max_jlong:
        // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
        hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeLong::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    jlong d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jlong ) {
        //  (-min_jlong) == min_jlong == (min_jlong / -1)
        return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
      } else {
        return TypeLong::make(d, -d, widen);
      }
    }
    return TypeLong::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeLong::LONG;
}


//=============================================================================
//------------------------------Value------------------------------------------
// An DivFNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
672
  // Does not work for variables because of NaN's
D
duke 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
    if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
      return TypeF::ONE;

  if( t2 == TypeF::ONE )
    return t1;

  // If divisor is a constant and not zero, divide them numbers
  if( t1->base() == Type::FloatCon &&
      t2->base() == Type::FloatCon &&
      t2->getf() != 0.0 ) // could be negative zero
    return TypeF::make( t1->getf()/t2->getf() );

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero

  if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
    return TypeF::ZERO;

  // Otherwise we give up all hope
  return Type::FLOAT;
}

//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivFNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
}


//------------------------------Idealize---------------------------------------
Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
708 709
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeF::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeF *tf = t2->isa_float_constant();
  if( !tf ) return NULL;
  if( tf->base() != Type::FloatCon ) return NULL;

  // Check for out of range values
  if( tf->is_nan() || !tf->is_finite() ) return NULL;

  // Get the value
  float f = tf->getf();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp((double)f, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -126 || exp > 126 ) return NULL;

  // Compute the reciprocal
  float reciprocal = ((float)1.0) / f;

  assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
}

//=============================================================================
//------------------------------Value------------------------------------------
// An DivDNode divides its inputs.  The third input is a Control input, used to
744
// prevent hoisting the divide above an unsafe test.
D
duke 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
const Type *DivDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Does not work for variables because of NaN's
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
    if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
      return TypeD::ONE;

  if( t2 == TypeD::ONE )
    return t1;

768 769 770 771 772 773 774 775 776 777 778 779
#if defined(IA32)
  if (!phase->C->method()->is_strict())
    // Can't trust native compilers to properly fold strict double
    // division with round-to-zero on this platform.
#endif
    {
      // If divisor is a constant and not zero, divide them numbers
      if( t1->base() == Type::DoubleCon &&
          t2->base() == Type::DoubleCon &&
          t2->getd() != 0.0 ) // could be negative zero
        return TypeD::make( t1->getd()/t2->getd() );
    }
D
duke 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero
  if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
    return TypeD::ZERO;

  // Otherwise we give up all hope
  return Type::DOUBLE;
}


//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivDNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
802 803
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeD::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeD *td = t2->isa_double_constant();
  if( !td ) return NULL;
  if( td->base() != Type::DoubleCon ) return NULL;

  // Check for out of range values
  if( td->is_nan() || !td->is_finite() ) return NULL;

  // Get the value
  double d = td->getd();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp(d, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -1021 || exp > 1022 ) return NULL;

  // Compute the reciprocal
  double reciprocal = 1.0 / d;

  assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
}

//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
839 840 841
  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
  const TypeInt *ti = t->is_int();

  // Check for useless control input
  // Check for excluding mod-zero case
  if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
  if( !ti->is_con() ) return NULL;
  jint con = ti->get_con();

  Node *hook = new (phase->C, 1) Node(1);

  // First, special check for modulo 2^k-1
  if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
    uint k = exact_log2(con+1);  // Extract k

    // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
    static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];

    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask

      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
R
rasbold 已提交
879 880 881 882
        Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
        Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
        hook->set_req(0, x);
D
duke 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
      }

      // Generate sign-fixup code.  Was original value positive?
      // int hack_res = (i >= 0) ? divisor : 1;
      Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
    }
  }

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

  // Cannot handle mod 0, and min_jint isn't handled by the transform
  if( con == 0 || con == min_jint ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jint pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);

  int log2_con = -1;

  // If this is a power of two, they maybe we can mask it
  if( is_power_of_2(pos_con) ) {
    log2_con = log2_intptr((intptr_t)pos_con);

    const Type *dt = phase->type(in(1));
    const TypeInt *dti = dt->isa_int();

    // See if this can be masked, if the dividend is non-negative
    if( dti && dti->_lo >= 0 )
      return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

  // Divide using the transform from DivI to MulL
R
rasbold 已提交
939 940 941
  Node *result = transform_int_divide( phase, in(1), pos_con );
  if (result != NULL) {
    Node *divide = phase->transform(result);
D
duke 已提交
942

R
rasbold 已提交
943 944
    // Re-multiply, using a shift if this is a power of two
    Node *mult = NULL;
D
duke 已提交
945

R
rasbold 已提交
946 947 948 949
    if( log2_con >= 0 )
      mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
    else
      mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
D
duke 已提交
950

R
rasbold 已提交
951 952 953
    // Finally, subtract the multiplied divided value from the original
    result = new (phase->C, 3) SubINode( in(1), mult );
  }
D
duke 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
}

//------------------------------Value------------------------------------------
const Type *ModINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= 0 && i2->_lo >= 0 )
      return TypeInt::POS;
    // If both numbers are not constants, we know little.
    return TypeInt::INT;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeInt::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jint && i2->get_con() == -1 )
    return TypeInt::ZERO;

  return TypeInt::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
1010 1011 1012
  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
1013 1014 1015 1016

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
R
rasbold 已提交
1017
  const TypeLong *tl = t->is_long();
D
duke 已提交
1018 1019 1020

  // Check for useless control input
  // Check for excluding mod-zero case
R
rasbold 已提交
1021
  if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
D
duke 已提交
1022 1023 1024 1025 1026
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
R
rasbold 已提交
1027 1028 1029 1030
  if( !tl->is_con() ) return NULL;
  jlong con = tl->get_con();

  Node *hook = new (phase->C, 1) Node(1);
D
duke 已提交
1031 1032

  // Expand mod
R
rasbold 已提交
1033
  if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
1034
    uint k = exact_log2_long(con+1);  // Extract k
R
rasbold 已提交
1035

D
duke 已提交
1036 1037 1038 1039 1040 1041 1042
    // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
    // Used to help a popular random number generator which does a long-mod
    // of 2^31-1 and shows up in SpecJBB and SciMark.
    static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];

R
rasbold 已提交
1043 1044 1045 1046 1047
    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask
D
duke 已提交
1048

R
rasbold 已提交
1049 1050 1051
      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
D
duke 已提交
1052 1053 1054 1055
        Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
        Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
        hook->set_req(0, x);    // Add a use to x to prevent him from dying
R
rasbold 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
      }

      // Generate sign-fixup code.  Was original value positive?
      // long hack_res = (i >= 0) ? divisor : CONST64(1);
      Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
D
duke 已提交
1079 1080
    }
  }
R
rasbold 已提交
1081 1082 1083 1084

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

1085
  // Cannot handle mod 0, and min_jlong isn't handled by the transform
R
rasbold 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
  if( con == 0 || con == min_jlong ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jlong pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);

  int log2_con = -1;

T
twisti 已提交
1096
  // If this is a power of two, then maybe we can mask it
R
rasbold 已提交
1097
  if( is_power_of_2_long(pos_con) ) {
1098
    log2_con = exact_log2_long(pos_con);
R
rasbold 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    const Type *dt = phase->type(in(1));
    const TypeLong *dtl = dt->isa_long();

    // See if this can be masked, if the dividend is non-negative
    if( dtl && dtl->_lo >= 0 )
      return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

1111
  // Divide using the transform from DivL to MulL
R
rasbold 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
  Node *result = transform_long_divide( phase, in(1), pos_con );
  if (result != NULL) {
    Node *divide = phase->transform(result);

    // Re-multiply, using a shift if this is a power of two
    Node *mult = NULL;

    if( log2_con >= 0 )
      mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
    else
      mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );

    // Finally, subtract the multiplied divided value from the original
    result = new (phase->C, 3) SubLNode( in(1), mult );
  }

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
D
duke 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
}

//------------------------------Value------------------------------------------
const Type *ModLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
      return TypeLong::POS;
    // If both numbers are not constants, we know little.
    return TypeLong::LONG;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeLong::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jlong && i2->get_con() == -1 )
    return TypeLong::ZERO;

  return TypeLong::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

1194 1195 1196 1197
  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
    return Type::FLOAT;         // note: x%x can be either NaN or 0
  }
D
duke 已提交
1198

1199 1200 1201 1202
  float f1 = t1->getf();
  float f2 = t2->getf();
  jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
  jint  x2 = jint_cast(f2);
D
duke 已提交
1203

1204 1205 1206
  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;
D
duke 已提交
1207

1208 1209
  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
D
duke 已提交
1210 1211 1212 1213
    return Type::FLOAT;

  // We must be modulo'ing 2 float constants.
  // Make sure that the sign of the fmod is equal to the sign of the dividend
1214 1215 1216
  jint xr = jint_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jint;
D
duke 已提交
1217
  }
1218 1219

  return TypeF::make(jfloat_cast(xr));
D
duke 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

1238 1239 1240
  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
    return Type::DOUBLE;        // note: x%x can be either NaN or 0
D
duke 已提交
1241 1242
  }

1243 1244 1245 1246
  double f1 = t1->getd();
  double f2 = t2->getd();
  jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
  jlong  x2 = jlong_cast(f2);
D
duke 已提交
1247

1248 1249 1250
  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;
D
duke 已提交
1251

1252 1253
  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
D
duke 已提交
1254 1255 1256
    return Type::DOUBLE;

  // We must be modulo'ing 2 double constants.
1257 1258 1259 1260 1261 1262 1263
  // Make sure that the sign of the fmod is equal to the sign of the dividend
  jlong xr = jlong_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jlong;
  }

  return TypeD::make(jdouble_cast(xr));
D
duke 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
}

//=============================================================================

DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
  init_req(0, c);
  init_req(1, dividend);
  init_req(2, divisor);
}

//------------------------------make------------------------------------------
DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
         "only div or mod input pattern accepted");

  DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------make------------------------------------------
DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
         "only div or mod input pattern accepted");

  DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divI_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modI_proj_mask();
  }
  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
}


//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divL_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modL_proj_mask();
  }
  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
}