divnode.cpp 48.3 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/connode.hpp"
#include "opto/divnode.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"

D
duke 已提交
36 37 38 39 40 41
// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

#include <math.h>

R
rasbold 已提交
42 43 44 45 46
//----------------------magic_int_divide_constants-----------------------------
// Compute magic multiplier and shift constant for converting a 32 bit divide
// by constant into a multiply/shift/add series. Return false if calculations
// fail.
//
T
twisti 已提交
47
// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
R
rasbold 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
// minor type name and parameter changes.
static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
  int32_t p;
  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint32_t two31 = 0x80000000L;     // 2**31.

  ad = ABS(d);
  if (d == 0 || d == 1) return false;
  t = two31 + ((uint32_t)d >> 31);
  anc = t - 1 - t%ad;     // Absolute value of nc.
  p = 31;                 // Init. p.
  q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
  r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  q2 = two31/ad;          // Init. q2 = 2**p/|d|.
  r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  do {
    p = p + 1;
    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    if (r1 >= anc) {      // (Must be an unsigned
      q1 = q1 + 1;        // comparison here).
      r1 = r1 - anc;
    }
    q2 = 2*q2;            // Update q2 = 2**p/|d|.
    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    if (r2 >= ad) {       // (Must be an unsigned
      q2 = q2 + 1;        // comparison here).
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));

  M = q2 + 1;
  if (d < 0) M = -M;      // Magic number and
  s = p - 32;             // shift amount to return.

  return true;
}

//--------------------------transform_int_divide-------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
D
duke 已提交
91 92

  // Check for invalid divisors
R
rasbold 已提交
93 94
  assert( divisor != 0 && divisor != min_jint,
          "bad divisor for transforming to long multiply" );
D
duke 已提交
95 96

  bool d_pos = divisor >= 0;
R
rasbold 已提交
97
  jint d = d_pos ? divisor : -divisor;
D
duke 已提交
98 99 100
  const int N = 32;

  // Result
R
rasbold 已提交
101
  Node *q = NULL;
D
duke 已提交
102 103

  if (d == 1) {
R
rasbold 已提交
104 105 106
    // division by +/- 1
    if (!d_pos) {
      // Just negate the value
D
duke 已提交
107 108
      q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
    }
R
rasbold 已提交
109 110
  } else if ( is_power_of_2(d) ) {
    // division by +/- a power of 2
D
duke 已提交
111 112 113 114 115

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeInt *dti = dt->isa_int();
R
rasbold 已提交
116 117
    if (dti && dti->_lo >= 0) {
      // we don't need to round a positive dividend
D
duke 已提交
118
      needs_rounding = false;
R
rasbold 已提交
119 120 121
    } else if( dividend->Opcode() == Op_AndI ) {
      // An AND mask of sufficient size clears the low bits and
      // I can avoid rounding.
122 123 124 125
      const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
      if( andconi_t && andconi_t->is_con() ) {
        jint andconi = andconi_t->get_con();
        if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
126 127
          if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
            dividend = dividend->in(1);
128 129
          needs_rounding = false;
        }
D
duke 已提交
130 131 132 133
      }
    }

    // Add rounding to the shift to handle the sign bit
R
rasbold 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    int l = log2_intptr(d-1)+1;
    if (needs_rounding) {
      // Divide-by-power-of-2 can be made into a shift, but you have to do
      // more math for the rounding.  You need to add 0 for positive
      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
      // shift is by 2.  You need to add 3 to negative dividends and 0 to
      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
      // (-2+3)>>2 becomes 0, etc.

      // Compute 0 or -1, based on sign bit
      Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
      // Mask sign bit to the low sign bits
      Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
      // Round up before shifting
      dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
D
duke 已提交
149 150
    }

R
rasbold 已提交
151
    // Shift for division
D
duke 已提交
152 153
    q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));

R
rasbold 已提交
154
    if (!d_pos) {
D
duke 已提交
155
      q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
R
rasbold 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    }
  } else {
    // Attempt the jint constant divide -> multiply transform found in
    //   "Division by Invariant Integers using Multiplication"
    //     by Granlund and Montgomery
    // See also "Hacker's Delight", chapter 10 by Warren.

    jint magic_const;
    jint shift_const;
    if (magic_int_divide_constants(d, magic_const, shift_const)) {
      Node *magic = phase->longcon(magic_const);
      Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));

      // Compute the high half of the dividend x magic multiplication
      Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));

      if (magic_const < 0) {
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
        mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));

        // The magic multiplier is too large for a 32 bit constant. We've adjusted
        // it down by 2^32, but have to add 1 dividend back in after the multiplication.
        // This handles the "overflow" case described by Granlund and Montgomery.
        mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));

        // Shift over the (adjusted) mulhi
        if (shift_const != 0) {
          mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
        }
      } else {
        // No add is required, we can merge the shifts together.
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
        mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
      }

      // Get a 0 or -1 from the sign of the dividend.
      Node *addend0 = mul_hi;
      Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));

      // If the divisor is negative, swap the order of the input addends;
      // this has the effect of negating the quotient.
      if (!d_pos) {
        Node *temp = addend0; addend0 = addend1; addend1 = temp;
      }

      // Adjust the final quotient by subtracting -1 (adding 1)
      // from the mul_hi.
      q = new (phase->C, 3) SubINode(addend0, addend1);
    }
D
duke 已提交
205 206
  }

R
rasbold 已提交
207 208 209 210 211 212 213 214
  return q;
}

//---------------------magic_long_divide_constants-----------------------------
// Compute magic multiplier and shift constant for converting a 64 bit divide
// by constant into a multiply/shift/add series. Return false if calculations
// fail.
//
T
twisti 已提交
215
// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
R
rasbold 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
// minor type name and parameter changes.  Adjusted to 64 bit word width.
static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
  int64_t p;
  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint64_t two63 = 0x8000000000000000LL;     // 2**63.

  ad = ABS(d);
  if (d == 0 || d == 1) return false;
  t = two63 + ((uint64_t)d >> 63);
  anc = t - 1 - t%ad;     // Absolute value of nc.
  p = 63;                 // Init. p.
  q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
  r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  q2 = two63/ad;          // Init. q2 = 2**p/|d|.
  r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  do {
    p = p + 1;
    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    if (r1 >= anc) {      // (Must be an unsigned
      q1 = q1 + 1;        // comparison here).
      r1 = r1 - anc;
    }
    q2 = 2*q2;            // Update q2 = 2**p/|d|.
    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    if (r2 >= ad) {       // (Must be an unsigned
      q2 = q2 + 1;        // comparison here).
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));

  M = q2 + 1;
  if (d < 0) M = -M;      // Magic number and
  s = p - 64;             // shift amount to return.

  return true;
}
D
duke 已提交
254

R
rasbold 已提交
255 256
//---------------------long_by_long_mulhi--------------------------------------
// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
257
static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
R
rasbold 已提交
258 259 260
  // If the architecture supports a 64x64 mulhi, there is
  // no need to synthesize it in ideal nodes.
  if (Matcher::has_match_rule(Op_MulHiL)) {
261
    Node* v = phase->longcon(magic_const);
R
rasbold 已提交
262
    return new (phase->C, 3) MulHiLNode(dividend, v);
D
duke 已提交
263 264
  }

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
  // (http://www.hackersdelight.org/HDcode/mulhs.c)
  //
  // int mulhs(int u, int v) {
  //    unsigned u0, v0, w0;
  //    int u1, v1, w1, w2, t;
  //
  //    u0 = u & 0xFFFF;  u1 = u >> 16;
  //    v0 = v & 0xFFFF;  v1 = v >> 16;
  //    w0 = u0*v0;
  //    t  = u1*v0 + (w0 >> 16);
  //    w1 = t & 0xFFFF;
  //    w2 = t >> 16;
  //    w1 = u0*v1 + w1;
  //    return u1*v1 + w2 + (w1 >> 16);
  // }
  //
  // Note: The version above is for 32x32 multiplications, while the
  // following inline comments are adapted to 64x64.

R
rasbold 已提交
285 286
  const int N = 64;

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
  // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
  Node* u0 = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
  Node* u1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));

  // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
  Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
  Node* v1 = phase->longcon(magic_const >> (N / 2));

  // w0 = u0*v0;
  Node* w0 = phase->transform(new (phase->C, 3) MulLNode(u0, v0));

  // t = u1*v0 + (w0 >> 32);
  Node* u1v0 = phase->transform(new (phase->C, 3) MulLNode(u1, v0));
  Node* temp = phase->transform(new (phase->C, 3) URShiftLNode(w0, phase->intcon(N / 2)));
  Node* t    = phase->transform(new (phase->C, 3) AddLNode(u1v0, temp));
R
rasbold 已提交
302

303 304
  // w1 = t & 0xFFFFFFFF;
  Node* w1 = new (phase->C, 3) AndLNode(t, phase->longcon(0xFFFFFFFF));
R
rasbold 已提交
305

306 307
  // w2 = t >> 32;
  Node* w2 = new (phase->C, 3) RShiftLNode(t, phase->intcon(N / 2));
R
rasbold 已提交
308

309 310
  // 6732154: Construct both w1 and w2 before transforming, so t
  // doesn't go dead prematurely.
311 312
  // 6837011: We need to transform w2 before w1 because the
  // transformation of w1 could return t.
313
  w2 = phase->transform(w2);
314
  w1 = phase->transform(w1);
315

316 317 318
  // w1 = u0*v1 + w1;
  Node* u0v1 = phase->transform(new (phase->C, 3) MulLNode(u0, v1));
  w1         = phase->transform(new (phase->C, 3) AddLNode(u0v1, w1));
319

320 321 322 323
  // return u1*v1 + w2 + (w1 >> 32);
  Node* u1v1  = phase->transform(new (phase->C, 3) MulLNode(u1, v1));
  Node* temp1 = phase->transform(new (phase->C, 3) AddLNode(u1v1, w2));
  Node* temp2 = phase->transform(new (phase->C, 3) RShiftLNode(w1, phase->intcon(N / 2)));
R
rasbold 已提交
324

325
  return new (phase->C, 3) AddLNode(temp1, temp2);
R
rasbold 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
}


//--------------------------transform_long_divide------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
  // Check for invalid divisors
  assert( divisor != 0L && divisor != min_jlong,
          "bad divisor for transforming to long multiply" );

  bool d_pos = divisor >= 0;
  jlong d = d_pos ? divisor : -divisor;
  const int N = 64;

  // Result
  Node *q = NULL;

  if (d == 1) {
    // division by +/- 1
    if (!d_pos) {
      // Just negate the value
      q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
    }
  } else if ( is_power_of_2_long(d) ) {

    // division by +/- a power of 2

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeLong *dtl = dt->isa_long();

    if (dtl && dtl->_lo > 0) {
      // we don't need to round a positive dividend
      needs_rounding = false;
    } else if( dividend->Opcode() == Op_AndL ) {
      // An AND mask of sufficient size clears the low bits and
      // I can avoid rounding.
365 366 367 368
      const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
      if( andconl_t && andconl_t->is_con() ) {
        jlong andconl = andconl_t->get_con();
        if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
369 370
          if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
            dividend = dividend->in(1);
371 372
          needs_rounding = false;
        }
R
rasbold 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
      }
    }

    // Add rounding to the shift to handle the sign bit
    int l = log2_long(d-1)+1;
    if (needs_rounding) {
      // Divide-by-power-of-2 can be made into a shift, but you have to do
      // more math for the rounding.  You need to add 0 for positive
      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
      // shift is by 2.  You need to add 3 to negative dividends and 0 to
      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
      // (-2+3)>>2 becomes 0, etc.

      // Compute 0 or -1, based on sign bit
      Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
      // Mask sign bit to the low sign bits
      Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
      // Round up before shifting
      dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
    }

    // Shift for division
    q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));

    if (!d_pos) {
      q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
    }
400 401
  } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
                                                       // it is faster than code generated below.
R
rasbold 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    // Attempt the jlong constant divide -> multiply transform found in
    //   "Division by Invariant Integers using Multiplication"
    //     by Granlund and Montgomery
    // See also "Hacker's Delight", chapter 10 by Warren.

    jlong magic_const;
    jint shift_const;
    if (magic_long_divide_constants(d, magic_const, shift_const)) {
      // Compute the high half of the dividend x magic multiplication
      Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));

      // The high half of the 128-bit multiply is computed.
      if (magic_const < 0) {
        // The magic multiplier is too large for a 64 bit constant. We've adjusted
        // it down by 2^64, but have to add 1 dividend back in after the multiplication.
        // This handles the "overflow" case described by Granlund and Montgomery.
        mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
      }

      // Shift over the (adjusted) mulhi
      if (shift_const != 0) {
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
      }

      // Get a 0 or -1 from the sign of the dividend.
      Node *addend0 = mul_hi;
      Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));

      // If the divisor is negative, swap the order of the input addends;
      // this has the effect of negating the quotient.
      if (!d_pos) {
        Node *temp = addend0; addend0 = addend1; addend1 = temp;
      }

      // Adjust the final quotient by subtracting -1 (adding 1)
      // from the mul_hi.
      q = new (phase->C, 3) SubLNode(addend0, addend1);
    }
D
duke 已提交
440 441
  }

R
rasbold 已提交
442
  return q;
D
duke 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455
}

//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivINode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Divides can be changed to multiplies and/or shifts
Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
456 457
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
458 459 460 461 462 463 464 465

  const Type *t = phase->type( in(2) );
  if( t == TypeInt::ONE )       // Identity?
    return NULL;                // Skip it

  const TypeInt *ti = t->isa_int();
  if( !ti ) return NULL;
  if( !ti->is_con() ) return NULL;
R
rasbold 已提交
466
  jint i = ti->get_con();       // Get divisor
D
duke 已提交
467 468 469 470 471 472 473 474

  if (i == 0) return NULL;      // Dividing by zero constant does not idealize

  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting

  // Dividing by MININT does not optimize as a power-of-2 shift.
  if( i == min_jint ) return NULL;

R
rasbold 已提交
475
  return transform_int_divide( phase, in(1), i );
D
duke 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
}

//------------------------------Value------------------------------------------
// A DivINode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeInt::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    int32 d = i2->get_con(); // Divisor
    jint lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == -1 && i1->_lo == min_jint ) {
        // 'min_jint/-1' throws arithmetic exception during compilation
        lo = min_jint;
        // do not support holes, 'hi' must go to either min_jint or max_jint:
        // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
        hi = i1->_hi == min_jint ? min_jint : max_jint;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeInt::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    int32 d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jint ) {
        //  (-min_jint) == min_jint == (min_jint / -1)
        return TypeInt::make(min_jint, max_jint/2 + 1, widen);
      } else {
        return TypeInt::make(d, -d, widen);
      }
    }
    return TypeInt::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeInt::INT;
}


//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivLNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Dividing by a power of 2 is a shift.
Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
555 556
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
557 558

  const Type *t = phase->type( in(2) );
R
rasbold 已提交
559
  if( t == TypeLong::ONE )      // Identity?
D
duke 已提交
560 561
    return NULL;                // Skip it

R
rasbold 已提交
562 563 564 565
  const TypeLong *tl = t->isa_long();
  if( !tl ) return NULL;
  if( !tl->is_con() ) return NULL;
  jlong l = tl->get_con();      // Get divisor
D
duke 已提交
566

R
rasbold 已提交
567
  if (l == 0) return NULL;      // Dividing by zero constant does not idealize
D
duke 已提交
568

R
rasbold 已提交
569
  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
D
duke 已提交
570

571
  // Dividing by MINLONG does not optimize as a power-of-2 shift.
R
rasbold 已提交
572
  if( l == min_jlong ) return NULL;
D
duke 已提交
573

R
rasbold 已提交
574
  return transform_long_divide( phase, in(1), l );
D
duke 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
}

//------------------------------Value------------------------------------------
// A DivLNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeLong::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    jlong d = i2->get_con();    // Divisor
    jlong lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == CONST64(-1) && i1->_lo == min_jlong ) {
        // 'min_jlong/-1' throws arithmetic exception during compilation
        lo = min_jlong;
        // do not support holes, 'hi' must go to either min_jlong or max_jlong:
        // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
        hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeLong::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    jlong d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jlong ) {
        //  (-min_jlong) == min_jlong == (min_jlong / -1)
        return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
      } else {
        return TypeLong::make(d, -d, widen);
      }
    }
    return TypeLong::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeLong::LONG;
}


//=============================================================================
//------------------------------Value------------------------------------------
// An DivFNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
662
  // Does not work for variables because of NaN's
D
duke 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
    if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
      return TypeF::ONE;

  if( t2 == TypeF::ONE )
    return t1;

  // If divisor is a constant and not zero, divide them numbers
  if( t1->base() == Type::FloatCon &&
      t2->base() == Type::FloatCon &&
      t2->getf() != 0.0 ) // could be negative zero
    return TypeF::make( t1->getf()/t2->getf() );

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero

  if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
    return TypeF::ZERO;

  // Otherwise we give up all hope
  return Type::FLOAT;
}

//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivFNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
}


//------------------------------Idealize---------------------------------------
Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
698 699
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeF::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeF *tf = t2->isa_float_constant();
  if( !tf ) return NULL;
  if( tf->base() != Type::FloatCon ) return NULL;

  // Check for out of range values
  if( tf->is_nan() || !tf->is_finite() ) return NULL;

  // Get the value
  float f = tf->getf();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp((double)f, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -126 || exp > 126 ) return NULL;

  // Compute the reciprocal
  float reciprocal = ((float)1.0) / f;

  assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
}

//=============================================================================
//------------------------------Value------------------------------------------
// An DivDNode divides its inputs.  The third input is a Control input, used to
734
// prevent hoisting the divide above an unsafe test.
D
duke 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
const Type *DivDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Does not work for variables because of NaN's
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
    if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
      return TypeD::ONE;

  if( t2 == TypeD::ONE )
    return t1;

758 759 760 761 762 763 764 765 766 767 768 769
#if defined(IA32)
  if (!phase->C->method()->is_strict())
    // Can't trust native compilers to properly fold strict double
    // division with round-to-zero on this platform.
#endif
    {
      // If divisor is a constant and not zero, divide them numbers
      if( t1->base() == Type::DoubleCon &&
          t2->base() == Type::DoubleCon &&
          t2->getd() != 0.0 ) // could be negative zero
        return TypeD::make( t1->getd()/t2->getd() );
    }
D
duke 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero
  if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
    return TypeD::ZERO;

  // Otherwise we give up all hope
  return Type::DOUBLE;
}


//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivDNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
792 793
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeD::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeD *td = t2->isa_double_constant();
  if( !td ) return NULL;
  if( td->base() != Type::DoubleCon ) return NULL;

  // Check for out of range values
  if( td->is_nan() || !td->is_finite() ) return NULL;

  // Get the value
  double d = td->getd();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp(d, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -1021 || exp > 1022 ) return NULL;

  // Compute the reciprocal
  double reciprocal = 1.0 / d;

  assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
}

//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
829 830 831
  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
  const TypeInt *ti = t->is_int();

  // Check for useless control input
  // Check for excluding mod-zero case
  if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
  if( !ti->is_con() ) return NULL;
  jint con = ti->get_con();

  Node *hook = new (phase->C, 1) Node(1);

  // First, special check for modulo 2^k-1
  if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
    uint k = exact_log2(con+1);  // Extract k

    // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
    static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];

    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask

      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
R
rasbold 已提交
869 870 871 872
        Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
        Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
        hook->set_req(0, x);
D
duke 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
      }

      // Generate sign-fixup code.  Was original value positive?
      // int hack_res = (i >= 0) ? divisor : 1;
      Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
    }
  }

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

  // Cannot handle mod 0, and min_jint isn't handled by the transform
  if( con == 0 || con == min_jint ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jint pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);

  int log2_con = -1;

  // If this is a power of two, they maybe we can mask it
  if( is_power_of_2(pos_con) ) {
    log2_con = log2_intptr((intptr_t)pos_con);

    const Type *dt = phase->type(in(1));
    const TypeInt *dti = dt->isa_int();

    // See if this can be masked, if the dividend is non-negative
    if( dti && dti->_lo >= 0 )
      return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

  // Divide using the transform from DivI to MulL
R
rasbold 已提交
929 930 931
  Node *result = transform_int_divide( phase, in(1), pos_con );
  if (result != NULL) {
    Node *divide = phase->transform(result);
D
duke 已提交
932

R
rasbold 已提交
933 934
    // Re-multiply, using a shift if this is a power of two
    Node *mult = NULL;
D
duke 已提交
935

R
rasbold 已提交
936 937 938 939
    if( log2_con >= 0 )
      mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
    else
      mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
D
duke 已提交
940

R
rasbold 已提交
941 942 943
    // Finally, subtract the multiplied divided value from the original
    result = new (phase->C, 3) SubINode( in(1), mult );
  }
D
duke 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
}

//------------------------------Value------------------------------------------
const Type *ModINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= 0 && i2->_lo >= 0 )
      return TypeInt::POS;
    // If both numbers are not constants, we know little.
    return TypeInt::INT;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeInt::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jint && i2->get_con() == -1 )
    return TypeInt::ZERO;

  return TypeInt::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
1000 1001 1002
  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
1003 1004 1005 1006

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
R
rasbold 已提交
1007
  const TypeLong *tl = t->is_long();
D
duke 已提交
1008 1009 1010

  // Check for useless control input
  // Check for excluding mod-zero case
R
rasbold 已提交
1011
  if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
D
duke 已提交
1012 1013 1014 1015 1016
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
R
rasbold 已提交
1017 1018 1019 1020
  if( !tl->is_con() ) return NULL;
  jlong con = tl->get_con();

  Node *hook = new (phase->C, 1) Node(1);
D
duke 已提交
1021 1022

  // Expand mod
R
rasbold 已提交
1023
  if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
1024
    uint k = exact_log2_long(con+1);  // Extract k
R
rasbold 已提交
1025

D
duke 已提交
1026 1027 1028 1029 1030 1031 1032
    // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
    // Used to help a popular random number generator which does a long-mod
    // of 2^31-1 and shows up in SpecJBB and SciMark.
    static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];

R
rasbold 已提交
1033 1034 1035 1036 1037
    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask
D
duke 已提交
1038

R
rasbold 已提交
1039 1040 1041
      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
D
duke 已提交
1042 1043 1044 1045
        Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
        Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
        hook->set_req(0, x);    // Add a use to x to prevent him from dying
R
rasbold 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
      }

      // Generate sign-fixup code.  Was original value positive?
      // long hack_res = (i >= 0) ? divisor : CONST64(1);
      Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
D
duke 已提交
1069 1070
    }
  }
R
rasbold 已提交
1071 1072 1073 1074

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

1075
  // Cannot handle mod 0, and min_jlong isn't handled by the transform
R
rasbold 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  if( con == 0 || con == min_jlong ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jlong pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);

  int log2_con = -1;

T
twisti 已提交
1086
  // If this is a power of two, then maybe we can mask it
R
rasbold 已提交
1087
  if( is_power_of_2_long(pos_con) ) {
1088
    log2_con = exact_log2_long(pos_con);
R
rasbold 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

    const Type *dt = phase->type(in(1));
    const TypeLong *dtl = dt->isa_long();

    // See if this can be masked, if the dividend is non-negative
    if( dtl && dtl->_lo >= 0 )
      return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

1101
  // Divide using the transform from DivL to MulL
R
rasbold 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
  Node *result = transform_long_divide( phase, in(1), pos_con );
  if (result != NULL) {
    Node *divide = phase->transform(result);

    // Re-multiply, using a shift if this is a power of two
    Node *mult = NULL;

    if( log2_con >= 0 )
      mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
    else
      mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );

    // Finally, subtract the multiplied divided value from the original
    result = new (phase->C, 3) SubLNode( in(1), mult );
  }

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
D
duke 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
}

//------------------------------Value------------------------------------------
const Type *ModLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
      return TypeLong::POS;
    // If both numbers are not constants, we know little.
    return TypeLong::LONG;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeLong::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jlong && i2->get_con() == -1 )
    return TypeLong::ZERO;

  return TypeLong::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

1184 1185 1186 1187
  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
    return Type::FLOAT;         // note: x%x can be either NaN or 0
  }
D
duke 已提交
1188

1189 1190 1191 1192
  float f1 = t1->getf();
  float f2 = t2->getf();
  jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
  jint  x2 = jint_cast(f2);
D
duke 已提交
1193

1194 1195 1196
  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;
D
duke 已提交
1197

1198 1199
  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
D
duke 已提交
1200 1201 1202 1203
    return Type::FLOAT;

  // We must be modulo'ing 2 float constants.
  // Make sure that the sign of the fmod is equal to the sign of the dividend
1204 1205 1206
  jint xr = jint_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jint;
D
duke 已提交
1207
  }
1208 1209

  return TypeF::make(jfloat_cast(xr));
D
duke 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

1228 1229 1230
  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
    return Type::DOUBLE;        // note: x%x can be either NaN or 0
D
duke 已提交
1231 1232
  }

1233 1234 1235 1236
  double f1 = t1->getd();
  double f2 = t2->getd();
  jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
  jlong  x2 = jlong_cast(f2);
D
duke 已提交
1237

1238 1239 1240
  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;
D
duke 已提交
1241

1242 1243
  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
D
duke 已提交
1244 1245 1246
    return Type::DOUBLE;

  // We must be modulo'ing 2 double constants.
1247 1248 1249 1250 1251 1252 1253
  // Make sure that the sign of the fmod is equal to the sign of the dividend
  jlong xr = jlong_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jlong;
  }

  return TypeD::make(jdouble_cast(xr));
D
duke 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

//=============================================================================

DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
  init_req(0, c);
  init_req(1, dividend);
  init_req(2, divisor);
}

//------------------------------make------------------------------------------
DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
         "only div or mod input pattern accepted");

  DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------make------------------------------------------
DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
         "only div or mod input pattern accepted");

  DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divI_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modI_proj_mask();
  }
  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
}


//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divL_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modL_proj_mask();
  }
  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
}