assembler_x86.cpp 173.7 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25
#include "precompiled.hpp"
26 27
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
28 29 30 31 32 33 34 35 36 37 38
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
39 40
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
41 42 43
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
44
#endif // INCLUDE_ALL_GCS
D
duke 已提交
45

46 47 48 49 50 51 52 53 54
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
D
duke 已提交
55 56 57 58 59 60 61
// Implementation of AddressLiteral

AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  _is_lval = false;
  _target = target;
  switch (rtype) {
  case relocInfo::oop_type:
62
  case relocInfo::metadata_type:
D
duke 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    // Oops are a special case. Normally they would be their own section
    // but in cases like icBuffer they are literals in the code stream that
    // we don't have a section for. We use none so that we get a literal address
    // which is always patchable.
    break;
  case relocInfo::external_word_type:
    _rspec = external_word_Relocation::spec(target);
    break;
  case relocInfo::internal_word_type:
    _rspec = internal_word_Relocation::spec(target);
    break;
  case relocInfo::opt_virtual_call_type:
    _rspec = opt_virtual_call_Relocation::spec();
    break;
  case relocInfo::static_call_type:
    _rspec = static_call_Relocation::spec();
    break;
  case relocInfo::runtime_call_type:
    _rspec = runtime_call_Relocation::spec();
    break;
83 84 85 86
  case relocInfo::poll_type:
  case relocInfo::poll_return_type:
    _rspec = Relocation::spec_simple(rtype);
    break;
D
duke 已提交
87 88 89 90 91 92 93 94 95 96 97
  case relocInfo::none:
    break;
  default:
    ShouldNotReachHere();
    break;
  }
}

// Implementation of Address

#ifdef _LP64
98 99

Address Address::make_array(ArrayAddress adr) {
D
duke 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  // Not implementable on 64bit machines
  // Should have been handled higher up the call chain.
  ShouldNotReachHere();
  return Address();
}

// exceedingly dangerous constructor
Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = disp;
  switch (rtype) {
    case relocInfo::external_word_type:
      _rspec = external_word_Relocation::spec(loc);
      break;
    case relocInfo::internal_word_type:
      _rspec = internal_word_Relocation::spec(loc);
      break;
    case relocInfo::runtime_call_type:
      // HMM
      _rspec = runtime_call_Relocation::spec();
      break;
123 124 125 126
    case relocInfo::poll_type:
    case relocInfo::poll_return_type:
      _rspec = Relocation::spec_simple(rtype);
      break;
D
duke 已提交
127 128 129 130 131 132
    case relocInfo::none:
      break;
    default:
      ShouldNotReachHere();
  }
}
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
#else // LP64

Address Address::make_array(ArrayAddress adr) {
  AddressLiteral base = adr.base();
  Address index = adr.index();
  assert(index._disp == 0, "must not have disp"); // maybe it can?
  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
  array._rspec = base._rspec;
  return array;
}

// exceedingly dangerous constructor
Address::Address(address loc, RelocationHolder spec) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = (intptr_t) loc;
  _rspec = spec;
}

#endif // _LP64


D
duke 已提交
156 157 158 159

// Convert the raw encoding form into the form expected by the constructor for
// Address.  An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
160
Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
161
  RelocationHolder rspec;
162 163
  if (disp_reloc != relocInfo::none) {
    rspec = Relocation::spec_simple(disp_reloc);
164
  }
D
duke 已提交
165 166 167
  bool valid_index = index != rsp->encoding();
  if (valid_index) {
    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
168
    madr._rspec = rspec;
D
duke 已提交
169 170 171
    return madr;
  } else {
    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
172
    madr._rspec = rspec;
D
duke 已提交
173 174 175 176 177
    return madr;
  }
}

// Implementation of Assembler
178

D
duke 已提交
179 180 181 182
int AbstractAssembler::code_fill_byte() {
  return (u_char)'\xF4'; // hlt
}

183 184 185
// make this go away someday
void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
  if (rtype == relocInfo::none)
186
        emit_int32(data);
187
  else  emit_data(data, Relocation::spec_simple(rtype), format);
D
duke 已提交
188 189
}

190 191
void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
D
duke 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  if (rspec.type() !=  relocInfo::none) {
    #ifdef ASSERT
      check_relocation(rspec, format);
    #endif
    // Do not use AbstractAssembler::relocate, which is not intended for
    // embedded words.  Instead, relocate to the enclosing instruction.

    // hack. call32 is too wide for mask so use disp32
    if (format == call32_operand)
      code_section()->relocate(inst_mark(), rspec, disp32_operand);
    else
      code_section()->relocate(inst_mark(), rspec, format);
  }
206
  emit_int32(data);
D
duke 已提交
207 208
}

209 210 211 212
static int encode(Register r) {
  int enc = r->encoding();
  if (enc >= 8) {
    enc -= 8;
D
duke 已提交
213
  }
214
  return enc;
D
duke 已提交
215 216 217
}

void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
218
  assert(dst->has_byte_register(), "must have byte register");
D
duke 已提交
219 220 221
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert(isByte(imm8), "not a byte");
  assert((op1 & 0x01) == 0, "should be 8bit operation");
222 223 224
  emit_int8(op1);
  emit_int8(op2 | encode(dst));
  emit_int8(imm8);
D
duke 已提交
225 226
}

227 228

void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
D
duke 已提交
229 230 231 232
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
233 234 235
    emit_int8(op1 | 0x02); // set sign bit
    emit_int8(op2 | encode(dst));
    emit_int8(imm32 & 0xFF);
D
duke 已提交
236
  } else {
237 238
    emit_int8(op1);
    emit_int8(op2 | encode(dst));
239
    emit_int32(imm32);
D
duke 已提交
240 241 242
  }
}

243 244 245 246 247
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
248 249
  emit_int8(op1);
  emit_int8(op2 | encode(dst));
250
  emit_int32(imm32);
251 252
}

D
duke 已提交
253
// immediate-to-memory forms
254
void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
D
duke 已提交
255 256 257
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
258
    emit_int8(op1 | 0x02); // set sign bit
D
duke 已提交
259
    emit_operand(rm, adr, 1);
260
    emit_int8(imm32 & 0xFF);
D
duke 已提交
261
  } else {
262
    emit_int8(op1);
D
duke 已提交
263
    emit_operand(rm, adr, 4);
264
    emit_int32(imm32);
D
duke 已提交
265 266 267 268 269 270
  }
}


void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
  assert(isByte(op1) && isByte(op2), "wrong opcode");
271 272
  emit_int8(op1);
  emit_int8(op2 | encode(dst) << 3 | encode(src));
D
duke 已提交
273 274
}

275

D
duke 已提交
276 277 278 279 280
void Assembler::emit_operand(Register reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
                             RelocationHolder const& rspec,
                             int rip_relative_correction) {
  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
281 282 283 284 285 286 287

  // Encode the registers as needed in the fields they are used in

  int regenc = encode(reg) << 3;
  int indexenc = index->is_valid() ? encode(index) << 3 : 0;
  int baseenc = base->is_valid() ? encode(base) : 0;

D
duke 已提交
288 289 290 291 292
  if (base->is_valid()) {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [base + index*scale + disp]
      if (disp == 0 && rtype == relocInfo::none  &&
293
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
294 295 296
        // [base + index*scale]
        // [00 reg 100][ss index base]
        assert(index != rsp, "illegal addressing mode");
297 298
        emit_int8(0x04 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
D
duke 已提交
299 300 301 302
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + index*scale + imm8]
        // [01 reg 100][ss index base] imm8
        assert(index != rsp, "illegal addressing mode");
303 304 305
        emit_int8(0x44 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
        emit_int8(disp & 0xFF);
D
duke 已提交
306 307 308 309
      } else {
        // [base + index*scale + disp32]
        // [10 reg 100][ss index base] disp32
        assert(index != rsp, "illegal addressing mode");
310 311
        emit_int8(0x84 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
D
duke 已提交
312 313
        emit_data(disp, rspec, disp32_operand);
      }
314
    } else if (base == rsp LP64_ONLY(|| base == r12)) {
D
duke 已提交
315 316 317 318
      // [rsp + disp]
      if (disp == 0 && rtype == relocInfo::none) {
        // [rsp]
        // [00 reg 100][00 100 100]
319 320
        emit_int8(0x04 | regenc);
        emit_int8(0x24);
D
duke 已提交
321 322 323
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [rsp + imm8]
        // [01 reg 100][00 100 100] disp8
324 325 326
        emit_int8(0x44 | regenc);
        emit_int8(0x24);
        emit_int8(disp & 0xFF);
D
duke 已提交
327 328 329
      } else {
        // [rsp + imm32]
        // [10 reg 100][00 100 100] disp32
330 331
        emit_int8(0x84 | regenc);
        emit_int8(0x24);
D
duke 已提交
332 333 334 335
        emit_data(disp, rspec, disp32_operand);
      }
    } else {
      // [base + disp]
336
      assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
D
duke 已提交
337
      if (disp == 0 && rtype == relocInfo::none &&
338
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
339 340
        // [base]
        // [00 reg base]
341
        emit_int8(0x00 | regenc | baseenc);
D
duke 已提交
342 343 344
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + disp8]
        // [01 reg base] disp8
345 346
        emit_int8(0x40 | regenc | baseenc);
        emit_int8(disp & 0xFF);
D
duke 已提交
347 348 349
      } else {
        // [base + disp32]
        // [10 reg base] disp32
350
        emit_int8(0x80 | regenc | baseenc);
D
duke 已提交
351 352 353 354 355 356 357 358 359
        emit_data(disp, rspec, disp32_operand);
      }
    }
  } else {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [index*scale + disp]
      // [00 reg 100][ss index 101] disp32
      assert(index != rsp, "illegal addressing mode");
360 361
      emit_int8(0x04 | regenc);
      emit_int8(scale << 6 | indexenc | 0x05);
D
duke 已提交
362 363
      emit_data(disp, rspec, disp32_operand);
    } else if (rtype != relocInfo::none ) {
364
      // [disp] (64bit) RIP-RELATIVE (32bit) abs
D
duke 已提交
365 366
      // [00 000 101] disp32

367
      emit_int8(0x05 | regenc);
D
duke 已提交
368 369 370 371 372 373 374 375
      // Note that the RIP-rel. correction applies to the generated
      // disp field, but _not_ to the target address in the rspec.

      // disp was created by converting the target address minus the pc
      // at the start of the instruction. That needs more correction here.
      // intptr_t disp = target - next_ip;
      assert(inst_mark() != NULL, "must be inside InstructionMark");
      address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
376 377 378
      int64_t adjusted = disp;
      // Do rip-rel adjustment for 64bit
      LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
D
duke 已提交
379 380
      assert(is_simm32(adjusted),
             "must be 32bit offset (RIP relative address)");
381
      emit_data((int32_t) adjusted, rspec, disp32_operand);
D
duke 已提交
382 383

    } else {
384
      // 32bit never did this, did everything as the rip-rel/disp code above
D
duke 已提交
385 386
      // [disp] ABSOLUTE
      // [00 reg 100][00 100 101] disp32
387 388
      emit_int8(0x04 | regenc);
      emit_int8(0x25);
D
duke 已提交
389 390 391 392 393 394 395
      emit_data(disp, rspec, disp32_operand);
    }
  }
}

void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
396 397
                             RelocationHolder const& rspec) {
  emit_operand((Register)reg, base, index, scale, disp, rspec);
D
duke 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
}

// Secret local extension to Assembler::WhichOperand:
#define end_pc_operand (_WhichOperand_limit)

address Assembler::locate_operand(address inst, WhichOperand which) {
  // Decode the given instruction, and return the address of
  // an embedded 32-bit operand word.

  // If "which" is disp32_operand, selects the displacement portion
  // of an effective address specifier.
  // If "which" is imm64_operand, selects the trailing immediate constant.
  // If "which" is call32_operand, selects the displacement of a call or jump.
  // Caller is responsible for ensuring that there is such an operand,
  // and that it is 32/64 bits wide.

  // If "which" is end_pc_operand, find the end of the instruction.

  address ip = inst;
  bool is_64bit = false;

  debug_only(bool has_disp32 = false);
  int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn

  again_after_prefix:
  switch (0xFF & *ip++) {

  // These convenience macros generate groups of "case" labels for the switch.
#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
             case (x)+4: case (x)+5: case (x)+6: case (x)+7
#define REP16(x) REP8((x)+0): \
              case REP8((x)+8)

  case CS_segment:
  case SS_segment:
  case DS_segment:
  case ES_segment:
  case FS_segment:
  case GS_segment:
438 439 440
    // Seems dubious
    LP64_ONLY(assert(false, "shouldn't have that prefix"));
    assert(ip == inst+1, "only one prefix allowed");
D
duke 已提交
441 442 443 444 445 446 447 448 449 450 451
    goto again_after_prefix;

  case 0x67:
  case REX:
  case REX_B:
  case REX_X:
  case REX_XB:
  case REX_R:
  case REX_RB:
  case REX_RX:
  case REX_RXB:
452
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
453 454 455 456 457 458 459 460 461 462
    goto again_after_prefix;

  case REX_W:
  case REX_WB:
  case REX_WX:
  case REX_WXB:
  case REX_WR:
  case REX_WRB:
  case REX_WRX:
  case REX_WRXB:
463
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
464 465 466 467 468 469 470 471 472
    is_64bit = true;
    goto again_after_prefix;

  case 0xFF: // pushq a; decl a; incl a; call a; jmp a
  case 0x88: // movb a, r
  case 0x89: // movl a, r
  case 0x8A: // movb r, a
  case 0x8B: // movl r, a
  case 0x8F: // popl a
473
    debug_only(has_disp32 = true);
D
duke 已提交
474 475 476 477 478 479
    break;

  case 0x68: // pushq #32
    if (which == end_pc_operand) {
      return ip + 4;
    }
480 481
    assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
    return ip;                  // not produced by emit_operand
D
duke 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

  case 0x66: // movw ... (size prefix)
    again_after_size_prefix2:
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
502
      NOT_LP64(assert(false, "64bit prefix found"));
D
duke 已提交
503 504 505
      goto again_after_size_prefix2;
    case 0x8B: // movw r, a
    case 0x89: // movw a, r
506
      debug_only(has_disp32 = true);
D
duke 已提交
507 508
      break;
    case 0xC7: // movw a, #16
509
      debug_only(has_disp32 = true);
D
duke 已提交
510 511 512 513 514 515 516 517 518 519 520 521
      tail_size = 2;  // the imm16
      break;
    case 0x0F: // several SSE/SSE2 variants
      ip--;    // reparse the 0x0F
      goto again_after_prefix;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP8(0xB8): // movl/q r, #32/#64(oop?)
    if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
522 523
    // these asserts are somewhat nonsensical
#ifndef _LP64
524
    assert(which == imm_operand || which == disp32_operand,
525
           err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
526 527
#else
    assert((which == call32_operand || which == imm_operand) && is_64bit ||
528
           which == narrow_oop_operand && !is_64bit,
529
           err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
530
#endif // _LP64
D
duke 已提交
531 532 533 534 535 536 537 538 539 540
    return ip;

  case 0x69: // imul r, a, #32
  case 0xC7: // movl a, #32(oop?)
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x0F: // movx..., etc.
    switch (0xFF & *ip++) {
K
kvn 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553
    case 0x3A: // pcmpestri
      tail_size = 1;
    case 0x38: // ptest, pmovzxbw
      ip++; // skip opcode
      debug_only(has_disp32 = true); // has both kinds of operands!
      break;

    case 0x70: // pshufd r, r/a, #8
      debug_only(has_disp32 = true); // has both kinds of operands!
    case 0x73: // psrldq r, #8
      tail_size = 1;
      break;

D
duke 已提交
554 555 556 557 558
    case 0x12: // movlps
    case 0x28: // movaps
    case 0x2E: // ucomiss
    case 0x2F: // comiss
    case 0x54: // andps
559 560
    case 0x55: // andnps
    case 0x56: // orps
D
duke 已提交
561 562 563
    case 0x57: // xorps
    case 0x6E: // movd
    case 0x7E: // movd
K
kvn 已提交
564
    case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
565
      debug_only(has_disp32 = true);
D
duke 已提交
566
      break;
567

D
duke 已提交
568 569
    case 0xAD: // shrd r, a, %cl
    case 0xAF: // imul r, a
570 571 572 573
    case 0xBE: // movsbl r, a (movsxb)
    case 0xBF: // movswl r, a (movsxw)
    case 0xB6: // movzbl r, a (movzxb)
    case 0xB7: // movzwl r, a (movzxw)
D
duke 已提交
574 575 576 577 578 579 580 581 582
    case REP16(0x40): // cmovl cc, r, a
    case 0xB0: // cmpxchgb
    case 0xB1: // cmpxchg
    case 0xC1: // xaddl
    case 0xC7: // cmpxchg8
    case REP16(0x90): // setcc a
      debug_only(has_disp32 = true);
      // fall out of the switch to decode the address
      break;
583

K
kvn 已提交
584 585 586 587 588 589
    case 0xC4: // pinsrw r, a, #8
      debug_only(has_disp32 = true);
    case 0xC5: // pextrw r, r, #8
      tail_size = 1;  // the imm8
      break;

D
duke 已提交
590 591 592 593
    case 0xAC: // shrd r, a, #8
      debug_only(has_disp32 = true);
      tail_size = 1;  // the imm8
      break;
594

D
duke 已提交
595 596
    case REP16(0x80): // jcc rdisp32
      if (which == end_pc_operand)  return ip + 4;
597
      assert(which == call32_operand, "jcc has no disp32 or imm");
D
duke 已提交
598 599 600 601 602 603 604 605
      return ip;
    default:
      ShouldNotReachHere();
    }
    break;

  case 0x81: // addl a, #32; addl r, #32
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
606
    // on 32bit in the case of cmpl, the imm might be an oop
D
duke 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x83: // addl a, #8; addl r, #8
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1;
    break;

  case 0x9B:
    switch (0xFF & *ip++) {
    case 0xD9: // fnstcw a
      debug_only(has_disp32 = true);
      break;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
  case REP4(0x10): // adc...
  case REP4(0x20): // and...
  case REP4(0x30): // xor...
  case REP4(0x08): // or...
  case REP4(0x18): // sbb...
  case REP4(0x28): // sub...
  case 0xF7: // mull a
635
  case 0x8D: // lea r, a
D
duke 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649
  case 0x87: // xchg r, a
  case REP4(0x38): // cmp...
  case 0x85: // test r, a
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
  case 0xC6: // movb a, #8
  case 0x80: // cmpb a, #8
  case 0x6B: // imul r, a, #8
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1; // the imm8
    break;

K
kvn 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  case 0xC4: // VEX_3bytes
  case 0xC5: // VEX_2bytes
    assert((UseAVX > 0), "shouldn't have VEX prefix");
    assert(ip == inst+1, "no prefixes allowed");
    // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
    // but they have prefix 0x0F and processed when 0x0F processed above.
    //
    // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
    // instructions (these instructions are not supported in 64-bit mode).
    // To distinguish them bits [7:6] are set in the VEX second byte since
    // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
    // those VEX bits REX and vvvv bits are inverted.
    //
    // Fortunately C2 doesn't generate these instructions so we don't need
    // to check for them in product version.

    // Check second byte
    NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));

    // First byte
    if ((0xFF & *inst) == VEX_3bytes) {
      ip++; // third byte
      is_64bit = ((VEX_W & *ip) == VEX_W);
    }
    ip++; // opcode
    // To find the end of instruction (which == end_pc_operand).
    switch (0xFF & *ip) {
    case 0x61: // pcmpestri r, r/a, #8
    case 0x70: // pshufd r, r/a, #8
    case 0x73: // psrldq r, #8
      tail_size = 1;  // the imm8
      break;
    default:
      break;
    }
    ip++; // skip opcode
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;
D
duke 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700

  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
  case 0xDD: // fld_d a; fst_d a; fstp_d a
  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
  case 0xDF: // fild_d a; fistp_d a
  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
    debug_only(has_disp32 = true);
    break;

K
kvn 已提交
701 702 703 704 705 706
  case 0xE8: // call rdisp32
  case 0xE9: // jmp  rdisp32
    if (which == end_pc_operand)  return ip + 4;
    assert(which == call32_operand, "call has no disp32 or imm");
    return ip;

707 708 709 710
  case 0xF0:                    // Lock
    assert(os::is_MP(), "only on MP");
    goto again_after_prefix;

D
duke 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  case 0xF3:                    // For SSE
  case 0xF2:                    // For SSE2
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
730
      NOT_LP64(assert(false, "found 64bit prefix"));
D
duke 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
      ip++;
    default:
      ip++;
    }
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  default:
    ShouldNotReachHere();

#undef REP8
#undef REP16
  }

  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
746 747 748 749 750 751
#ifdef _LP64
  assert(which != imm_operand, "instruction is not a movq reg, imm64");
#else
  // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
  assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
#endif // LP64
D
duke 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
  assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");

  // parse the output of emit_operand
  int op2 = 0xFF & *ip++;
  int base = op2 & 0x07;
  int op3 = -1;
  const int b100 = 4;
  const int b101 = 5;
  if (base == b100 && (op2 >> 6) != 3) {
    op3 = 0xFF & *ip++;
    base = op3 & 0x07;   // refetch the base
  }
  // now ip points at the disp (if any)

  switch (op2 >> 6) {
  case 0:
    // [00 reg  100][ss index base]
    // [00 reg  100][00   100  esp]
    // [00 reg base]
    // [00 reg  100][ss index  101][disp32]
    // [00 reg  101]               [disp32]

    if (base == b101) {
      if (which == disp32_operand)
        return ip;              // caller wants the disp32
      ip += 4;                  // skip the disp32
    }
    break;

  case 1:
    // [01 reg  100][ss index base][disp8]
    // [01 reg  100][00   100  esp][disp8]
    // [01 reg base]               [disp8]
    ip += 1;                    // skip the disp8
    break;

  case 2:
    // [10 reg  100][ss index base][disp32]
    // [10 reg  100][00   100  esp][disp32]
    // [10 reg base]               [disp32]
    if (which == disp32_operand)
      return ip;                // caller wants the disp32
    ip += 4;                    // skip the disp32
    break;

  case 3:
    // [11 reg base]  (not a memory addressing mode)
    break;
  }

  if (which == end_pc_operand) {
    return ip + tail_size;
  }

806
#ifdef _LP64
807
  assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
808 809 810
#else
  assert(which == imm_operand, "instruction has only an imm field");
#endif // LP64
D
duke 已提交
811 812 813 814 815 816 817 818
  return ip;
}

address Assembler::locate_next_instruction(address inst) {
  // Secretly share code with locate_operand:
  return locate_operand(inst, end_pc_operand);
}

819

D
duke 已提交
820 821 822
#ifdef ASSERT
void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
  address inst = inst_mark();
823
  assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
D
duke 已提交
824 825 826 827 828 829
  address opnd;

  Relocation* r = rspec.reloc();
  if (r->type() == relocInfo::none) {
    return;
  } else if (r->is_call() || format == call32_operand) {
830
    // assert(format == imm32_operand, "cannot specify a nonzero format");
D
duke 已提交
831 832
    opnd = locate_operand(inst, call32_operand);
  } else if (r->is_data()) {
833 834 835
    assert(format == imm_operand || format == disp32_operand
           LP64_ONLY(|| format == narrow_oop_operand), "format ok");
    opnd = locate_operand(inst, (WhichOperand)format);
D
duke 已提交
836
  } else {
837
    assert(format == imm_operand, "cannot specify a format");
D
duke 已提交
838 839 840 841
    return;
  }
  assert(opnd == pc(), "must put operand where relocs can find it");
}
842
#endif // ASSERT
D
duke 已提交
843

844 845 846 847 848
void Assembler::emit_operand32(Register reg, Address adr) {
  assert(reg->encoding() < 8, "no extended registers");
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec);
D
duke 已提交
849 850 851 852 853 854 855 856 857
}

void Assembler::emit_operand(Register reg, Address adr,
                             int rip_relative_correction) {
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec,
               rip_relative_correction);
}

858
void Assembler::emit_operand(XMMRegister reg, Address adr) {
D
duke 已提交
859
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
860 861 862 863 864 865 866 867 868 869 870 871 872
               adr._rspec);
}

// MMX operations
void Assembler::emit_operand(MMXRegister reg, Address adr) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}

// work around gcc (3.2.1-7a) bug
void Assembler::emit_operand(Address adr, MMXRegister reg) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
D
duke 已提交
873 874
}

875

D
duke 已提交
876 877 878
void Assembler::emit_farith(int b1, int b2, int i) {
  assert(isByte(b1) && isByte(b2), "wrong opcode");
  assert(0 <= i &&  i < 8, "illegal stack offset");
879 880
  emit_int8(b1);
  emit_int8(b2 + i);
D
duke 已提交
881 882 883
}


884 885 886 887 888 889 890 891 892 893 894
// Now the Assembler instructions (identical for 32/64 bits)

void Assembler::adcl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rdx, dst, imm32);
}

void Assembler::adcl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
895
  emit_int8(0x11);
896 897
  emit_operand(src, dst);
}
D
duke 已提交
898

899 900 901
void Assembler::adcl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD0, dst, imm32);
D
duke 已提交
902 903
}

904 905 906
void Assembler::adcl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
907
  emit_int8(0x13);
908
  emit_operand(dst, src);
D
duke 已提交
909 910
}

911 912 913
void Assembler::adcl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
D
duke 已提交
914 915
}

916 917 918 919
void Assembler::addl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rax, dst, imm32);
D
duke 已提交
920 921
}

922 923 924
void Assembler::addl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
925
  emit_int8(0x01);
926
  emit_operand(src, dst);
D
duke 已提交
927 928
}

929 930 931 932
void Assembler::addl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC0, dst, imm32);
}
D
duke 已提交
933

934 935 936
void Assembler::addl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
937
  emit_int8(0x03);
938
  emit_operand(dst, src);
D
duke 已提交
939 940
}

941 942 943
void Assembler::addl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
D
duke 已提交
944 945
}

946
void Assembler::addr_nop_4() {
947
  assert(UseAddressNop, "no CPU support");
948
  // 4 bytes: NOP DWORD PTR [EAX+0]
949 950 951 952
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
  emit_int8(0);    // 8-bits offset (1 byte)
D
duke 已提交
953 954
}

955
void Assembler::addr_nop_5() {
956
  assert(UseAddressNop, "no CPU support");
957
  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
958 959 960 961 962
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
  emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  emit_int8(0);    // 8-bits offset (1 byte)
D
duke 已提交
963 964
}

965
void Assembler::addr_nop_7() {
966
  assert(UseAddressNop, "no CPU support");
967
  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
968 969 970 971
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8((unsigned char)0x80);
                   // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
972
  emit_int32(0);   // 32-bits offset (4 bytes)
D
duke 已提交
973 974
}

975
void Assembler::addr_nop_8() {
976
  assert(UseAddressNop, "no CPU support");
977
  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
978 979 980 981 982
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8((unsigned char)0x84);
                   // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
  emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
983
  emit_int32(0);   // 32-bits offset (4 bytes)
984 985 986 987
}

void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
988
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
989 990 991 992
}

void Assembler::addsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
993
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
D
duke 已提交
994 995
}

996 997
void Assembler::addss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
998
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
999 1000 1001 1002
}

void Assembler::addss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 1005
}

1006 1007 1008 1009
void Assembler::aesdec(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1010
  emit_int8((unsigned char)0xDE);
1011 1012 1013 1014 1015 1016
  emit_operand(dst, src);
}

void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1017 1018
  emit_int8((unsigned char)0xDE);
  emit_int8(0xC0 | encode);
1019 1020 1021 1022 1023 1024
}

void Assembler::aesdeclast(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025
  emit_int8((unsigned char)0xDF);
1026 1027 1028 1029 1030 1031
  emit_operand(dst, src);
}

void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1032 1033
  emit_int8((unsigned char)0xDF);
  emit_int8((unsigned char)(0xC0 | encode));
1034 1035 1036 1037 1038 1039
}

void Assembler::aesenc(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040
  emit_int8((unsigned char)0xDC);
1041 1042 1043 1044 1045 1046
  emit_operand(dst, src);
}

void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1047 1048
  emit_int8((unsigned char)0xDC);
  emit_int8(0xC0 | encode);
1049 1050 1051 1052 1053 1054
}

void Assembler::aesenclast(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055
  emit_int8((unsigned char)0xDD);
1056 1057 1058 1059 1060 1061
  emit_operand(dst, src);
}

void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1062 1063
  emit_int8((unsigned char)0xDD);
  emit_int8((unsigned char)(0xC0 | encode));
1064 1065 1066
}


K
kvn 已提交
1067 1068 1069
void Assembler::andl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
1070
  emit_int8((unsigned char)0x81);
K
kvn 已提交
1071
  emit_operand(rsp, dst, 4);
1072
  emit_int32(imm32);
K
kvn 已提交
1073 1074
}

1075
void Assembler::andl(Register dst, int32_t imm32) {
D
duke 已提交
1076
  prefix(dst);
1077
  emit_arith(0x81, 0xE0, dst, imm32);
D
duke 已提交
1078 1079
}

1080
void Assembler::andl(Register dst, Address src) {
D
duke 已提交
1081
  InstructionMark im(this);
1082
  prefix(src, dst);
1083
  emit_int8(0x23);
1084
  emit_operand(dst, src);
D
duke 已提交
1085 1086
}

1087 1088 1089
void Assembler::andl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
D
duke 已提交
1090 1091
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
void Assembler::andnl(Register dst, Register src1, Register src2) {
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
  emit_int8((unsigned char)0xF2);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::andnl(Register dst, Register src1, Address src2) {
  InstructionMark im(this);
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  vex_prefix_0F38(dst, src1, src2);
  emit_int8((unsigned char)0xF2);
  emit_operand(dst, src2);
}

1107 1108
void Assembler::bsfl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1109 1110 1111
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBC);
  emit_int8((unsigned char)(0xC0 | encode));
1112 1113 1114 1115
}

void Assembler::bsrl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1116 1117 1118
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
1119 1120
}

1121 1122
void Assembler::bswapl(Register reg) { // bswap
  int encode = prefix_and_encode(reg->encoding());
1123 1124
  emit_int8(0x0F);
  emit_int8((unsigned char)(0xC8 | encode));
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
void Assembler::blsil(Register dst, Register src) {
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::blsil(Register dst, Address src) {
  InstructionMark im(this);
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  vex_prefix_0F38(rbx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_operand(rbx, src);
}

void Assembler::blsmskl(Register dst, Register src) {
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::blsmskl(Register dst, Address src) {
  InstructionMark im(this);
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  vex_prefix_0F38(rdx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_operand(rdx, src);
}

void Assembler::blsrl(Register dst, Register src) {
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::blsrl(Register dst, Address src) {
  InstructionMark im(this);
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  vex_prefix_0F38(rcx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_operand(rcx, src);
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
void Assembler::call(Label& L, relocInfo::relocType rtype) {
  // suspect disp32 is always good
  int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);

  if (L.is_bound()) {
    const int long_size = 5;
    int offs = (int)( target(L) - pc() );
    assert(offs <= 0, "assembler error");
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
1182
    emit_int8((unsigned char)0xE8);
1183 1184 1185 1186 1187 1188
    emit_data(offs - long_size, rtype, operand);
  } else {
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
    L.add_patch_at(code(), locator());

1189
    emit_int8((unsigned char)0xE8);
1190 1191 1192 1193 1194
    emit_data(int(0), rtype, operand);
  }
}

void Assembler::call(Register dst) {
K
kvn 已提交
1195
  int encode = prefix_and_encode(dst->encoding());
1196 1197
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xD0 | encode));
1198 1199 1200 1201
}


void Assembler::call(Address adr) {
D
duke 已提交
1202
  InstructionMark im(this);
1203
  prefix(adr);
1204
  emit_int8((unsigned char)0xFF);
1205
  emit_operand(rdx, adr);
D
duke 已提交
1206 1207
}

1208 1209 1210
void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  assert(entry != NULL, "call most probably wrong");
  InstructionMark im(this);
1211
  emit_int8((unsigned char)0xE8);
1212
  intptr_t disp = entry - (pc() + sizeof(int32_t));
1213 1214 1215 1216 1217 1218
  assert(is_simm32(disp), "must be 32bit offset (call2)");
  // Technically, should use call32_operand, but this format is
  // implied by the fact that we're emitting a call instruction.

  int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  emit_data((int) disp, rspec, operand);
D
duke 已提交
1219 1220
}

1221
void Assembler::cdql() {
1222
  emit_int8((unsigned char)0x99);
1223 1224
}

1225
void Assembler::cld() {
1226
  emit_int8((unsigned char)0xFC);
1227 1228
}

1229 1230
void Assembler::cmovl(Condition cc, Register dst, Register src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1231
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1232 1233 1234
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1235 1236
}

1237 1238 1239

void Assembler::cmovl(Condition cc, Register dst, Address src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1240
  prefix(src, dst);
1241 1242
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
D
duke 已提交
1243 1244 1245
  emit_operand(dst, src);
}

1246
void Assembler::cmpb(Address dst, int imm8) {
D
duke 已提交
1247 1248
  InstructionMark im(this);
  prefix(dst);
1249
  emit_int8((unsigned char)0x80);
1250
  emit_operand(rdi, dst, 1);
1251
  emit_int8(imm8);
D
duke 已提交
1252 1253
}

1254
void Assembler::cmpl(Address dst, int32_t imm32) {
D
duke 已提交
1255
  InstructionMark im(this);
1256
  prefix(dst);
1257
  emit_int8((unsigned char)0x81);
1258
  emit_operand(rdi, dst, 4);
1259
  emit_int32(imm32);
D
duke 已提交
1260 1261
}

1262 1263 1264
void Assembler::cmpl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF8, dst, imm32);
D
duke 已提交
1265 1266
}

1267 1268 1269
void Assembler::cmpl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
D
duke 已提交
1270 1271 1272
}


1273
void Assembler::cmpl(Register dst, Address  src) {
D
duke 已提交
1274
  InstructionMark im(this);
1275
  prefix(src, dst);
1276
  emit_int8((unsigned char)0x3B);
D
duke 已提交
1277 1278 1279
  emit_operand(dst, src);
}

1280
void Assembler::cmpw(Address dst, int imm16) {
D
duke 已提交
1281
  InstructionMark im(this);
1282
  assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1283 1284
  emit_int8(0x66);
  emit_int8((unsigned char)0x81);
1285
  emit_operand(rdi, dst, 2);
1286
  emit_int16(imm16);
D
duke 已提交
1287 1288
}

1289 1290 1291 1292
// The 32-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
C
coleenp 已提交
1293 1294
  InstructionMark im(this);
  prefix(adr, reg);
1295 1296
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB1);
C
coleenp 已提交
1297
  emit_operand(reg, adr);
D
duke 已提交
1298 1299
}

1300 1301 1302 1303
void Assembler::comisd(XMMRegister dst, Address src) {
  // NOTE: dbx seems to decode this as comiss even though the
  // 0x66 is there. Strangly ucomisd comes out correct
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1304
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
K
kvn 已提交
1305 1306 1307 1308
}

void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1309
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
D
duke 已提交
1310 1311
}

1312 1313
void Assembler::comiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1314
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
D
duke 已提交
1315 1316
}

K
kvn 已提交
1317 1318
void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1319
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
K
kvn 已提交
1320 1321
}

1322
void Assembler::cpuid() {
1323 1324
  emit_int8(0x0F);
  emit_int8((unsigned char)0xA2);
1325 1326
}

1327 1328
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1329
  emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
D
duke 已提交
1330 1331
}

1332 1333
void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1334
  emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
D
duke 已提交
1335 1336
}

1337 1338
void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1339
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
D
duke 已提交
1340 1341
}

K
kvn 已提交
1342 1343
void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1344
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
K
kvn 已提交
1345 1346
}

1347 1348
void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1349
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1350 1351
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1352 1353
}

K
kvn 已提交
1354 1355
void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1356
  emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
K
kvn 已提交
1357 1358
}

1359 1360
void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
1361
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1362 1363
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1364 1365
}

K
kvn 已提交
1366 1367
void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1368
  emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
K
kvn 已提交
1369 1370
}

1371 1372
void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1373
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
D
duke 已提交
1374 1375
}

K
kvn 已提交
1376 1377
void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1378
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
K
kvn 已提交
1379 1380 1381
}


1382 1383
void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1384
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1385 1386
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1387 1388
}

1389 1390
void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
1391
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1392 1393
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1394 1395
}

1396 1397 1398 1399
void Assembler::decl(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrement() instead.
  InstructionMark im(this);
  prefix(dst);
1400
  emit_int8((unsigned char)0xFF);
1401
  emit_operand(rcx, dst);
D
duke 已提交
1402 1403
}

1404 1405
void Assembler::divsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1406
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
D
duke 已提交
1407 1408
}

1409 1410
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1411
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
D
duke 已提交
1412 1413
}

1414 1415
void Assembler::divss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1416
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
D
duke 已提交
1417 1418
}

1419 1420
void Assembler::divss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1421
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
D
duke 已提交
1422 1423
}

1424 1425
void Assembler::emms() {
  NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1426 1427
  emit_int8(0x0F);
  emit_int8(0x77);
D
duke 已提交
1428 1429
}

1430
void Assembler::hlt() {
1431
  emit_int8((unsigned char)0xF4);
D
duke 已提交
1432 1433
}

1434 1435
void Assembler::idivl(Register src) {
  int encode = prefix_and_encode(src->encoding());
1436 1437
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF8 | encode));
D
duke 已提交
1438 1439
}

1440 1441
void Assembler::divl(Register src) { // Unsigned
  int encode = prefix_and_encode(src->encoding());
1442 1443
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF0 | encode));
1444 1445
}

1446
void Assembler::imull(Register dst, Register src) {
D
duke 已提交
1447
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1448 1449 1450
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAF);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1451 1452 1453
}


1454
void Assembler::imull(Register dst, Register src, int value) {
D
duke 已提交
1455
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1456
  if (is8bit(value)) {
1457 1458 1459
    emit_int8(0x6B);
    emit_int8((unsigned char)(0xC0 | encode));
    emit_int8(value & 0xFF);
1460
  } else {
1461 1462
    emit_int8(0x69);
    emit_int8((unsigned char)(0xC0 | encode));
1463
    emit_int32(value);
1464
  }
D
duke 已提交
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475
void Assembler::imull(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_int8(0x0F);
  emit_int8((unsigned char) 0xAF);
  emit_operand(dst, src);
}


1476 1477
void Assembler::incl(Address dst) {
  // Don't use it directly. Use MacroAssembler::increment() instead.
D
duke 已提交
1478
  InstructionMark im(this);
1479
  prefix(dst);
1480
  emit_int8((unsigned char)0xFF);
1481
  emit_operand(rax, dst);
D
duke 已提交
1482 1483
}

1484
void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
D
duke 已提交
1485
  InstructionMark im(this);
1486 1487 1488 1489 1490 1491 1492
  assert((0 <= cc) && (cc < 16), "illegal cc");
  if (L.is_bound()) {
    address dst = target(L);
    assert(dst != NULL, "jcc most probably wrong");

    const int short_size = 2;
    const int long_size = 6;
1493
    intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1494
    if (maybe_short && is8bit(offs - short_size)) {
1495
      // 0111 tttn #8-bit disp
1496 1497
      emit_int8(0x70 | cc);
      emit_int8((offs - short_size) & 0xFF);
1498 1499 1500 1501
    } else {
      // 0000 1111 1000 tttn #32-bit disp
      assert(is_simm32(offs - long_size),
             "must be 32bit offset (call4)");
1502 1503
      emit_int8(0x0F);
      emit_int8((unsigned char)(0x80 | cc));
1504
      emit_int32(offs - long_size);
1505 1506 1507 1508 1509 1510 1511
    }
  } else {
    // Note: could eliminate cond. jumps to this jump if condition
    //       is the same however, seems to be rather unlikely case.
    // Note: use jccb() if label to be bound is very close to get
    //       an 8-bit displacement
    L.add_patch_at(code(), locator());
1512 1513
    emit_int8(0x0F);
    emit_int8((unsigned char)(0x80 | cc));
1514
    emit_int32(0);
1515
  }
D
duke 已提交
1516 1517
}

1518 1519 1520 1521
void Assembler::jccb(Condition cc, Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
1522
#ifdef ASSERT
1523
    intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1524 1525 1526 1527 1528 1529
    intptr_t delta = short_branch_delta();
    if (delta != 0) {
      dist += (dist < 0 ? (-delta) :delta);
    }
    assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
1530
    intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1531
    // 0111 tttn #8-bit disp
1532 1533
    emit_int8(0x70 | cc);
    emit_int8((offs - short_size) & 0xFF);
1534 1535 1536
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1537 1538
    emit_int8(0x70 | cc);
    emit_int8(0);
1539
  }
D
duke 已提交
1540 1541
}

1542
void Assembler::jmp(Address adr) {
D
duke 已提交
1543
  InstructionMark im(this);
1544
  prefix(adr);
1545
  emit_int8((unsigned char)0xFF);
1546
  emit_operand(rsp, adr);
D
duke 已提交
1547 1548
}

1549
void Assembler::jmp(Label& L, bool maybe_short) {
1550 1551 1552 1553 1554 1555
  if (L.is_bound()) {
    address entry = target(L);
    assert(entry != NULL, "jmp most probably wrong");
    InstructionMark im(this);
    const int short_size = 2;
    const int long_size = 5;
1556
    intptr_t offs = entry - pc();
1557
    if (maybe_short && is8bit(offs - short_size)) {
1558 1559
      emit_int8((unsigned char)0xEB);
      emit_int8((offs - short_size) & 0xFF);
1560
    } else {
1561
      emit_int8((unsigned char)0xE9);
1562
      emit_int32(offs - long_size);
1563 1564 1565 1566 1567 1568 1569 1570
    }
  } else {
    // By default, forward jumps are always 32-bit displacements, since
    // we can't yet know where the label will be bound.  If you're sure that
    // the forward jump will not run beyond 256 bytes, use jmpb to
    // force an 8-bit displacement.
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1571
    emit_int8((unsigned char)0xE9);
1572
    emit_int32(0);
1573
  }
D
duke 已提交
1574 1575
}

1576 1577
void Assembler::jmp(Register entry) {
  int encode = prefix_and_encode(entry->encoding());
1578 1579
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xE0 | encode));
D
duke 已提交
1580 1581
}

1582
void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
D
duke 已提交
1583
  InstructionMark im(this);
1584
  emit_int8((unsigned char)0xE9);
1585
  assert(dest != NULL, "must have a target");
1586
  intptr_t disp = dest - (pc() + sizeof(int32_t));
1587 1588
  assert(is_simm32(disp), "must be 32bit offset (jmp)");
  emit_data(disp, rspec.reloc(), call32_operand);
D
duke 已提交
1589 1590
}

1591 1592 1593 1594 1595
void Assembler::jmpb(Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
    assert(entry != NULL, "jmp most probably wrong");
1596
#ifdef ASSERT
1597
    intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1598 1599 1600 1601 1602 1603
    intptr_t delta = short_branch_delta();
    if (delta != 0) {
      dist += (dist < 0 ? (-delta) :delta);
    }
    assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
1604
    intptr_t offs = entry - pc();
1605 1606
    emit_int8((unsigned char)0xEB);
    emit_int8((offs - short_size) & 0xFF);
1607 1608 1609
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1610 1611
    emit_int8((unsigned char)0xEB);
    emit_int8(0);
1612
  }
D
duke 已提交
1613 1614
}

1615 1616
void Assembler::ldmxcsr( Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1617
  InstructionMark im(this);
1618
  prefix(src);
1619 1620
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
1621
  emit_operand(as_Register(2), src);
D
duke 已提交
1622 1623
}

1624
void Assembler::leal(Register dst, Address src) {
D
duke 已提交
1625
  InstructionMark im(this);
1626
#ifdef _LP64
1627
  emit_int8(0x67); // addr32
1628 1629
  prefix(src, dst);
#endif // LP64
1630
  emit_int8((unsigned char)0x8D);
1631
  emit_operand(dst, src);
D
duke 已提交
1632 1633
}

1634
void Assembler::lfence() {
1635 1636 1637
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
  emit_int8((unsigned char)0xE8);
1638 1639
}

1640
void Assembler::lock() {
1641
  emit_int8((unsigned char)0xF0);
D
duke 已提交
1642 1643
}

1644 1645
void Assembler::lzcntl(Register dst, Register src) {
  assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1646
  emit_int8((unsigned char)0xF3);
1647
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1648 1649 1650
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
1651 1652
}

1653
// Emit mfence instruction
1654
void Assembler::mfence() {
1655
  NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1656 1657 1658
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
  emit_int8((unsigned char)0xF0);
D
duke 已提交
1659 1660
}

1661 1662
void Assembler::mov(Register dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
1663 1664
}

1665 1666
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1667
  emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
D
duke 已提交
1668 1669
}

1670 1671
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1672
  emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1673 1674
}

1675 1676 1677
void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1678 1679
  emit_int8(0x16);
  emit_int8((unsigned char)(0xC0 | encode));
1680 1681
}

1682 1683
void Assembler::movb(Register dst, Address src) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
D
duke 已提交
1684
  InstructionMark im(this);
1685
  prefix(src, dst, true);
1686
  emit_int8((unsigned char)0x8A);
D
duke 已提交
1687 1688 1689 1690
  emit_operand(dst, src);
}


1691
void Assembler::movb(Address dst, int imm8) {
D
duke 已提交
1692
  InstructionMark im(this);
1693
   prefix(dst);
1694
  emit_int8((unsigned char)0xC6);
1695
  emit_operand(rax, dst, 1);
1696
  emit_int8(imm8);
D
duke 已提交
1697 1698
}

1699 1700 1701

void Assembler::movb(Address dst, Register src) {
  assert(src->has_byte_register(), "must have byte register");
D
duke 已提交
1702
  InstructionMark im(this);
1703
  prefix(dst, src, true);
1704
  emit_int8((unsigned char)0x88);
D
duke 已提交
1705 1706 1707
  emit_operand(src, dst);
}

1708 1709
void Assembler::movdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1710
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1711 1712
  emit_int8(0x6E);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1713 1714
}

1715 1716 1717
void Assembler::movdl(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // swap src/dst to get correct prefix
K
kvn 已提交
1718
  int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1719 1720
  emit_int8(0x7E);
  emit_int8((unsigned char)(0xC0 | encode));
1721 1722
}

1723 1724 1725
void Assembler::movdl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
K
kvn 已提交
1726
  simd_prefix(dst, src, VEX_SIMD_66);
1727
  emit_int8(0x6E);
1728 1729 1730
  emit_operand(dst, src);
}

1731 1732 1733 1734
void Assembler::movdl(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  simd_prefix(dst, src, VEX_SIMD_66);
1735
  emit_int8(0x7E);
1736 1737 1738
  emit_operand(src, dst);
}

1739 1740
void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1741
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
D
duke 已提交
1742 1743
}

1744 1745 1746 1747 1748
void Assembler::movdqa(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
}

1749 1750
void Assembler::movdqu(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1751
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1752 1753 1754 1755
}

void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1756
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1757 1758 1759 1760 1761
}

void Assembler::movdqu(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
K
kvn 已提交
1762
  simd_prefix(dst, src, VEX_SIMD_F3);
1763
  emit_int8(0x7F);
1764 1765 1766
  emit_operand(src, dst);
}

1767 1768
// Move Unaligned 256bit Vector
void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
1769
  assert(UseAVX > 0, "");
1770 1771
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1772 1773
  emit_int8(0x6F);
  emit_int8((unsigned char)(0xC0 | encode));
1774 1775 1776
}

void Assembler::vmovdqu(XMMRegister dst, Address src) {
1777
  assert(UseAVX > 0, "");
1778 1779 1780
  InstructionMark im(this);
  bool vector256 = true;
  vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1781
  emit_int8(0x6F);
1782 1783 1784 1785
  emit_operand(dst, src);
}

void Assembler::vmovdqu(Address dst, XMMRegister src) {
1786
  assert(UseAVX > 0, "");
1787 1788 1789 1790 1791
  InstructionMark im(this);
  bool vector256 = true;
  // swap src<->dst for encoding
  assert(src != xnoreg, "sanity");
  vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1792
  emit_int8(0x7F);
1793 1794 1795
  emit_operand(src, dst);
}

1796 1797 1798 1799
// Uses zero extension on 64bit

void Assembler::movl(Register dst, int32_t imm32) {
  int encode = prefix_and_encode(dst->encoding());
1800
  emit_int8((unsigned char)(0xB8 | encode));
1801
  emit_int32(imm32);
D
duke 已提交
1802 1803
}

1804 1805
void Assembler::movl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1806 1807
  emit_int8((unsigned char)0x8B);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1808 1809
}

1810
void Assembler::movl(Register dst, Address src) {
D
duke 已提交
1811
  InstructionMark im(this);
1812
  prefix(src, dst);
1813
  emit_int8((unsigned char)0x8B);
D
duke 已提交
1814 1815 1816
  emit_operand(dst, src);
}

1817 1818 1819
void Assembler::movl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
1820
  emit_int8((unsigned char)0xC7);
1821
  emit_operand(rax, dst, 4);
1822
  emit_int32(imm32);
D
duke 已提交
1823 1824
}

1825 1826 1827
void Assembler::movl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
1828
  emit_int8((unsigned char)0x89);
1829
  emit_operand(src, dst);
D
duke 已提交
1830 1831
}

1832 1833 1834 1835 1836
// New cpus require to use movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void Assembler::movlpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1837
  emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
D
duke 已提交
1838 1839
}

1840 1841
void Assembler::movq( MMXRegister dst, Address src ) {
  assert( VM_Version::supports_mmx(), "" );
1842 1843
  emit_int8(0x0F);
  emit_int8(0x6F);
1844
  emit_operand(dst, src);
D
duke 已提交
1845 1846
}

1847 1848
void Assembler::movq( Address dst, MMXRegister src ) {
  assert( VM_Version::supports_mmx(), "" );
1849 1850
  emit_int8(0x0F);
  emit_int8(0x7F);
1851 1852 1853 1854 1855 1856 1857
  // workaround gcc (3.2.1-7a) bug
  // In that version of gcc with only an emit_operand(MMX, Address)
  // gcc will tail jump and try and reverse the parameters completely
  // obliterating dst in the process. By having a version available
  // that doesn't need to swap the args at the tail jump the bug is
  // avoided.
  emit_operand(dst, src);
D
duke 已提交
1858 1859
}

1860 1861
void Assembler::movq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1862
  InstructionMark im(this);
K
kvn 已提交
1863
  simd_prefix(dst, src, VEX_SIMD_F3);
1864
  emit_int8(0x7E);
D
duke 已提交
1865 1866 1867
  emit_operand(dst, src);
}

1868 1869
void Assembler::movq(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1870
  InstructionMark im(this);
K
kvn 已提交
1871
  simd_prefix(dst, src, VEX_SIMD_66);
1872
  emit_int8((unsigned char)0xD6);
1873
  emit_operand(src, dst);
D
duke 已提交
1874 1875
}

1876
void Assembler::movsbl(Register dst, Address src) { // movsxb
D
duke 已提交
1877
  InstructionMark im(this);
1878
  prefix(src, dst);
1879 1880
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
1881
  emit_operand(dst, src);
D
duke 已提交
1882 1883
}

1884 1885 1886
void Assembler::movsbl(Register dst, Register src) { // movsxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1887 1888 1889
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1890 1891
}

1892 1893
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1894
  emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
D
duke 已提交
1895 1896
}

1897 1898
void Assembler::movsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1899
  emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
D
duke 已提交
1900 1901
}

1902 1903
void Assembler::movsd(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1904
  InstructionMark im(this);
K
kvn 已提交
1905
  simd_prefix(dst, src, VEX_SIMD_F2);
1906
  emit_int8(0x11);
1907
  emit_operand(src, dst);
D
duke 已提交
1908 1909
}

1910 1911
void Assembler::movss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1912
  emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
D
duke 已提交
1913 1914
}

1915 1916
void Assembler::movss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1917
  emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
D
duke 已提交
1918 1919
}

1920 1921 1922
void Assembler::movss(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
K
kvn 已提交
1923
  simd_prefix(dst, src, VEX_SIMD_F3);
1924
  emit_int8(0x11);
1925
  emit_operand(src, dst);
D
duke 已提交
1926 1927
}

1928
void Assembler::movswl(Register dst, Address src) { // movsxw
D
duke 已提交
1929
  InstructionMark im(this);
1930
  prefix(src, dst);
1931 1932
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
D
duke 已提交
1933 1934 1935
  emit_operand(dst, src);
}

1936
void Assembler::movswl(Register dst, Register src) { // movsxw
D
duke 已提交
1937
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1938 1939 1940
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1941 1942
}

1943 1944
void Assembler::movw(Address dst, int imm16) {
  InstructionMark im(this);
D
duke 已提交
1945

1946
  emit_int8(0x66); // switch to 16-bit mode
1947
  prefix(dst);
1948
  emit_int8((unsigned char)0xC7);
1949
  emit_operand(rax, dst, 2);
1950
  emit_int16(imm16);
D
duke 已提交
1951 1952
}

1953
void Assembler::movw(Register dst, Address src) {
D
duke 已提交
1954
  InstructionMark im(this);
1955
  emit_int8(0x66);
1956
  prefix(src, dst);
1957
  emit_int8((unsigned char)0x8B);
1958
  emit_operand(dst, src);
D
duke 已提交
1959 1960
}

1961 1962
void Assembler::movw(Address dst, Register src) {
  InstructionMark im(this);
1963
  emit_int8(0x66);
1964
  prefix(dst, src);
1965
  emit_int8((unsigned char)0x89);
1966
  emit_operand(src, dst);
D
duke 已提交
1967 1968
}

1969
void Assembler::movzbl(Register dst, Address src) { // movzxb
D
duke 已提交
1970
  InstructionMark im(this);
1971
  prefix(src, dst);
1972 1973
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
1974
  emit_operand(dst, src);
D
duke 已提交
1975 1976
}

1977 1978 1979
void Assembler::movzbl(Register dst, Register src) { // movzxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1980 1981 1982
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
  emit_int8(0xC0 | encode);
D
duke 已提交
1983 1984
}

1985 1986 1987
void Assembler::movzwl(Register dst, Address src) { // movzxw
  InstructionMark im(this);
  prefix(src, dst);
1988 1989
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB7);
1990
  emit_operand(dst, src);
D
duke 已提交
1991 1992
}

1993
void Assembler::movzwl(Register dst, Register src) { // movzxw
D
duke 已提交
1994
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1995 1996 1997
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB7);
  emit_int8(0xC0 | encode);
D
duke 已提交
1998 1999 2000 2001 2002
}

void Assembler::mull(Address src) {
  InstructionMark im(this);
  prefix(src);
2003
  emit_int8((unsigned char)0xF7);
D
duke 已提交
2004 2005 2006 2007 2008
  emit_operand(rsp, src);
}

void Assembler::mull(Register src) {
  int encode = prefix_and_encode(src->encoding());
2009 2010
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xE0 | encode));
D
duke 已提交
2011 2012
}

2013 2014
void Assembler::mulsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2015
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
D
duke 已提交
2016 2017
}

2018 2019
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2020
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
D
duke 已提交
2021 2022
}

2023 2024
void Assembler::mulss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2025
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
D
duke 已提交
2026 2027
}

2028 2029
void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2030
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
D
duke 已提交
2031 2032
}

2033
void Assembler::negl(Register dst) {
D
duke 已提交
2034
  int encode = prefix_and_encode(dst->encoding());
2035 2036
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD8 | encode));
D
duke 已提交
2037 2038
}

2039 2040 2041 2042 2043 2044 2045
void Assembler::nop(int i) {
#ifdef ASSERT
  assert(i > 0, " ");
  // The fancy nops aren't currently recognized by debuggers making it a
  // pain to disassemble code while debugging. If asserts are on clearly
  // speed is not an issue so simply use the single byte traditional nop
  // to do alignment.
D
duke 已提交
2046

2047
  for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2048
  return;
D
duke 已提交
2049

2050
#endif // ASSERT
D
duke 已提交
2051

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
  if (UseAddressNop && VM_Version::is_intel()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
D
duke 已提交
2066

2067
    // The rest coding is Intel specific - don't use consecutive address nops
D
duke 已提交
2068

2069 2070 2071 2072
    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
D
duke 已提交
2073

2074 2075 2076
    while(i >= 15) {
      // For Intel don't generate consecutive addess nops (mix with regular nops)
      i -= 15;
2077 2078 2079
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
2080
      addr_nop_8();
2081 2082 2083 2084 2085
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8((unsigned char)0x90);
                         // nop
2086 2087 2088
    }
    switch (i) {
      case 14:
2089
        emit_int8(0x66); // size prefix
2090
      case 13:
2091
        emit_int8(0x66); // size prefix
2092 2093
      case 12:
        addr_nop_8();
2094 2095 2096 2097 2098
        emit_int8(0x66); // size prefix
        emit_int8(0x66); // size prefix
        emit_int8(0x66); // size prefix
        emit_int8((unsigned char)0x90);
                         // nop
2099 2100
        break;
      case 11:
2101
        emit_int8(0x66); // size prefix
2102
      case 10:
2103
        emit_int8(0x66); // size prefix
2104
      case 9:
2105
        emit_int8(0x66); // size prefix
2106 2107 2108 2109 2110 2111 2112
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
2113
        emit_int8(0x66); // size prefix
2114 2115 2116 2117 2118 2119 2120 2121
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2122
        emit_int8(0x66); // size prefix
2123
      case 2:
2124
        emit_int8(0x66); // size prefix
2125
      case 1:
2126 2127
        emit_int8((unsigned char)0x90);
                         // nop
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }
  if (UseAddressNop && VM_Version::is_amd()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00

    // The rest coding is AMD specific - use consecutive address nops

    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //     Size prefixes (0x66) are added for larger sizes

    while(i >= 22) {
      i -= 11;
2160 2161 2162
      emit_int8(0x66); // size prefix
      emit_int8(0x66); // size prefix
      emit_int8(0x66); // size prefix
2163 2164 2165 2166 2167 2168
      addr_nop_8();
    }
    // Generate first nop for size between 21-12
    switch (i) {
      case 21:
        i -= 1;
2169
        emit_int8(0x66); // size prefix
2170 2171 2172
      case 20:
      case 19:
        i -= 1;
2173
        emit_int8(0x66); // size prefix
2174 2175 2176
      case 18:
      case 17:
        i -= 1;
2177
        emit_int8(0x66); // size prefix
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
      case 16:
      case 15:
        i -= 8;
        addr_nop_8();
        break;
      case 14:
      case 13:
        i -= 7;
        addr_nop_7();
        break;
      case 12:
        i -= 6;
2190
        emit_int8(0x66); // size prefix
2191 2192 2193 2194 2195 2196 2197 2198 2199
        addr_nop_5();
        break;
      default:
        assert(i < 12, " ");
    }

    // Generate second nop for size between 11-1
    switch (i) {
      case 11:
2200
        emit_int8(0x66); // size prefix
2201
      case 10:
2202
        emit_int8(0x66); // size prefix
2203
      case 9:
2204
        emit_int8(0x66); // size prefix
2205 2206 2207 2208 2209 2210 2211
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
2212
        emit_int8(0x66); // size prefix
2213 2214 2215 2216 2217 2218 2219 2220
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2221
        emit_int8(0x66); // size prefix
2222
      case 2:
2223
        emit_int8(0x66); // size prefix
2224
      case 1:
2225 2226
        emit_int8((unsigned char)0x90);
                         // nop
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }

  // Using nops with size prefixes "0x66 0x90".
  // From AMD Optimization Guide:
  //  1: 0x90
  //  2: 0x66 0x90
  //  3: 0x66 0x66 0x90
  //  4: 0x66 0x66 0x66 0x90
  //  5: 0x66 0x66 0x90 0x66 0x90
  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  //
  while(i > 12) {
    i -= 4;
2249 2250 2251 2252 2253
    emit_int8(0x66); // size prefix
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
                     // nop
2254 2255 2256 2257 2258
  }
  // 1 - 12 nops
  if(i > 8) {
    if(i > 9) {
      i -= 1;
2259
      emit_int8(0x66);
2260 2261
    }
    i -= 3;
2262 2263 2264
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
2265 2266 2267 2268 2269
  }
  // 1 - 8 nops
  if(i > 4) {
    if(i > 6) {
      i -= 1;
2270
      emit_int8(0x66);
2271 2272
    }
    i -= 3;
2273 2274 2275
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
2276 2277 2278
  }
  switch (i) {
    case 4:
2279
      emit_int8(0x66);
2280
    case 3:
2281
      emit_int8(0x66);
2282
    case 2:
2283
      emit_int8(0x66);
2284
    case 1:
2285
      emit_int8((unsigned char)0x90);
2286 2287 2288 2289
      break;
    default:
      assert(i == 0, " ");
  }
D
duke 已提交
2290 2291
}

2292 2293
void Assembler::notl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2294 2295
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD0 | encode));
D
duke 已提交
2296 2297
}

2298
void Assembler::orl(Address dst, int32_t imm32) {
D
duke 已提交
2299
  InstructionMark im(this);
2300
  prefix(dst);
2301
  emit_arith_operand(0x81, rcx, dst, imm32);
D
duke 已提交
2302 2303
}

2304 2305 2306
void Assembler::orl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC8, dst, imm32);
D
duke 已提交
2307 2308
}

2309
void Assembler::orl(Register dst, Address src) {
D
duke 已提交
2310
  InstructionMark im(this);
2311
  prefix(src, dst);
2312
  emit_int8(0x0B);
D
duke 已提交
2313 2314 2315
  emit_operand(dst, src);
}

2316 2317 2318
void Assembler::orl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
D
duke 已提交
2319 2320
}

2321 2322 2323 2324 2325 2326 2327
void Assembler::orl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_int8(0x09);
  emit_operand(src, dst);
}

K
kvn 已提交
2328 2329 2330
void Assembler::packuswb(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2331
  emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
K
kvn 已提交
2332 2333 2334 2335
}

void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2336
  emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
K
kvn 已提交
2337
}
C
cfang 已提交
2338

2339 2340 2341 2342 2343 2344
void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2345 2346 2347 2348 2349
  assert(VM_Version::supports_avx2(), "");
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
  emit_int8(0x00);
  emit_int8(0xC0 | encode);
  emit_int8(imm8);
2350 2351
}

2352 2353 2354 2355 2356
void Assembler::pause() {
  emit_int8((unsigned char)0xF3);
  emit_int8((unsigned char)0x90);
}

C
cfang 已提交
2357 2358 2359
void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  assert(VM_Version::supports_sse4_2(), "");
  InstructionMark im(this);
K
kvn 已提交
2360
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2361
  emit_int8(0x61);
C
cfang 已提交
2362
  emit_operand(dst, src);
2363
  emit_int8(imm8);
C
cfang 已提交
2364 2365 2366 2367
}

void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  assert(VM_Version::supports_sse4_2(), "");
2368
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2369 2370 2371
  emit_int8(0x61);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(imm8);
C
cfang 已提交
2372 2373
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
  assert(VM_Version::supports_sse4_1(), "");
  int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  emit_int8(0x16);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(imm8);
}

void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
  assert(VM_Version::supports_sse4_1(), "");
  int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  emit_int8(0x16);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(imm8);
}

void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
  assert(VM_Version::supports_sse4_1(), "");
  int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  emit_int8(0x22);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(imm8);
}

void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
  assert(VM_Version::supports_sse4_1(), "");
  int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  emit_int8(0x22);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(imm8);
}

K
kvn 已提交
2406 2407 2408 2409
void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  assert(VM_Version::supports_sse4_1(), "");
  InstructionMark im(this);
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2410
  emit_int8(0x30);
K
kvn 已提交
2411 2412 2413 2414 2415
  emit_operand(dst, src);
}

void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
2416
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2417 2418
  emit_int8(0x30);
  emit_int8((unsigned char)(0xC0 | encode));
K
kvn 已提交
2419 2420
}

2421 2422
// generic
void Assembler::pop(Register dst) {
D
duke 已提交
2423
  int encode = prefix_and_encode(dst->encoding());
2424
  emit_int8(0x58 | encode);
D
duke 已提交
2425 2426
}

2427 2428 2429
void Assembler::popcntl(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
2430
  emit_int8((unsigned char)0xF3);
2431
  prefix(src, dst);
2432 2433
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB8);
2434 2435 2436 2437 2438
  emit_operand(dst, src);
}

void Assembler::popcntl(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
2439
  emit_int8((unsigned char)0xF3);
2440
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
2441 2442 2443
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB8);
  emit_int8((unsigned char)(0xC0 | encode));
2444 2445
}

2446
void Assembler::popf() {
2447
  emit_int8((unsigned char)0x9D);
D
duke 已提交
2448 2449
}

R
roland 已提交
2450
#ifndef _LP64 // no 32bit push/pop on amd64
2451 2452 2453 2454
void Assembler::popl(Address dst) {
  // NOTE: this will adjust stack by 8byte on 64bits
  InstructionMark im(this);
  prefix(dst);
2455
  emit_int8((unsigned char)0x8F);
2456
  emit_operand(rax, dst);
D
duke 已提交
2457
}
R
roland 已提交
2458
#endif
D
duke 已提交
2459

2460 2461
void Assembler::prefetch_prefix(Address src) {
  prefix(src);
2462
  emit_int8(0x0F);
D
duke 已提交
2463 2464
}

2465
void Assembler::prefetchnta(Address src) {
2466
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2467 2468
  InstructionMark im(this);
  prefetch_prefix(src);
2469
  emit_int8(0x18);
2470
  emit_operand(rax, src); // 0, src
D
duke 已提交
2471 2472
}

2473
void Assembler::prefetchr(Address src) {
2474
  assert(VM_Version::supports_3dnow_prefetch(), "must support");
2475 2476
  InstructionMark im(this);
  prefetch_prefix(src);
2477
  emit_int8(0x0D);
2478
  emit_operand(rax, src); // 0, src
D
duke 已提交
2479 2480
}

2481 2482 2483 2484
void Assembler::prefetcht0(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
2485
  emit_int8(0x18);
2486
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2487 2488
}

2489 2490
void Assembler::prefetcht1(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
D
duke 已提交
2491
  InstructionMark im(this);
2492
  prefetch_prefix(src);
2493
  emit_int8(0x18);
2494
  emit_operand(rdx, src); // 2, src
D
duke 已提交
2495 2496
}

2497 2498 2499 2500
void Assembler::prefetcht2(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
2501
  emit_int8(0x18);
2502
  emit_operand(rbx, src); // 3, src
D
duke 已提交
2503 2504
}

2505
void Assembler::prefetchw(Address src) {
2506
  assert(VM_Version::supports_3dnow_prefetch(), "must support");
D
duke 已提交
2507
  InstructionMark im(this);
2508
  prefetch_prefix(src);
2509
  emit_int8(0x0D);
2510
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2511 2512
}

2513
void Assembler::prefix(Prefix p) {
2514
  emit_int8(p);
D
duke 已提交
2515 2516
}

2517 2518 2519
void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_ssse3(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2520 2521
  emit_int8(0x00);
  emit_int8((unsigned char)(0xC0 | encode));
2522 2523 2524 2525 2526 2527
}

void Assembler::pshufb(XMMRegister dst, Address src) {
  assert(VM_Version::supports_ssse3(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2528
  emit_int8(0x00);
2529 2530 2531
  emit_operand(dst, src);
}

2532 2533 2534
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2535
  emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2536
  emit_int8(mode & 0xFF);
2537

D
duke 已提交
2538 2539
}

2540 2541 2542
void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2543
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
D
duke 已提交
2544
  InstructionMark im(this);
K
kvn 已提交
2545
  simd_prefix(dst, src, VEX_SIMD_66);
2546
  emit_int8(0x70);
2547
  emit_operand(dst, src);
2548
  emit_int8(mode & 0xFF);
D
duke 已提交
2549 2550
}

2551 2552 2553
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2554
  emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2555
  emit_int8(mode & 0xFF);
D
duke 已提交
2556 2557
}

2558 2559 2560
void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2561
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
D
duke 已提交
2562
  InstructionMark im(this);
K
kvn 已提交
2563
  simd_prefix(dst, src, VEX_SIMD_F2);
2564
  emit_int8(0x70);
D
duke 已提交
2565
  emit_operand(dst, src);
2566
  emit_int8(mode & 0xFF);
D
duke 已提交
2567 2568
}

2569 2570 2571
void Assembler::psrldq(XMMRegister dst, int shift) {
  // Shift 128 bit value in xmm register by number of bytes.
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2572
  int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2573 2574 2575
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift);
2576 2577
}

C
cfang 已提交
2578 2579
void Assembler::ptest(XMMRegister dst, Address src) {
  assert(VM_Version::supports_sse4_1(), "");
K
kvn 已提交
2580
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
C
cfang 已提交
2581
  InstructionMark im(this);
K
kvn 已提交
2582
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2583
  emit_int8(0x17);
C
cfang 已提交
2584 2585 2586 2587 2588
  emit_operand(dst, src);
}

void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
2589
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2590 2591
  emit_int8(0x17);
  emit_int8((unsigned char)(0xC0 | encode));
C
cfang 已提交
2592 2593
}

2594 2595 2596 2597 2598 2599 2600
void Assembler::vptest(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
2601
  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
  emit_int8(0x17);
  emit_operand(dst, src);
}

void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  emit_int8(0x17);
  emit_int8((unsigned char)(0xC0 | encode));
}

K
kvn 已提交
2614 2615 2616
void Assembler::punpcklbw(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2617
  emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
K
kvn 已提交
2618 2619
}

2620 2621
void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2622
  emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
D
duke 已提交
2623 2624
}

K
kvn 已提交
2625 2626 2627
void Assembler::punpckldq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2628
  emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
K
kvn 已提交
2629 2630 2631 2632
}

void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2633
  emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
K
kvn 已提交
2634 2635
}

K
kvn 已提交
2636 2637
void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2638
  emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
K
kvn 已提交
2639 2640
}

2641 2642 2643
void Assembler::push(int32_t imm32) {
  // in 64bits we push 64bits onto the stack but only
  // take a 32bit immediate
2644
  emit_int8(0x68);
2645
  emit_int32(imm32);
D
duke 已提交
2646 2647
}

2648 2649 2650
void Assembler::push(Register src) {
  int encode = prefix_and_encode(src->encoding());

2651
  emit_int8(0x50 | encode);
D
duke 已提交
2652 2653
}

2654
void Assembler::pushf() {
2655
  emit_int8((unsigned char)0x9C);
D
duke 已提交
2656 2657
}

R
roland 已提交
2658
#ifndef _LP64 // no 32bit push/pop on amd64
2659 2660 2661 2662
void Assembler::pushl(Address src) {
  // Note this will push 64bit on 64bit
  InstructionMark im(this);
  prefix(src);
2663
  emit_int8((unsigned char)0xFF);
2664
  emit_operand(rsi, src);
D
duke 已提交
2665
}
R
roland 已提交
2666
#endif
D
duke 已提交
2667

2668 2669 2670 2671
void Assembler::rcll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1) {
2672 2673
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xD0 | encode));
2674
  } else {
2675 2676 2677
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)0xD0 | encode);
    emit_int8(imm8);
2678
  }
D
duke 已提交
2679 2680
}

2681 2682 2683 2684 2685
void Assembler::rdtsc() {
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0x31);
}

2686 2687 2688
// copies data from [esi] to [edi] using rcx pointer sized words
// generic
void Assembler::rep_mov() {
2689
  emit_int8((unsigned char)0xF3);
2690 2691
  // MOVSQ
  LP64_ONLY(prefix(REX_W));
2692
  emit_int8((unsigned char)0xA5);
D
duke 已提交
2693 2694
}

2695 2696 2697 2698 2699 2700 2701
// sets rcx bytes with rax, value at [edi]
void Assembler::rep_stosb() {
  emit_int8((unsigned char)0xF3); // REP
  LP64_ONLY(prefix(REX_W));
  emit_int8((unsigned char)0xAA); // STOSB
}

2702 2703
// sets rcx pointer sized words with rax, value at [edi]
// generic
2704 2705 2706
void Assembler::rep_stos() {
  emit_int8((unsigned char)0xF3); // REP
  LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2707
  emit_int8((unsigned char)0xAB);
2708 2709 2710 2711 2712
}

// scans rcx pointer sized words at [edi] for occurance of rax,
// generic
void Assembler::repne_scan() { // repne_scan
2713
  emit_int8((unsigned char)0xF2);
2714 2715
  // SCASQ
  LP64_ONLY(prefix(REX_W));
2716
  emit_int8((unsigned char)0xAF);
2717 2718 2719 2720 2721 2722
}

#ifdef _LP64
// scans rcx 4 byte words at [edi] for occurance of rax,
// generic
void Assembler::repne_scanl() { // repne_scan
2723
  emit_int8((unsigned char)0xF2);
2724
  // SCASL
2725
  emit_int8((unsigned char)0xAF);
2726 2727 2728 2729 2730
}
#endif

void Assembler::ret(int imm16) {
  if (imm16 == 0) {
2731
    emit_int8((unsigned char)0xC3);
2732
  } else {
2733
    emit_int8((unsigned char)0xC2);
2734
    emit_int16(imm16);
2735 2736 2737 2738 2739 2740 2741 2742
  }
}

void Assembler::sahf() {
#ifdef _LP64
  // Not supported in 64bit mode
  ShouldNotReachHere();
#endif
2743
  emit_int8((unsigned char)0x9E);
2744 2745 2746 2747 2748 2749
}

void Assembler::sarl(Register dst, int imm8) {
  int encode = prefix_and_encode(dst->encoding());
  assert(isShiftCount(imm8), "illegal shift count");
  if (imm8 == 1) {
2750 2751
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xF8 | encode));
2752
  } else {
2753 2754 2755
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xF8 | encode));
    emit_int8(imm8);
2756 2757 2758 2759 2760
  }
}

void Assembler::sarl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2761 2762
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xF8 | encode));
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
}

void Assembler::sbbl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}

void Assembler::sbbl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD8, dst, imm32);
}


void Assembler::sbbl(Register dst, Address src) {
D
duke 已提交
2778 2779
  InstructionMark im(this);
  prefix(src, dst);
2780
  emit_int8(0x1B);
D
duke 已提交
2781 2782 2783
  emit_operand(dst, src);
}

2784 2785 2786
void Assembler::sbbl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
D
duke 已提交
2787 2788
}

2789 2790 2791
void Assembler::setb(Condition cc, Register dst) {
  assert(0 <= cc && cc < 16, "illegal cc");
  int encode = prefix_and_encode(dst->encoding(), true);
2792 2793 2794
  emit_int8(0x0F);
  emit_int8((unsigned char)0x90 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
2795 2796
}

2797 2798 2799 2800
void Assembler::shll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1 ) {
2801 2802
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xE0 | encode));
2803
  } else {
2804 2805 2806
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xE0 | encode));
    emit_int8(imm8);
2807
  }
D
duke 已提交
2808 2809
}

2810 2811
void Assembler::shll(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2812 2813
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE0 | encode));
2814 2815 2816 2817 2818
}

void Assembler::shrl(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
2819 2820 2821
  emit_int8((unsigned char)0xC1);
  emit_int8((unsigned char)(0xE8 | encode));
  emit_int8(imm8);
2822 2823 2824 2825
}

void Assembler::shrl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2826 2827
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE8 | encode));
2828 2829 2830 2831
}

// copies a single word from [esi] to [edi]
void Assembler::smovl() {
2832
  emit_int8((unsigned char)0xA5);
2833 2834 2835 2836
}

void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2837
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
D
duke 已提交
2838 2839
}

2840 2841
void Assembler::sqrtsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2842
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2843 2844 2845
}

void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
K
kvn 已提交
2846
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2847
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2848 2849
}

2850
void Assembler::std() {
2851
  emit_int8((unsigned char)0xFD);
2852 2853
}

2854
void Assembler::sqrtss(XMMRegister dst, Address src) {
K
kvn 已提交
2855
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2856
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2857 2858
}

2859 2860 2861 2862
void Assembler::stmxcsr( Address dst) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  prefix(dst);
2863 2864
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
2865
  emit_operand(as_Register(3), dst);
D
duke 已提交
2866 2867
}

2868 2869 2870
void Assembler::subl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
2871
  emit_arith_operand(0x81, rbp, dst, imm32);
2872 2873 2874 2875 2876
}

void Assembler::subl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
2877
  emit_int8(0x29);
2878 2879 2880
  emit_operand(src, dst);
}

2881 2882 2883 2884 2885
void Assembler::subl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xE8, dst, imm32);
}

2886 2887 2888 2889 2890 2891
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::subl_imm32(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith_imm32(0x81, 0xE8, dst, imm32);
}

2892
void Assembler::subl(Register dst, Address src) {
D
duke 已提交
2893 2894
  InstructionMark im(this);
  prefix(src, dst);
2895
  emit_int8(0x2B);
D
duke 已提交
2896 2897 2898
  emit_operand(dst, src);
}

2899 2900 2901 2902 2903 2904 2905
void Assembler::subl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2906
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
D
duke 已提交
2907 2908
}

2909 2910
void Assembler::subsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2911
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
D
duke 已提交
2912 2913
}

2914 2915
void Assembler::subss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2916
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
D
duke 已提交
2917 2918
}

2919 2920
void Assembler::subss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2921
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
D
duke 已提交
2922 2923
}

2924 2925 2926 2927
void Assembler::testb(Register dst, int imm8) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  (void) prefix_and_encode(dst->encoding(), true);
  emit_arith_b(0xF6, 0xC0, dst, imm8);
D
duke 已提交
2928 2929
}

2930 2931 2932 2933 2934 2935
void Assembler::testl(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
2936
    emit_int8((unsigned char)0xA9);
2937 2938
  } else {
    encode = prefix_and_encode(encode);
2939 2940
    emit_int8((unsigned char)0xF7);
    emit_int8((unsigned char)(0xC0 | encode));
2941
  }
2942
  emit_int32(imm32);
D
duke 已提交
2943 2944
}

2945 2946 2947 2948
void Assembler::testl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
}
D
duke 已提交
2949

2950 2951 2952
void Assembler::testl(Register dst, Address  src) {
  InstructionMark im(this);
  prefix(src, dst);
2953
  emit_int8((unsigned char)0x85);
2954
  emit_operand(dst, src);
D
duke 已提交
2955 2956
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
void Assembler::tzcntl(Register dst, Register src) {
  assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
  emit_int8((unsigned char)0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBC);
  emit_int8((unsigned char)0xC0 | encode);
}

void Assembler::tzcntq(Register dst, Register src) {
  assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
  emit_int8((unsigned char)0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBC);
  emit_int8((unsigned char)(0xC0 | encode));
}

2975 2976
void Assembler::ucomisd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2977
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
D
duke 已提交
2978 2979
}

2980 2981
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2982
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
D
duke 已提交
2983 2984
}

2985 2986
void Assembler::ucomiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2987
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2988 2989 2990 2991
}

void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2992
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2993 2994
}

2995 2996 2997 2998 2999
void Assembler::xabort(int8_t imm8) {
  emit_int8((unsigned char)0xC6);
  emit_int8((unsigned char)0xF8);
  emit_int8((unsigned char)(imm8 & 0xFF));
}
3000 3001 3002 3003

void Assembler::xaddl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
3004 3005
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC1);
3006 3007 3008
  emit_operand(src, dst);
}

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
  InstructionMark im(this);
  relocate(rtype);
  if (abort.is_bound()) {
    address entry = target(abort);
    assert(entry != NULL, "abort entry NULL");
    intptr_t offset = entry - pc();
    emit_int8((unsigned char)0xC7);
    emit_int8((unsigned char)0xF8);
    emit_int32(offset - 6); // 2 opcode + 4 address
  } else {
    abort.add_patch_at(code(), locator());
    emit_int8((unsigned char)0xC7);
    emit_int8((unsigned char)0xF8);
    emit_int32(0);
  }
}

3027 3028 3029
void Assembler::xchgl(Register dst, Address src) { // xchg
  InstructionMark im(this);
  prefix(src, dst);
3030
  emit_int8((unsigned char)0x87);
3031 3032 3033 3034 3035
  emit_operand(dst, src);
}

void Assembler::xchgl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
3036 3037
  emit_int8((unsigned char)0x87);
  emit_int8((unsigned char)(0xC0 | encode));
3038 3039
}

3040 3041 3042 3043 3044 3045
void Assembler::xend() {
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0x01);
  emit_int8((unsigned char)0xD5);
}

3046
void Assembler::xgetbv() {
3047 3048 3049
  emit_int8(0x0F);
  emit_int8(0x01);
  emit_int8((unsigned char)0xD0);
3050 3051
}

3052 3053 3054 3055 3056 3057 3058 3059
void Assembler::xorl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF0, dst, imm32);
}

void Assembler::xorl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
3060
  emit_int8(0x33);
3061 3062 3063 3064 3065 3066 3067 3068 3069
  emit_operand(dst, src);
}

void Assembler::xorl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
}


3070
// AVX 3-operands scalar float-point arithmetic instructions
3071 3072 3073

void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
3074
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3075 3076 3077 3078
}

void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
3079
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3080 3081 3082 3083
}

void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
3084
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3085 3086 3087 3088
}

void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
3089
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3090 3091 3092 3093
}

void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
3094
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3095 3096 3097 3098
}

void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
3099
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3100 3101 3102 3103
}

void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
3104
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3105 3106 3107 3108
}

void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
3109
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3110 3111 3112 3113
}

void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
3114
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3115 3116 3117 3118
}

void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
3119
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3120 3121 3122
}

void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3123 3124
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3125 3126 3127 3128
}

void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
3129
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3130 3131 3132 3133
}

void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
3134
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3135 3136 3137 3138
}

void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
3139
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3140 3141 3142 3143
}

void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
3144
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3145 3146 3147 3148
}

void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
3149
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3150 3151
}

3152 3153 3154 3155 3156 3157 3158
//====================VECTOR ARITHMETIC=====================================

// Float-point vector arithmetic

void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3159 3160
}

3161 3162 3163
void Assembler::addps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3164 3165
}

3166
void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3167
  assert(VM_Version::supports_avx(), "");
3168
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3169 3170
}

3171
void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3172
  assert(VM_Version::supports_avx(), "");
3173
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3174 3175
}

3176 3177 3178
void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
K
kvn 已提交
3179 3180
}

3181
void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3182
  assert(VM_Version::supports_avx(), "");
3183
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3184 3185
}

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
}

void Assembler::subps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
}

void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
}

void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
}

void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
}

void Assembler::divps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
}

void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
}

void Assembler::andps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
}

void Assembler::andps(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
}

void Assembler::andpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
}

void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
}

void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
}

void Assembler::xorpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
}

void Assembler::xorps(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
}

void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
}


// Integer vector arithmetic
void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
}

void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
}

void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
}

void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
}

void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
}

void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
}

void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
}

void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
}

void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
}

void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3486 3487
  emit_int8(0x40);
  emit_int8((unsigned char)(0xC0 | encode));
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
}

void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3498 3499
  emit_int8(0x40);
  emit_int8((unsigned char)(0xC0 | encode));
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
}

void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  InstructionMark im(this);
  int dst_enc = dst->encoding();
  int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3513
  emit_int8(0x40);
3514 3515 3516 3517 3518 3519 3520 3521
  emit_operand(dst, src);
}

// Shift packed integers left by specified number of bits.
void Assembler::psllw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3522 3523 3524
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3525 3526 3527 3528 3529 3530
}

void Assembler::pslld(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3531 3532 3533
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3534 3535 3536 3537 3538 3539
}

void Assembler::psllq(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3540 3541 3542
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
}

void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
}

void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
}

void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3564
  emit_int8(shift & 0xFF);
3565 3566 3567 3568 3569 3570
}

void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3571
  emit_int8(shift & 0xFF);
3572 3573 3574 3575 3576 3577
}

void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3578
  emit_int8(shift & 0xFF);
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
}

void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
}

// Shift packed integers logically right by specified number of bits.
void Assembler::psrlw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3601 3602 3603
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3604 3605 3606 3607 3608 3609
}

void Assembler::psrld(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3610 3611 3612
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3613 3614 3615 3616 3617 3618 3619 3620
}

void Assembler::psrlq(XMMRegister dst, int shift) {
  // Do not confuse it with psrldq SSE2 instruction which
  // shifts 128 bit value in xmm register by number of bytes.
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3621 3622 3623
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
}

void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
}

void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
}

void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3645
  emit_int8(shift & 0xFF);
3646 3647 3648 3649 3650 3651
}

void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3652
  emit_int8(shift & 0xFF);
3653 3654 3655 3656 3657 3658
}

void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3659
  emit_int8(shift & 0xFF);
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
}

void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
}

// Shift packed integers arithmetically right by specified number of bits.
void Assembler::psraw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3682 3683 3684
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3685 3686 3687 3688 3689 3690
}

void Assembler::psrad(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3691 3692 3693
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
}

void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
}

void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3710
  emit_int8(shift & 0xFF);
3711 3712 3713 3714 3715 3716
}

void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3717
  emit_int8(shift & 0xFF);
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
}

void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
}


// AND packed integers
void Assembler::pand(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
}

void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::por(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
}

void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
}

void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
}


void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3782 3783
  emit_int8(0x18);
  emit_int8((unsigned char)(0xC0 | encode));
3784 3785
  // 0x00 - insert into lower 128 bits
  // 0x01 - insert into upper 128 bits
3786
  emit_int8(0x01);
3787 3788
}

3789 3790 3791 3792 3793 3794 3795 3796
void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3797
  emit_int8(0x18);
3798 3799
  emit_operand(dst, src);
  // 0x01 - insert into upper 128 bits
3800
  emit_int8(0x01);
3801 3802 3803 3804 3805 3806 3807 3808 3809
}

void Assembler::vextractf128h(Address dst, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(src != xnoreg, "sanity");
  int src_enc = src->encoding();
  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3810
  emit_int8(0x19);
3811 3812
  emit_operand(src, dst);
  // 0x01 - extract from upper 128 bits
3813
  emit_int8(0x01);
3814 3815
}

3816 3817 3818
void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  bool vector256 = true;
K
kvn 已提交
3819
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3820 3821
  emit_int8(0x38);
  emit_int8((unsigned char)(0xC0 | encode));
K
kvn 已提交
3822 3823
  // 0x00 - insert into lower 128 bits
  // 0x01 - insert into upper 128 bits
3824
  emit_int8(0x01);
K
kvn 已提交
3825 3826
}

3827 3828 3829 3830 3831 3832 3833 3834
void Assembler::vinserti128h(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx2(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3835
  emit_int8(0x38);
3836 3837
  emit_operand(dst, src);
  // 0x01 - insert into upper 128 bits
3838
  emit_int8(0x01);
3839 3840 3841 3842 3843 3844 3845 3846 3847
}

void Assembler::vextracti128h(Address dst, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(src != xnoreg, "sanity");
  int src_enc = src->encoding();
  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3848
  emit_int8(0x39);
3849 3850
  emit_operand(src, dst);
  // 0x01 - extract from upper 128 bits
3851
  emit_int8(0x01);
3852 3853
}

3854 3855 3856 3857 3858 3859 3860 3861 3862
// duplicate 4-bytes integer data from src into 8 locations in dest
void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  emit_int8(0x58);
  emit_int8((unsigned char)(0xC0 | encode));
}

3863 3864 3865 3866 3867 3868 3869 3870 3871
// Carry-Less Multiplication Quadword
void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
  assert(VM_Version::supports_clmul(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  emit_int8(0x44);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8((unsigned char)mask);
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
// Carry-Less Multiplication Quadword
void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
  assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
  bool vector256 = false;
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  emit_int8(0x44);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8((unsigned char)mask);
}

3882 3883 3884
void Assembler::vzeroupper() {
  assert(VM_Version::supports_avx(), "");
  (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3885
  emit_int8(0x77);
3886 3887
}

3888

3889 3890 3891 3892 3893 3894
#ifndef _LP64
// 32bit only pieces of the assembler

void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT
  InstructionMark im(this);
3895 3896
  emit_int8((unsigned char)0x81);
  emit_int8((unsigned char)(0xF8 | src1->encoding()));
3897 3898 3899 3900 3901 3902
  emit_data(imm32, rspec, 0);
}

void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  InstructionMark im(this);
3903
  emit_int8((unsigned char)0x81);
3904 3905 3906 3907 3908 3909 3910 3911 3912
  emit_operand(rdi, src1);
  emit_data(imm32, rspec, 0);
}

// The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
// into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg8(Address adr) {
  InstructionMark im(this);
3913 3914
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC7);
3915 3916 3917 3918 3919
  emit_operand(rcx, adr);
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
3920
 emit_int8(0x48 | dst->encoding());
3921 3922 3923 3924 3925 3926 3927
}

#endif // _LP64

// 64bit typically doesn't use the x87 but needs to for the trig funcs

void Assembler::fabs() {
3928 3929
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE1);
3930 3931 3932 3933 3934 3935 3936 3937
}

void Assembler::fadd(int i) {
  emit_farith(0xD8, 0xC0, i);
}

void Assembler::fadd_d(Address src) {
  InstructionMark im(this);
3938
  emit_int8((unsigned char)0xDC);
3939 3940 3941 3942 3943
  emit_operand32(rax, src);
}

void Assembler::fadd_s(Address src) {
  InstructionMark im(this);
3944
  emit_int8((unsigned char)0xD8);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
  emit_operand32(rax, src);
}

void Assembler::fadda(int i) {
  emit_farith(0xDC, 0xC0, i);
}

void Assembler::faddp(int i) {
  emit_farith(0xDE, 0xC0, i);
}

void Assembler::fchs() {
3957 3958
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE0);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
}

void Assembler::fcom(int i) {
  emit_farith(0xD8, 0xD0, i);
}

void Assembler::fcomp(int i) {
  emit_farith(0xD8, 0xD8, i);
}

void Assembler::fcomp_d(Address src) {
  InstructionMark im(this);
3971
  emit_int8((unsigned char)0xDC);
3972 3973 3974 3975 3976
  emit_operand32(rbx, src);
}

void Assembler::fcomp_s(Address src) {
  InstructionMark im(this);
3977
  emit_int8((unsigned char)0xD8);
3978 3979 3980 3981
  emit_operand32(rbx, src);
}

void Assembler::fcompp() {
3982 3983
  emit_int8((unsigned char)0xDE);
  emit_int8((unsigned char)0xD9);
3984 3985 3986
}

void Assembler::fcos() {
3987 3988
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFF);
3989 3990 3991
}

void Assembler::fdecstp() {
3992 3993
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF6);
3994 3995 3996 3997 3998 3999 4000 4001
}

void Assembler::fdiv(int i) {
  emit_farith(0xD8, 0xF0, i);
}

void Assembler::fdiv_d(Address src) {
  InstructionMark im(this);
4002
  emit_int8((unsigned char)0xDC);
4003 4004 4005 4006 4007
  emit_operand32(rsi, src);
}

void Assembler::fdiv_s(Address src) {
  InstructionMark im(this);
4008
  emit_int8((unsigned char)0xD8);
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
  emit_operand32(rsi, src);
}

void Assembler::fdiva(int i) {
  emit_farith(0xDC, 0xF8, i);
}

// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
//       is erroneous for some of the floating-point instructions below.

void Assembler::fdivp(int i) {
  emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
}

void Assembler::fdivr(int i) {
  emit_farith(0xD8, 0xF8, i);
}

void Assembler::fdivr_d(Address src) {
  InstructionMark im(this);
4029
  emit_int8((unsigned char)0xDC);
4030 4031 4032 4033 4034
  emit_operand32(rdi, src);
}

void Assembler::fdivr_s(Address src) {
  InstructionMark im(this);
4035
  emit_int8((unsigned char)0xD8);
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
  emit_operand32(rdi, src);
}

void Assembler::fdivra(int i) {
  emit_farith(0xDC, 0xF0, i);
}

void Assembler::fdivrp(int i) {
  emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
}

void Assembler::ffree(int i) {
  emit_farith(0xDD, 0xC0, i);
}

void Assembler::fild_d(Address adr) {
  InstructionMark im(this);
4053
  emit_int8((unsigned char)0xDF);
4054 4055 4056 4057 4058
  emit_operand32(rbp, adr);
}

void Assembler::fild_s(Address adr) {
  InstructionMark im(this);
4059
  emit_int8((unsigned char)0xDB);
4060 4061 4062 4063
  emit_operand32(rax, adr);
}

void Assembler::fincstp() {
4064 4065
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF7);
4066 4067 4068
}

void Assembler::finit() {
4069 4070 4071
  emit_int8((unsigned char)0x9B);
  emit_int8((unsigned char)0xDB);
  emit_int8((unsigned char)0xE3);
4072 4073 4074 4075
}

void Assembler::fist_s(Address adr) {
  InstructionMark im(this);
4076
  emit_int8((unsigned char)0xDB);
4077 4078 4079 4080 4081
  emit_operand32(rdx, adr);
}

void Assembler::fistp_d(Address adr) {
  InstructionMark im(this);
4082
  emit_int8((unsigned char)0xDF);
4083 4084 4085 4086 4087
  emit_operand32(rdi, adr);
}

void Assembler::fistp_s(Address adr) {
  InstructionMark im(this);
4088
  emit_int8((unsigned char)0xDB);
4089 4090 4091 4092
  emit_operand32(rbx, adr);
}

void Assembler::fld1() {
4093 4094
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE8);
4095 4096 4097 4098
}

void Assembler::fld_d(Address adr) {
  InstructionMark im(this);
4099
  emit_int8((unsigned char)0xDD);
4100 4101 4102 4103 4104
  emit_operand32(rax, adr);
}

void Assembler::fld_s(Address adr) {
  InstructionMark im(this);
4105
  emit_int8((unsigned char)0xD9);
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
  emit_operand32(rax, adr);
}


void Assembler::fld_s(int index) {
  emit_farith(0xD9, 0xC0, index);
}

void Assembler::fld_x(Address adr) {
  InstructionMark im(this);
4116
  emit_int8((unsigned char)0xDB);
4117 4118 4119 4120 4121
  emit_operand32(rbp, adr);
}

void Assembler::fldcw(Address src) {
  InstructionMark im(this);
4122
  emit_int8((unsigned char)0xD9);
4123 4124 4125 4126 4127
  emit_operand32(rbp, src);
}

void Assembler::fldenv(Address src) {
  InstructionMark im(this);
4128
  emit_int8((unsigned char)0xD9);
4129 4130 4131 4132
  emit_operand32(rsp, src);
}

void Assembler::fldlg2() {
4133 4134
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEC);
4135 4136 4137
}

void Assembler::fldln2() {
4138 4139
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xED);
4140 4141 4142
}

void Assembler::fldz() {
4143 4144
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEE);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
}

void Assembler::flog() {
  fldln2();
  fxch();
  fyl2x();
}

void Assembler::flog10() {
  fldlg2();
  fxch();
  fyl2x();
}

void Assembler::fmul(int i) {
  emit_farith(0xD8, 0xC8, i);
}

void Assembler::fmul_d(Address src) {
  InstructionMark im(this);
4165
  emit_int8((unsigned char)0xDC);
4166 4167 4168 4169 4170
  emit_operand32(rcx, src);
}

void Assembler::fmul_s(Address src) {
  InstructionMark im(this);
4171
  emit_int8((unsigned char)0xD8);
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
  emit_operand32(rcx, src);
}

void Assembler::fmula(int i) {
  emit_farith(0xDC, 0xC8, i);
}

void Assembler::fmulp(int i) {
  emit_farith(0xDE, 0xC8, i);
}

void Assembler::fnsave(Address dst) {
  InstructionMark im(this);
4185
  emit_int8((unsigned char)0xDD);
4186 4187 4188 4189 4190
  emit_operand32(rsi, dst);
}

void Assembler::fnstcw(Address src) {
  InstructionMark im(this);
4191 4192
  emit_int8((unsigned char)0x9B);
  emit_int8((unsigned char)0xD9);
4193 4194 4195 4196
  emit_operand32(rdi, src);
}

void Assembler::fnstsw_ax() {
4197 4198
  emit_int8((unsigned char)0xDF);
  emit_int8((unsigned char)0xE0);
4199 4200 4201
}

void Assembler::fprem() {
4202 4203
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF8);
4204 4205 4206
}

void Assembler::fprem1() {
4207 4208
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF5);
4209 4210 4211 4212
}

void Assembler::frstor(Address src) {
  InstructionMark im(this);
4213
  emit_int8((unsigned char)0xDD);
4214 4215 4216 4217
  emit_operand32(rsp, src);
}

void Assembler::fsin() {
4218 4219
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFE);
4220 4221 4222
}

void Assembler::fsqrt() {
4223 4224
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFA);
4225 4226 4227 4228
}

void Assembler::fst_d(Address adr) {
  InstructionMark im(this);
4229
  emit_int8((unsigned char)0xDD);
4230 4231 4232 4233 4234
  emit_operand32(rdx, adr);
}

void Assembler::fst_s(Address adr) {
  InstructionMark im(this);
4235
  emit_int8((unsigned char)0xD9);
4236 4237 4238 4239 4240
  emit_operand32(rdx, adr);
}

void Assembler::fstp_d(Address adr) {
  InstructionMark im(this);
4241
  emit_int8((unsigned char)0xDD);
4242 4243 4244 4245 4246 4247 4248 4249 4250
  emit_operand32(rbx, adr);
}

void Assembler::fstp_d(int index) {
  emit_farith(0xDD, 0xD8, index);
}

void Assembler::fstp_s(Address adr) {
  InstructionMark im(this);
4251
  emit_int8((unsigned char)0xD9);
4252 4253 4254 4255 4256
  emit_operand32(rbx, adr);
}

void Assembler::fstp_x(Address adr) {
  InstructionMark im(this);
4257
  emit_int8((unsigned char)0xDB);
4258 4259 4260 4261 4262 4263 4264 4265 4266
  emit_operand32(rdi, adr);
}

void Assembler::fsub(int i) {
  emit_farith(0xD8, 0xE0, i);
}

void Assembler::fsub_d(Address src) {
  InstructionMark im(this);
4267
  emit_int8((unsigned char)0xDC);
4268 4269 4270 4271 4272
  emit_operand32(rsp, src);
}

void Assembler::fsub_s(Address src) {
  InstructionMark im(this);
4273
  emit_int8((unsigned char)0xD8);
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
  emit_operand32(rsp, src);
}

void Assembler::fsuba(int i) {
  emit_farith(0xDC, 0xE8, i);
}

void Assembler::fsubp(int i) {
  emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
}

void Assembler::fsubr(int i) {
  emit_farith(0xD8, 0xE8, i);
}

void Assembler::fsubr_d(Address src) {
  InstructionMark im(this);
4291
  emit_int8((unsigned char)0xDC);
4292 4293 4294 4295 4296
  emit_operand32(rbp, src);
}

void Assembler::fsubr_s(Address src) {
  InstructionMark im(this);
4297
  emit_int8((unsigned char)0xD8);
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
  emit_operand32(rbp, src);
}

void Assembler::fsubra(int i) {
  emit_farith(0xDC, 0xE0, i);
}

void Assembler::fsubrp(int i) {
  emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
}

void Assembler::ftan() {
4310 4311 4312 4313
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF2);
  emit_int8((unsigned char)0xDD);
  emit_int8((unsigned char)0xD8);
4314 4315 4316
}

void Assembler::ftst() {
4317 4318
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE4);
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
}

void Assembler::fucomi(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDB, 0xE8, i);
}

void Assembler::fucomip(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDF, 0xE8, i);
}

void Assembler::fwait() {
4334
  emit_int8((unsigned char)0x9B);
4335 4336 4337 4338 4339 4340 4341
}

void Assembler::fxch(int i) {
  emit_farith(0xD9, 0xC8, i);
}

void Assembler::fyl2x() {
4342 4343
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF1);
4344 4345
}

4346
void Assembler::frndint() {
4347 4348
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFC);
4349 4350 4351
}

void Assembler::f2xm1() {
4352 4353
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF0);
4354 4355 4356
}

void Assembler::fldl2e() {
4357 4358
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEA);
4359 4360
}

K
kvn 已提交
4361 4362 4363 4364 4365 4366 4367 4368
// SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
// SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
static int simd_opc[4] = { 0,    0, 0x38, 0x3A };

// Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  if (pre > 0) {
4369
    emit_int8(simd_pre[pre]);
K
kvn 已提交
4370 4371 4372 4373 4374 4375 4376
  }
  if (rex_w) {
    prefixq(adr, xreg);
  } else {
    prefix(adr, xreg);
  }
  if (opc > 0) {
4377
    emit_int8(0x0F);
K
kvn 已提交
4378 4379
    int opc2 = simd_opc[opc];
    if (opc2 > 0) {
4380
      emit_int8(opc2);
K
kvn 已提交
4381 4382 4383 4384 4385 4386
    }
  }
}

int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  if (pre > 0) {
4387
    emit_int8(simd_pre[pre]);
K
kvn 已提交
4388 4389 4390 4391
  }
  int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
                          prefix_and_encode(dst_enc, src_enc);
  if (opc > 0) {
4392
    emit_int8(0x0F);
K
kvn 已提交
4393 4394
    int opc2 = simd_opc[opc];
    if (opc2 > 0) {
4395
      emit_int8(opc2);
K
kvn 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
    }
  }
  return encode;
}


void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
    prefix(VEX_3bytes);

    int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
    byte1 = (~byte1) & 0xE0;
    byte1 |= opc;
4409
    emit_int8(byte1);
K
kvn 已提交
4410 4411 4412

    int byte2 = ((~nds_enc) & 0xf) << 3;
    byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4413
    emit_int8(byte2);
K
kvn 已提交
4414 4415 4416 4417 4418 4419 4420
  } else {
    prefix(VEX_2bytes);

    int byte1 = vex_r ? VEX_R : 0;
    byte1 = (~byte1) & 0x80;
    byte1 |= ((~nds_enc) & 0xf) << 3;
    byte1 |= (vector256 ? 4 : 0) | pre;
4421
    emit_int8(byte1);
K
kvn 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
  }
}

void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  bool vex_r = (xreg_enc >= 8);
  bool vex_b = adr.base_needs_rex();
  bool vex_x = adr.index_needs_rex();
  vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
}

int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  bool vex_r = (dst_enc >= 8);
  bool vex_b = (src_enc >= 8);
  bool vex_x = false;
  vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  return (((dst_enc & 7) << 3) | (src_enc & 7));
}


void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  if (UseAVX > 0) {
    int xreg_enc = xreg->encoding();
    int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
    vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  } else {
    assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
    rex_prefix(adr, xreg, pre, opc, rex_w);
  }
}

int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  int dst_enc = dst->encoding();
  int src_enc = src->encoding();
  if (UseAVX > 0) {
    int nds_enc = nds->is_valid() ? nds->encoding() : 0;
    return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  } else {
    assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
    return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  }
}
4463

4464 4465 4466
void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  InstructionMark im(this);
  simd_prefix(dst, dst, src, pre);
4467
  emit_int8(opcode);
4468 4469 4470 4471 4472
  emit_operand(dst, src);
}

void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  int encode = simd_prefix_and_encode(dst, dst, src, pre);
4473 4474
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4475 4476 4477 4478 4479 4480
}

// Versions with no second source register (non-destructive source).
void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  InstructionMark im(this);
  simd_prefix(dst, xnoreg, src, pre);
4481
  emit_int8(opcode);
4482 4483 4484 4485 4486
  emit_operand(dst, src);
}

void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4487 4488
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4489 4490 4491 4492 4493 4494 4495
}

// 3-operands AVX instructions
void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                               Address src, VexSimdPrefix pre, bool vector256) {
  InstructionMark im(this);
  vex_prefix(dst, nds, src, pre, vector256);
4496
  emit_int8(opcode);
4497 4498 4499 4500 4501 4502
  emit_operand(dst, src);
}

void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                               XMMRegister src, VexSimdPrefix pre, bool vector256) {
  int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4503 4504
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4505 4506
}

4507 4508 4509 4510
#ifndef _LP64

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
4511
  emit_int8(0x40 | dst->encoding());
4512 4513 4514 4515 4516 4517 4518 4519
}

void Assembler::lea(Register dst, Address src) {
  leal(dst, src);
}

void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
4520
  emit_int8((unsigned char)0xC7);
4521 4522 4523 4524
  emit_operand(rax, dst);
  emit_data((int)imm32, rspec, 0);
}

4525 4526 4527
void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
4528
  emit_int8((unsigned char)(0xB8 | encode));
4529 4530
  emit_data((int)imm32, rspec, 0);
}
4531 4532

void Assembler::popa() { // 32bit
4533
  emit_int8(0x61);
4534 4535 4536 4537
}

void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
4538
  emit_int8(0x68);
4539 4540 4541 4542
  emit_data(imm32, rspec, 0);
}

void Assembler::pusha() { // 32bit
4543
  emit_int8(0x60);
4544 4545 4546
}

void Assembler::set_byte_if_not_zero(Register dst) {
4547 4548 4549
  emit_int8(0x0F);
  emit_int8((unsigned char)0x95);
  emit_int8((unsigned char)(0xE0 | dst->encoding()));
4550 4551 4552
}

void Assembler::shldl(Register dst, Register src) {
4553 4554 4555
  emit_int8(0x0F);
  emit_int8((unsigned char)0xA5);
  emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4556 4557 4558
}

void Assembler::shrdl(Register dst, Register src) {
4559 4560 4561
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAD);
  emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4562 4563 4564 4565
}

#else // LP64

I
iveresov 已提交
4566 4567
void Assembler::set_byte_if_not_zero(Register dst) {
  int enc = prefix_and_encode(dst->encoding(), true);
4568 4569 4570
  emit_int8(0x0F);
  emit_int8((unsigned char)0x95);
  emit_int8((unsigned char)(0xE0 | enc));
I
iveresov 已提交
4571 4572
}

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
// 64bit only pieces of the assembler
// This should only be used by 64bit instructions that can use rip-relative
// it cannot be used by instructions that want an immediate value.

bool Assembler::reachable(AddressLiteral adr) {
  int64_t disp;
  // None will force a 64bit literal to the code stream. Likely a placeholder
  // for something that will be patched later and we need to certain it will
  // always be reachable.
  if (adr.reloc() == relocInfo::none) {
    return false;
  }
  if (adr.reloc() == relocInfo::internal_word_type) {
    // This should be rip relative and easily reachable.
    return true;
  }
  if (adr.reloc() == relocInfo::virtual_call_type ||
      adr.reloc() == relocInfo::opt_virtual_call_type ||
      adr.reloc() == relocInfo::static_call_type ||
      adr.reloc() == relocInfo::static_stub_type ) {
    // This should be rip relative within the code cache and easily
    // reachable until we get huge code caches. (At which point
    // ic code is going to have issues).
    return true;
  }
  if (adr.reloc() != relocInfo::external_word_type &&
      adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
      adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
      adr.reloc() != relocInfo::runtime_call_type ) {
    return false;
  }

  // Stress the correction code
  if (ForceUnreachable) {
    // Must be runtimecall reloc, see if it is in the codecache
    // Flipping stuff in the codecache to be unreachable causes issues
    // with things like inline caches where the additional instructions
    // are not handled.
    if (CodeCache::find_blob(adr._target) == NULL) {
      return false;
    }
  }
  // For external_word_type/runtime_call_type if it is reachable from where we
  // are now (possibly a temp buffer) and where we might end up
  // anywhere in the codeCache then we are always reachable.
  // This would have to change if we ever save/restore shared code
  // to be more pessimistic.
  disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;
  disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;

4625
  disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642

  // Because rip relative is a disp + address_of_next_instruction and we
  // don't know the value of address_of_next_instruction we apply a fudge factor
  // to make sure we will be ok no matter the size of the instruction we get placed into.
  // We don't have to fudge the checks above here because they are already worst case.

  // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  // + 4 because better safe than sorry.
  const int fudge = 12 + 4;
  if (disp < 0) {
    disp -= fudge;
  } else {
    disp += fudge;
  }
  return is_simm32(disp);
}

4643 4644 4645 4646
// Check if the polling page is not reachable from the code cache using rip-relative
// addressing.
bool Assembler::is_polling_page_far() {
  intptr_t addr = (intptr_t)os::get_polling_page();
4647 4648
  return ForceUnreachable ||
         !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4649 4650 4651
         !is_simm32(addr - (intptr_t)CodeCache::high_bound());
}

4652 4653 4654 4655
void Assembler::emit_data64(jlong data,
                            relocInfo::relocType rtype,
                            int format) {
  if (rtype == relocInfo::none) {
4656
    emit_int64(data);
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
  } else {
    emit_data64(data, Relocation::spec_simple(rtype), format);
  }
}

void Assembler::emit_data64(jlong data,
                            RelocationHolder const& rspec,
                            int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
  assert(imm_operand == format, "must be immediate");
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  // Do not use AbstractAssembler::relocate, which is not intended for
  // embedded words.  Instead, relocate to the enclosing instruction.
  code_section()->relocate(inst_mark(), rspec, format);
#ifdef ASSERT
  check_relocation(rspec, format);
#endif
4674
  emit_int64(data);
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
}

int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  if (reg_enc >= 8) {
    prefix(REX_B);
    reg_enc -= 8;
  } else if (byteinst && reg_enc >= 4) {
    prefix(REX);
  }
  return reg_enc;
}

int Assembler::prefixq_and_encode(int reg_enc) {
  if (reg_enc < 8) {
    prefix(REX_W);
  } else {
    prefix(REX_WB);
    reg_enc -= 8;
  }
  return reg_enc;
}

int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  if (dst_enc < 8) {
    if (src_enc >= 8) {
      prefix(REX_B);
      src_enc -= 8;
    } else if (byteinst && src_enc >= 4) {
      prefix(REX);
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  if (dst_enc < 8) {
    if (src_enc < 8) {
      prefix(REX_W);
    } else {
      prefix(REX_WB);
      src_enc -= 8;
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_WR);
    } else {
      prefix(REX_WRB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

void Assembler::prefix(Register reg) {
  if (reg->encoding() >= 8) {
    prefix(REX_B);
  }
}

void Assembler::prefix(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_XB);
    } else {
      prefix(REX_B);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_X);
    }
  }
}

void Assembler::prefixq(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_WXB);
    } else {
      prefix(REX_WB);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_WX);
    } else {
      prefix(REX_W);
    }
  }
}


void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
4785
      } else if (byteinst && reg->encoding() >= 4 ) {
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
        prefix(REX);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

void Assembler::prefixq(Address adr, Register src) {
  if (src->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WXB);
      } else {
        prefix(REX_WB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WX);
      } else {
        prefix(REX_W);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WRXB);
      } else {
        prefix(REX_WRB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WRX);
      } else {
        prefix(REX_WR);
      }
    }
  }
}

void Assembler::prefix(Address adr, XMMRegister reg) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

K
kvn 已提交
4868 4869
void Assembler::prefixq(Address adr, XMMRegister src) {
  if (src->encoding() < 8) {
4870 4871
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4872
        prefix(REX_WXB);
4873
      } else {
K
kvn 已提交
4874
        prefix(REX_WB);
4875 4876 4877
      }
    } else {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4878 4879 4880
        prefix(REX_WX);
      } else {
        prefix(REX_W);
4881 4882 4883 4884 4885
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4886
        prefix(REX_WRXB);
4887
      } else {
K
kvn 已提交
4888
        prefix(REX_WRB);
4889 4890 4891
      }
    } else {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4892
        prefix(REX_WRX);
4893
      } else {
K
kvn 已提交
4894
        prefix(REX_WR);
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
      }
    }
  }
}

void Assembler::adcq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD0, dst, imm32);
}

void Assembler::adcq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4908
  emit_int8(0x13);
4909 4910 4911 4912
  emit_operand(dst, src);
}

void Assembler::adcq(Register dst, Register src) {
4913
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
  emit_arith(0x13, 0xC0, dst, src);
}

void Assembler::addq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rax, dst,imm32);
}

void Assembler::addq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
4926
  emit_int8(0x01);
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
  emit_operand(src, dst);
}

void Assembler::addq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC0, dst, imm32);
}

void Assembler::addq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4938
  emit_int8(0x03);
4939 4940 4941 4942 4943 4944 4945 4946
  emit_operand(dst, src);
}

void Assembler::addq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
}

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
void Assembler::adcxq(Register dst, Register src) {
  //assert(VM_Version::supports_adx(), "adx instructions not supported");
  emit_int8((unsigned char)0x66);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_int8(0x0F);
  emit_int8(0x38);
  emit_int8((unsigned char)0xF6);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::adoxq(Register dst, Register src) {
  //assert(VM_Version::supports_adx(), "adx instructions not supported");
  emit_int8((unsigned char)0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_int8(0x0F);
  emit_int8(0x38);
  emit_int8((unsigned char)0xF6);
  emit_int8((unsigned char)(0xC0 | encode));
}

4967 4968 4969
void Assembler::andq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
4970
  emit_int8((unsigned char)0x81);
4971
  emit_operand(rsp, dst, 4);
4972
  emit_int32(imm32);
4973 4974
}

4975 4976 4977 4978 4979 4980 4981 4982
void Assembler::andq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE0, dst, imm32);
}

void Assembler::andq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4983
  emit_int8(0x23);
4984 4985 4986 4987
  emit_operand(dst, src);
}

void Assembler::andq(Register dst, Register src) {
4988
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
4989 4990 4991
  emit_arith(0x23, 0xC0, dst, src);
}

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
void Assembler::andnq(Register dst, Register src1, Register src2) {
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
  emit_int8((unsigned char)0xF2);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::andnq(Register dst, Register src1, Address src2) {
  InstructionMark im(this);
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  vex_prefix_0F38_q(dst, src1, src2);
  emit_int8((unsigned char)0xF2);
  emit_operand(dst, src2);
}

5007 5008
void Assembler::bsfq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5009 5010 5011
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBC);
  emit_int8((unsigned char)(0xC0 | encode));
5012 5013 5014 5015
}

void Assembler::bsrq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5016 5017 5018
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
5019 5020
}

5021 5022
void Assembler::bswapq(Register reg) {
  int encode = prefixq_and_encode(reg->encoding());
5023 5024
  emit_int8(0x0F);
  emit_int8((unsigned char)(0xC8 | encode));
5025 5026
}

5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
void Assembler::blsiq(Register dst, Register src) {
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::blsiq(Register dst, Address src) {
  InstructionMark im(this);
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  vex_prefix_0F38_q(rbx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_operand(rbx, src);
}

void Assembler::blsmskq(Register dst, Register src) {
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::blsmskq(Register dst, Address src) {
  InstructionMark im(this);
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  vex_prefix_0F38_q(rdx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_operand(rdx, src);
}

void Assembler::blsrq(Register dst, Register src) {
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_int8((unsigned char)(0xC0 | encode));
}

void Assembler::blsrq(Register dst, Address src) {
  InstructionMark im(this);
  assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  vex_prefix_0F38_q(rcx, dst, src);
  emit_int8((unsigned char)0xF3);
  emit_operand(rcx, src);
}

5072 5073
void Assembler::cdqq() {
  prefix(REX_W);
5074
  emit_int8((unsigned char)0x99);
5075 5076 5077 5078
}

void Assembler::clflush(Address adr) {
  prefix(adr);
5079 5080
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
5081 5082 5083 5084 5085
  emit_operand(rdi, adr);
}

void Assembler::cmovq(Condition cc, Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5086 5087 5088
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
5089 5090 5091 5092 5093
}

void Assembler::cmovq(Condition cc, Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5094 5095
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
5096 5097 5098 5099 5100 5101
  emit_operand(dst, src);
}

void Assembler::cmpq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
5102
  emit_int8((unsigned char)0x81);
5103
  emit_operand(rdi, dst, 4);
5104
  emit_int32(imm32);
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
}

void Assembler::cmpq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xF8, dst, imm32);
}

void Assembler::cmpq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5115
  emit_int8(0x3B);
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
  emit_operand(src, dst);
}

void Assembler::cmpq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
}

void Assembler::cmpq(Register dst, Address  src) {
  InstructionMark im(this);
  prefixq(src, dst);
5127
  emit_int8(0x3B);
5128 5129 5130 5131 5132 5133
  emit_operand(dst, src);
}

void Assembler::cmpxchgq(Register reg, Address adr) {
  InstructionMark im(this);
  prefixq(adr, reg);
5134 5135
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB1);
5136 5137 5138 5139 5140
  emit_operand(reg, adr);
}

void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
5141
  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
5142 5143
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
5144 5145
}

K
kvn 已提交
5146 5147 5148 5149
void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
5150
  emit_int8(0x2A);
K
kvn 已提交
5151 5152 5153
  emit_operand(dst, src);
}

5154 5155
void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
5156
  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
5157 5158
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
5159 5160
}

K
kvn 已提交
5161 5162 5163 5164
void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
5165
  emit_int8(0x2A);
K
kvn 已提交
5166 5167 5168
  emit_operand(dst, src);
}

5169 5170
void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
5171
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
5172 5173
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
5174 5175 5176 5177
}

void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
5178
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
5179 5180
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
5181 5182 5183 5184 5185 5186
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
  // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
5187 5188
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC8 | encode));
5189 5190 5191 5192 5193 5194
}

void Assembler::decq(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
5195 5196
  emit_int8((unsigned char)0xFF);
  emit_int8(0xC8 | encode);
5197 5198 5199 5200 5201 5202
}

void Assembler::decq(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
5203
  emit_int8((unsigned char)0xFF);
5204 5205 5206 5207 5208
  emit_operand(rcx, dst);
}

void Assembler::fxrstor(Address src) {
  prefixq(src);
5209 5210
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
5211 5212 5213 5214 5215
  emit_operand(as_Register(1), src);
}

void Assembler::fxsave(Address dst) {
  prefixq(dst);
5216 5217
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
5218 5219 5220 5221 5222
  emit_operand(as_Register(0), dst);
}

void Assembler::idivq(Register src) {
  int encode = prefixq_and_encode(src->encoding());
5223 5224
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF8 | encode));
5225 5226 5227 5228
}

void Assembler::imulq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5229 5230 5231
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAF);
  emit_int8((unsigned char)(0xC0 | encode));
5232 5233 5234 5235 5236
}

void Assembler::imulq(Register dst, Register src, int value) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  if (is8bit(value)) {
5237 5238 5239
    emit_int8(0x6B);
    emit_int8((unsigned char)(0xC0 | encode));
    emit_int8(value & 0xFF);
5240
  } else {
5241 5242
    emit_int8(0x69);
    emit_int8((unsigned char)(0xC0 | encode));
5243
    emit_int32(value);
5244 5245 5246
  }
}

5247 5248 5249 5250 5251 5252 5253 5254
void Assembler::imulq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_int8(0x0F);
  emit_int8((unsigned char) 0xAF);
  emit_operand(dst, src);
}

5255 5256 5257 5258
void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
5259 5260
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC0 | encode));
5261 5262 5263 5264 5265 5266
}

void Assembler::incq(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
5267 5268
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC0 | encode));
5269 5270 5271 5272 5273 5274
}

void Assembler::incq(Address dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
5275
  emit_int8((unsigned char)0xFF);
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
  emit_operand(rax, dst);
}

void Assembler::lea(Register dst, Address src) {
  leaq(dst, src);
}

void Assembler::leaq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5286
  emit_int8((unsigned char)0x8D);
5287 5288 5289 5290 5291 5292
  emit_operand(dst, src);
}

void Assembler::mov64(Register dst, int64_t imm64) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5293
  emit_int8((unsigned char)(0xB8 | encode));
5294
  emit_int64(imm64);
5295 5296 5297 5298 5299
}

void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5300
  emit_int8(0xB8 | encode);
5301 5302 5303
  emit_data64(imm64, rspec);
}

5304 5305 5306
void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
5307
  emit_int8((unsigned char)(0xB8 | encode));
5308 5309 5310 5311 5312 5313
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(dst);
5314
  emit_int8((unsigned char)0xC7);
5315 5316 5317 5318 5319 5320 5321
  emit_operand(rax, dst, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(src1->encoding());
5322 5323
  emit_int8((unsigned char)0x81);
  emit_int8((unsigned char)(0xF8 | encode));
5324 5325 5326 5327 5328 5329
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(src1);
5330
  emit_int8((unsigned char)0x81);
5331 5332 5333 5334
  emit_operand(rax, src1, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

5335 5336
void Assembler::lzcntq(Register dst, Register src) {
  assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5337
  emit_int8((unsigned char)0xF3);
5338
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5339 5340 5341
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
5342 5343
}

5344 5345
void Assembler::movdq(XMMRegister dst, Register src) {
  // table D-1 says MMX/SSE2
K
kvn 已提交
5346 5347
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5348 5349
  emit_int8(0x6E);
  emit_int8((unsigned char)(0xC0 | encode));
5350 5351 5352 5353
}

void Assembler::movdq(Register dst, XMMRegister src) {
  // table D-1 says MMX/SSE2
K
kvn 已提交
5354
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5355
  // swap src/dst to get correct prefix
K
kvn 已提交
5356
  int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5357 5358
  emit_int8(0x7E);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
5359 5360
}

5361 5362
void Assembler::movq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5363 5364
  emit_int8((unsigned char)0x8B);
  emit_int8((unsigned char)(0xC0 | encode));
5365
}
D
duke 已提交
5366

5367 5368 5369
void Assembler::movq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5370
  emit_int8((unsigned char)0x8B);
5371 5372
  emit_operand(dst, src);
}
D
duke 已提交
5373

5374 5375 5376
void Assembler::movq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5377
  emit_int8((unsigned char)0x89);
5378 5379
  emit_operand(src, dst);
}
D
duke 已提交
5380

5381 5382 5383
void Assembler::movsbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5384 5385
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
5386 5387 5388 5389 5390
  emit_operand(dst, src);
}

void Assembler::movsbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5391 5392 5393
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
  emit_int8((unsigned char)(0xC0 | encode));
5394 5395
}

5396 5397 5398 5399 5400 5401 5402
void Assembler::movslq(Register dst, int32_t imm32) {
  // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  // as a result we shouldn't use until tested at runtime...
  ShouldNotReachHere();
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5403
  emit_int8((unsigned char)(0xC7 | encode));
5404
  emit_int32(imm32);
5405 5406 5407 5408 5409 5410
}

void Assembler::movslq(Address dst, int32_t imm32) {
  assert(is_simm32(imm32), "lost bits");
  InstructionMark im(this);
  prefixq(dst);
5411
  emit_int8((unsigned char)0xC7);
5412
  emit_operand(rax, dst, 4);
5413
  emit_int32(imm32);
5414 5415 5416 5417 5418
}

void Assembler::movslq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5419
  emit_int8(0x63);
5420 5421 5422 5423 5424
  emit_operand(dst, src);
}

void Assembler::movslq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5425 5426
  emit_int8(0x63);
  emit_int8((unsigned char)(0xC0 | encode));
5427 5428
}

5429 5430 5431
void Assembler::movswq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5432 5433
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
5434 5435 5436 5437 5438
  emit_operand(dst, src);
}

void Assembler::movswq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5439 5440 5441
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xBF);
  emit_int8((unsigned char)(0xC0 | encode));
5442 5443 5444 5445 5446
}

void Assembler::movzbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5447 5448
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB6);
5449 5450 5451 5452 5453
  emit_operand(dst, src);
}

void Assembler::movzbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5454 5455 5456
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
  emit_int8(0xC0 | encode);
5457 5458 5459 5460 5461
}

void Assembler::movzwq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5462 5463
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB7);
5464 5465 5466 5467 5468
  emit_operand(dst, src);
}

void Assembler::movzwq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5469 5470 5471
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB7);
  emit_int8((unsigned char)(0xC0 | encode));
5472 5473
}

5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
void Assembler::mulq(Address src) {
  InstructionMark im(this);
  prefixq(src);
  emit_int8((unsigned char)0xF7);
  emit_operand(rsp, src);
}

void Assembler::mulq(Register src) {
  int encode = prefixq_and_encode(src->encoding());
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xE0 | encode));
}

void Assembler::mulxq(Register dst1, Register dst2, Register src) {
  assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
  int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, true, false);
  emit_int8((unsigned char)0xF6);
  emit_int8((unsigned char)(0xC0 | encode));
}

5494 5495
void Assembler::negq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5496 5497
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD8 | encode));
5498 5499 5500 5501
}

void Assembler::notq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5502 5503
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD0 | encode));
5504 5505 5506 5507 5508
}

void Assembler::orq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
5509
  emit_int8((unsigned char)0x81);
5510
  emit_operand(rcx, dst, 4);
5511
  emit_int32(imm32);
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
}

void Assembler::orq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC8, dst, imm32);
}

void Assembler::orq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5522
  emit_int8(0x0B);
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
  emit_operand(dst, src);
}

void Assembler::orq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
}

void Assembler::popa() { // 64bit
  movq(r15, Address(rsp, 0));
  movq(r14, Address(rsp, wordSize));
  movq(r13, Address(rsp, 2 * wordSize));
  movq(r12, Address(rsp, 3 * wordSize));
  movq(r11, Address(rsp, 4 * wordSize));
  movq(r10, Address(rsp, 5 * wordSize));
  movq(r9,  Address(rsp, 6 * wordSize));
  movq(r8,  Address(rsp, 7 * wordSize));
  movq(rdi, Address(rsp, 8 * wordSize));
  movq(rsi, Address(rsp, 9 * wordSize));
  movq(rbp, Address(rsp, 10 * wordSize));
  // skip rsp
  movq(rbx, Address(rsp, 12 * wordSize));
  movq(rdx, Address(rsp, 13 * wordSize));
  movq(rcx, Address(rsp, 14 * wordSize));
  movq(rax, Address(rsp, 15 * wordSize));

  addq(rsp, 16 * wordSize);
}

5552 5553 5554
void Assembler::popcntq(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
5555
  emit_int8((unsigned char)0xF3);
5556
  prefixq(src, dst);
5557 5558
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB8);
5559 5560 5561 5562 5563
  emit_operand(dst, src);
}

void Assembler::popcntq(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
5564
  emit_int8((unsigned char)0xF3);
5565
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5566 5567 5568
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB8);
  emit_int8((unsigned char)(0xC0 | encode));
5569 5570
}

5571 5572 5573
void Assembler::popq(Address dst) {
  InstructionMark im(this);
  prefixq(dst);
5574
  emit_int8((unsigned char)0x8F);
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
  emit_operand(rax, dst);
}

void Assembler::pusha() { // 64bit
  // we have to store original rsp.  ABI says that 128 bytes
  // below rsp are local scratch.
  movq(Address(rsp, -5 * wordSize), rsp);

  subq(rsp, 16 * wordSize);

  movq(Address(rsp, 15 * wordSize), rax);
  movq(Address(rsp, 14 * wordSize), rcx);
  movq(Address(rsp, 13 * wordSize), rdx);
  movq(Address(rsp, 12 * wordSize), rbx);
  // skip rsp
  movq(Address(rsp, 10 * wordSize), rbp);
  movq(Address(rsp, 9 * wordSize), rsi);
  movq(Address(rsp, 8 * wordSize), rdi);
  movq(Address(rsp, 7 * wordSize), r8);
  movq(Address(rsp, 6 * wordSize), r9);
  movq(Address(rsp, 5 * wordSize), r10);
  movq(Address(rsp, 4 * wordSize), r11);
  movq(Address(rsp, 3 * wordSize), r12);
  movq(Address(rsp, 2 * wordSize), r13);
  movq(Address(rsp, wordSize), r14);
  movq(Address(rsp, 0), r15);
}

void Assembler::pushq(Address src) {
  InstructionMark im(this);
  prefixq(src);
5606
  emit_int8((unsigned char)0xFF);
5607 5608 5609 5610 5611 5612 5613
  emit_operand(rsi, src);
}

void Assembler::rclq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5614 5615
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xD0 | encode));
5616
  } else {
5617 5618 5619
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xD0 | encode));
    emit_int8(imm8);
D
duke 已提交
5620
  }
5621
}
5622

5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
void Assembler::rcrq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xD8 | encode));
  } else {
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xD8 | encode));
    emit_int8(imm8);
  }
}

5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
void Assembler::rorq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xC8 | encode));
  } else {
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xc8 | encode));
    emit_int8(imm8);
  }
}

void Assembler::rorxq(Register dst, Register src, int imm8) {
  assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, true, false);
  emit_int8((unsigned char)0xF0);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(imm8);
}

5657 5658 5659 5660
void Assembler::sarq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5661 5662
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xF8 | encode));
5663
  } else {
5664 5665 5666
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xF8 | encode));
    emit_int8(imm8);
5667 5668
  }
}
D
duke 已提交
5669

5670 5671
void Assembler::sarq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5672 5673
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xF8 | encode));
5674
}
5675

5676 5677 5678 5679 5680
void Assembler::sbbq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}
D
duke 已提交
5681

5682 5683 5684 5685
void Assembler::sbbq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD8, dst, imm32);
}
D
duke 已提交
5686

5687 5688 5689
void Assembler::sbbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5690
  emit_int8(0x1B);
5691 5692
  emit_operand(dst, src);
}
D
duke 已提交
5693

5694 5695 5696 5697
void Assembler::sbbq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
}
D
duke 已提交
5698

5699 5700 5701 5702
void Assembler::shlq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5703 5704
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xE0 | encode));
5705
  } else {
5706 5707 5708
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xE0 | encode));
    emit_int8(imm8);
D
duke 已提交
5709
  }
5710 5711 5712 5713
}

void Assembler::shlq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5714 5715
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE0 | encode));
5716 5717 5718 5719 5720
}

void Assembler::shrq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
5721 5722 5723
  emit_int8((unsigned char)0xC1);
  emit_int8((unsigned char)(0xE8 | encode));
  emit_int8(imm8);
5724 5725 5726 5727
}

void Assembler::shrq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5728 5729
  emit_int8((unsigned char)0xD3);
  emit_int8(0xE8 | encode);
5730 5731 5732 5733 5734
}

void Assembler::subq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
5735
  emit_arith_operand(0x81, rbp, dst, imm32);
5736 5737 5738 5739 5740
}

void Assembler::subq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5741
  emit_int8(0x29);
5742 5743 5744
  emit_operand(src, dst);
}

5745 5746 5747 5748 5749
void Assembler::subq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE8, dst, imm32);
}

5750 5751 5752 5753 5754 5755
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::subq_imm32(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith_imm32(0x81, 0xE8, dst, imm32);
}

5756 5757 5758
void Assembler::subq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5759
  emit_int8(0x2B);
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
  emit_operand(dst, src);
}

void Assembler::subq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::testq(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
    prefix(REX_W);
5775
    emit_int8((unsigned char)0xA9);
D
duke 已提交
5776
  } else {
5777
    encode = prefixq_and_encode(encode);
5778 5779
    emit_int8((unsigned char)0xF7);
    emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
5780
  }
5781
  emit_int32(imm32);
D
duke 已提交
5782 5783
}

5784 5785 5786
void Assembler::testq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
D
duke 已提交
5787 5788
}

5789 5790 5791
void Assembler::xaddq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5792 5793
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC1);
5794
  emit_operand(src, dst);
D
duke 已提交
5795 5796
}

5797 5798 5799
void Assembler::xchgq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5800
  emit_int8((unsigned char)0x87);
5801
  emit_operand(dst, src);
D
duke 已提交
5802 5803
}

5804 5805
void Assembler::xchgq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5806 5807
  emit_int8((unsigned char)0x87);
  emit_int8((unsigned char)(0xc0 | encode));
D
duke 已提交
5808 5809
}

5810 5811 5812
void Assembler::xorq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
D
duke 已提交
5813 5814
}

5815 5816 5817
void Assembler::xorq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5818
  emit_int8(0x33);
5819
  emit_operand(dst, src);
5820 5821
}

5822
#endif // !LP64