os_posix.cpp 26.1 KB
Newer Older
1
/*
2
* Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
24

25
#include "utilities/globalDefinitions.hpp"
26
#include "prims/jvm.h"
Z
zgu 已提交
27
#include "runtime/frame.inline.hpp"
28 29 30
#include "runtime/os.hpp"
#include "utilities/vmError.hpp"

31
#include <signal.h>
32 33
#include <unistd.h>
#include <sys/resource.h>
34
#include <sys/utsname.h>
35 36
#include <pthread.h>
#include <signal.h>
37

38 39
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC

40 41 42 43 44 45
// Todo: provide a os::get_max_process_id() or similar. Number of processes
// may have been configured, can be read more accurately from proc fs etc.
#ifndef MAX_PID
#define MAX_PID INT_MAX
#endif
#define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
46 47 48

// Check core dump limit and report possible place where core can be found
void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
49
  int n;
50 51 52
  struct rlimit rlim;
  bool success;

53
  n = get_core_path(buffer, bufferSize);
54 55

  if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
56
    jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (may not exist)", current_process_id());
57 58 59 60
    success = true;
  } else {
    switch(rlim.rlim_cur) {
      case RLIM_INFINITY:
61
        jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d", current_process_id());
62 63 64 65 66 67 68
        success = true;
        break;
      case 0:
        jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
        success = false;
        break;
      default:
69
        jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", current_process_id(), (unsigned long)(rlim.rlim_cur >> 10));
70 71 72 73 74 75 76
        success = true;
        break;
    }
  }
  VMError::report_coredump_status(buffer, success);
}

Z
zgu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
address os::get_caller_pc(int n) {
#ifdef _NMT_NOINLINE_
  n ++;
#endif
  frame fr = os::current_frame();
  while (n > 0 && fr.pc() &&
    !os::is_first_C_frame(&fr) && fr.sender_pc()) {
    fr = os::get_sender_for_C_frame(&fr);
    n --;
  }
  if (n == 0) {
    return fr.pc();
  } else {
    return NULL;
  }
}

94 95 96 97
int os::get_last_error() {
  return errno;
}

98 99 100 101 102 103 104 105 106
bool os::is_debugger_attached() {
  // not implemented
  return false;
}

void os::wait_for_keypress_at_exit(void) {
  // don't do anything on posix platforms
  return;
}
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
// so on posix, unmap the section at the start and at the end of the chunk that we mapped
// rather than unmapping and remapping the whole chunk to get requested alignment.
char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
      "Alignment must be a multiple of allocation granularity (page size)");
  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");

  size_t extra_size = size + alignment;
  assert(extra_size >= size, "overflow, size is too large to allow alignment");

  char* extra_base = os::reserve_memory(extra_size, NULL, alignment);

  if (extra_base == NULL) {
    return NULL;
  }

  // Do manual alignment
  char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);

  // [  |                                       |  ]
  // ^ extra_base
  //    ^ extra_base + begin_offset == aligned_base
  //     extra_base + begin_offset + size       ^
  //                       extra_base + extra_size ^
  // |<>| == begin_offset
  //                              end_offset == |<>|
  size_t begin_offset = aligned_base - extra_base;
  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);

  if (begin_offset > 0) {
      os::release_memory(extra_base, begin_offset);
  }

  if (end_offset > 0) {
      os::release_memory(extra_base + begin_offset + size, end_offset);
  }

  return aligned_base;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
void os::Posix::print_load_average(outputStream* st) {
  st->print("load average:");
  double loadavg[3];
  os::loadavg(loadavg, 3);
  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  st->cr();
}

void os::Posix::print_rlimit_info(outputStream* st) {
  st->print("rlimit:");
  struct rlimit rlim;

  st->print(" STACK ");
  getrlimit(RLIMIT_STACK, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);

  st->print(", CORE ");
  getrlimit(RLIMIT_CORE, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);

171
  // Isn't there on solaris
K
Merge  
kvn 已提交
172
#if !defined(TARGET_OS_FAMILY_solaris) && !defined(TARGET_OS_FAMILY_aix)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  st->print(", NPROC ");
  getrlimit(RLIMIT_NPROC, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%d", rlim.rlim_cur);
#endif

  st->print(", NOFILE ");
  getrlimit(RLIMIT_NOFILE, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%d", rlim.rlim_cur);

  st->print(", AS ");
  getrlimit(RLIMIT_AS, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);
  st->cr();
}

void os::Posix::print_uname_info(outputStream* st) {
  // kernel
  st->print("uname:");
  struct utsname name;
  uname(&name);
196 197 198 199
  st->print("%s ", name.sysname);
  st->print("%s ", name.release);
  st->print("%s ", name.version);
  st->print("%s", name.machine);
200 201 202
  st->cr();
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
bool os::has_allocatable_memory_limit(julong* limit) {
  struct rlimit rlim;
  int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
  // if there was an error when calling getrlimit, assume that there is no limitation
  // on virtual memory.
  bool result;
  if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
    result = false;
  } else {
    *limit = (julong)rlim.rlim_cur;
    result = true;
  }
#ifdef _LP64
  return result;
#else
  // arbitrary virtual space limit for 32 bit Unices found by testing. If
  // getrlimit above returned a limit, bound it with this limit. Otherwise
  // directly use it.
  const julong max_virtual_limit = (julong)3800*M;
  if (result) {
    *limit = MIN2(*limit, max_virtual_limit);
  } else {
    *limit = max_virtual_limit;
  }
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  // bound by actually allocatable memory. The algorithm uses two bounds, an
  // upper and a lower limit. The upper limit is the current highest amount of
  // memory that could not be allocated, the lower limit is the current highest
  // amount of memory that could be allocated.
  // The algorithm iteratively refines the result by halving the difference
  // between these limits, updating either the upper limit (if that value could
  // not be allocated) or the lower limit (if the that value could be allocated)
  // until the difference between these limits is "small".

  // the minimum amount of memory we care about allocating.
  const julong min_allocation_size = M;

  julong upper_limit = *limit;

  // first check a few trivial cases
  if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
    *limit = upper_limit;
  } else if (!is_allocatable(min_allocation_size)) {
    // we found that not even min_allocation_size is allocatable. Return it
    // anyway. There is no point to search for a better value any more.
    *limit = min_allocation_size;
  } else {
    // perform the binary search.
    julong lower_limit = min_allocation_size;
    while ((upper_limit - lower_limit) > min_allocation_size) {
      julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
      temp_limit = align_size_down_(temp_limit, min_allocation_size);
      if (is_allocatable(temp_limit)) {
        lower_limit = temp_limit;
      } else {
        upper_limit = temp_limit;
      }
    }
    *limit = lower_limit;
  }
  return true;
#endif
}
266 267 268 269 270 271 272 273

const char* os::get_current_directory(char *buf, size_t buflen) {
  return getcwd(buf, buflen);
}

FILE* os::open(int fd, const char* mode) {
  return ::fdopen(fd, mode);
}
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
// Builds a platform dependent Agent_OnLoad_<lib_name> function name
// which is used to find statically linked in agents.
// Parameters:
//            sym_name: Symbol in library we are looking for
//            lib_name: Name of library to look in, NULL for shared libs.
//            is_absolute_path == true if lib_name is absolute path to agent
//                                     such as "/a/b/libL.so"
//            == false if only the base name of the library is passed in
//               such as "L"
char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
                                    bool is_absolute_path) {
  char *agent_entry_name;
  size_t len;
  size_t name_len;
  size_t prefix_len = strlen(JNI_LIB_PREFIX);
  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
  const char *start;

  if (lib_name != NULL) {
    len = name_len = strlen(lib_name);
    if (is_absolute_path) {
      // Need to strip path, prefix and suffix
      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
        lib_name = ++start;
      }
      if (len <= (prefix_len + suffix_len)) {
        return NULL;
      }
      lib_name += prefix_len;
      name_len = strlen(lib_name) - suffix_len;
    }
  }
  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
  if (agent_entry_name == NULL) {
    return NULL;
  }
  strcpy(agent_entry_name, sym_name);
  if (lib_name != NULL) {
    strcat(agent_entry_name, "_");
    strncat(agent_entry_name, lib_name, name_len);
  }
  return agent_entry_name;
}
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

// Returned string is a constant. For unknown signals "UNKNOWN" is returned.
const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {

  static const struct {
    int sig; const char* name;
  }
  info[] =
  {
    {  SIGABRT,     "SIGABRT" },
#ifdef SIGAIO
    {  SIGAIO,      "SIGAIO" },
#endif
    {  SIGALRM,     "SIGALRM" },
#ifdef SIGALRM1
    {  SIGALRM1,    "SIGALRM1" },
#endif
    {  SIGBUS,      "SIGBUS" },
#ifdef SIGCANCEL
    {  SIGCANCEL,   "SIGCANCEL" },
#endif
    {  SIGCHLD,     "SIGCHLD" },
#ifdef SIGCLD
    {  SIGCLD,      "SIGCLD" },
#endif
    {  SIGCONT,     "SIGCONT" },
#ifdef SIGCPUFAIL
    {  SIGCPUFAIL,  "SIGCPUFAIL" },
#endif
#ifdef SIGDANGER
    {  SIGDANGER,   "SIGDANGER" },
#endif
#ifdef SIGDIL
    {  SIGDIL,      "SIGDIL" },
#endif
#ifdef SIGEMT
    {  SIGEMT,      "SIGEMT" },
#endif
    {  SIGFPE,      "SIGFPE" },
#ifdef SIGFREEZE
    {  SIGFREEZE,   "SIGFREEZE" },
#endif
#ifdef SIGGFAULT
    {  SIGGFAULT,   "SIGGFAULT" },
#endif
#ifdef SIGGRANT
    {  SIGGRANT,    "SIGGRANT" },
#endif
    {  SIGHUP,      "SIGHUP" },
    {  SIGILL,      "SIGILL" },
    {  SIGINT,      "SIGINT" },
#ifdef SIGIO
    {  SIGIO,       "SIGIO" },
#endif
#ifdef SIGIOINT
    {  SIGIOINT,    "SIGIOINT" },
#endif
#ifdef SIGIOT
  // SIGIOT is there for BSD compatibility, but on most Unices just a
  // synonym for SIGABRT. The result should be "SIGABRT", not
  // "SIGIOT".
  #if (SIGIOT != SIGABRT )
    {  SIGIOT,      "SIGIOT" },
  #endif
#endif
#ifdef SIGKAP
    {  SIGKAP,      "SIGKAP" },
#endif
    {  SIGKILL,     "SIGKILL" },
#ifdef SIGLOST
    {  SIGLOST,     "SIGLOST" },
#endif
#ifdef SIGLWP
    {  SIGLWP,      "SIGLWP" },
#endif
#ifdef SIGLWPTIMER
    {  SIGLWPTIMER, "SIGLWPTIMER" },
#endif
#ifdef SIGMIGRATE
    {  SIGMIGRATE,  "SIGMIGRATE" },
#endif
#ifdef SIGMSG
    {  SIGMSG,      "SIGMSG" },
#endif
    {  SIGPIPE,     "SIGPIPE" },
#ifdef SIGPOLL
    {  SIGPOLL,     "SIGPOLL" },
#endif
#ifdef SIGPRE
    {  SIGPRE,      "SIGPRE" },
#endif
    {  SIGPROF,     "SIGPROF" },
#ifdef SIGPTY
    {  SIGPTY,      "SIGPTY" },
#endif
#ifdef SIGPWR
    {  SIGPWR,      "SIGPWR" },
#endif
    {  SIGQUIT,     "SIGQUIT" },
#ifdef SIGRECONFIG
    {  SIGRECONFIG, "SIGRECONFIG" },
#endif
#ifdef SIGRECOVERY
    {  SIGRECOVERY, "SIGRECOVERY" },
#endif
#ifdef SIGRESERVE
    {  SIGRESERVE,  "SIGRESERVE" },
#endif
#ifdef SIGRETRACT
    {  SIGRETRACT,  "SIGRETRACT" },
#endif
#ifdef SIGSAK
    {  SIGSAK,      "SIGSAK" },
#endif
    {  SIGSEGV,     "SIGSEGV" },
#ifdef SIGSOUND
    {  SIGSOUND,    "SIGSOUND" },
#endif
    {  SIGSTOP,     "SIGSTOP" },
    {  SIGSYS,      "SIGSYS" },
#ifdef SIGSYSERROR
    {  SIGSYSERROR, "SIGSYSERROR" },
#endif
#ifdef SIGTALRM
    {  SIGTALRM,    "SIGTALRM" },
#endif
    {  SIGTERM,     "SIGTERM" },
#ifdef SIGTHAW
    {  SIGTHAW,     "SIGTHAW" },
#endif
    {  SIGTRAP,     "SIGTRAP" },
#ifdef SIGTSTP
    {  SIGTSTP,     "SIGTSTP" },
#endif
    {  SIGTTIN,     "SIGTTIN" },
    {  SIGTTOU,     "SIGTTOU" },
#ifdef SIGURG
    {  SIGURG,      "SIGURG" },
#endif
    {  SIGUSR1,     "SIGUSR1" },
    {  SIGUSR2,     "SIGUSR2" },
#ifdef SIGVIRT
    {  SIGVIRT,     "SIGVIRT" },
#endif
    {  SIGVTALRM,   "SIGVTALRM" },
#ifdef SIGWAITING
    {  SIGWAITING,  "SIGWAITING" },
#endif
#ifdef SIGWINCH
    {  SIGWINCH,    "SIGWINCH" },
#endif
#ifdef SIGWINDOW
    {  SIGWINDOW,   "SIGWINDOW" },
#endif
    {  SIGXCPU,     "SIGXCPU" },
    {  SIGXFSZ,     "SIGXFSZ" },
#ifdef SIGXRES
    {  SIGXRES,     "SIGXRES" },
#endif
    { -1, NULL }
  };

  const char* ret = NULL;

#ifdef SIGRTMIN
  if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
    if (sig == SIGRTMIN) {
      ret = "SIGRTMIN";
    } else if (sig == SIGRTMAX) {
      ret = "SIGRTMAX";
    } else {
      jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
      return out;
    }
  }
#endif

  if (sig > 0) {
    for (int idx = 0; info[idx].sig != -1; idx ++) {
      if (info[idx].sig == sig) {
        ret = info[idx].name;
        break;
      }
    }
  }

  if (!ret) {
    if (!is_valid_signal(sig)) {
      ret = "INVALID";
    } else {
      ret = "UNKNOWN";
    }
  }

  jio_snprintf(out, outlen, ret);
  return out;
}

// Returns true if signal number is valid.
bool os::Posix::is_valid_signal(int sig) {
  // MacOS not really POSIX compliant: sigaddset does not return
  // an error for invalid signal numbers. However, MacOS does not
  // support real time signals and simply seems to have just 33
  // signals with no holes in the signal range.
#ifdef __APPLE__
  return sig >= 1 && sig < NSIG;
#else
  // Use sigaddset to check for signal validity.
  sigset_t set;
  if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
    return false;
  }
  return true;
#endif
}

#define NUM_IMPORTANT_SIGS 32
// Returns one-line short description of a signal set in a user provided buffer.
const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
538
  assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
  // Note: for shortness, just print out the first 32. That should
  // cover most of the useful ones, apart from realtime signals.
  for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
    const int rc = sigismember(set, sig);
    if (rc == -1 && errno == EINVAL) {
      buffer[sig-1] = '?';
    } else {
      buffer[sig-1] = rc == 0 ? '0' : '1';
    }
  }
  buffer[NUM_IMPORTANT_SIGS] = 0;
  return buffer;
}

// Prints one-line description of a signal set.
void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
  char buf[NUM_IMPORTANT_SIGS + 1];
  os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
557
  st->print("%s", buf);
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
}

// Writes one-line description of a combination of sigaction.sa_flags into a user
// provided buffer. Returns that buffer.
const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
  char* p = buffer;
  size_t remaining = size;
  bool first = true;
  int idx = 0;

  assert(buffer, "invalid argument");

  if (size == 0) {
    return buffer;
  }

  strncpy(buffer, "none", size);

  const struct {
    int i;
    const char* s;
  } flaginfo [] = {
    { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
    { SA_ONSTACK,   "SA_ONSTACK"   },
    { SA_RESETHAND, "SA_RESETHAND" },
    { SA_RESTART,   "SA_RESTART"   },
    { SA_SIGINFO,   "SA_SIGINFO"   },
    { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
    { SA_NODEFER,   "SA_NODEFER"   },
#ifdef AIX
    { SA_ONSTACK,   "SA_ONSTACK"   },
    { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
#endif
    { 0, NULL }
  };

  for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
    if (flags & flaginfo[idx].i) {
      if (first) {
        jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
        first = false;
      } else {
        jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
      }
      const size_t len = strlen(p);
      p += len;
      remaining -= len;
    }
  }

  buffer[size - 1] = '\0';

  return buffer;
}

// Prints one-line description of a combination of sigaction.sa_flags.
void os::Posix::print_sa_flags(outputStream* st, int flags) {
  char buffer[0x100];
  os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
617
  st->print("%s", buffer);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
}

// Helper function for os::Posix::print_siginfo_...():
// return a textual description for signal code.
struct enum_sigcode_desc_t {
  const char* s_name;
  const char* s_desc;
};

static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {

  const struct {
    int sig; int code; const char* s_code; const char* s_desc;
  } t1 [] = {
    { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
    { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
    { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
    { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
    { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
    { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
    { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
    { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
#if defined(IA64) && defined(LINUX)
    { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
    { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
#endif
    { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
    { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
    { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
    { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
    { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
    { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
    { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
    { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
    { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
    { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
#ifdef AIX
    // no explanation found what keyerr would be
    { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
#endif
#if defined(IA64) && !defined(AIX)
    { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
#endif
    { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
    { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
    { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
    { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
    { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
    { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
    { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
    { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
    { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
    { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
    { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
#ifdef SIGPOLL
    { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
    { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
    { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
    { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
    { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
#endif
    { -1, -1, NULL, NULL }
  };

  // Codes valid in any signal context.
  const struct {
    int code; const char* s_code; const char* s_desc;
  } t2 [] = {
    { SI_USER,      "SI_USER",     "Signal sent by kill()." },
    { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
    { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
    { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
    { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
    // Linux specific
#ifdef SI_TKILL
    { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
#endif
#ifdef SI_DETHREAD
    { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
#endif
#ifdef SI_KERNEL
    { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
#endif
#ifdef SI_SIGIO
    { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
#endif

#ifdef AIX
    { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
    { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
#endif

#ifdef __sun
    { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
    { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
    { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
#endif

    { -1, NULL, NULL }
  };

  const char* s_code = NULL;
  const char* s_desc = NULL;

  for (int i = 0; t1[i].sig != -1; i ++) {
    if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
      s_code = t1[i].s_code;
      s_desc = t1[i].s_desc;
      break;
    }
  }

  if (s_code == NULL) {
    for (int i = 0; t2[i].s_code != NULL; i ++) {
      if (t2[i].code == si->si_code) {
        s_code = t2[i].s_code;
        s_desc = t2[i].s_desc;
      }
    }
  }

  if (s_code == NULL) {
    out->s_name = "unknown";
    out->s_desc = "unknown";
    return false;
  }

  out->s_name = s_code;
  out->s_desc = s_desc;

  return true;
}

// A POSIX conform, platform-independend siginfo print routine.
// Short print out on one line.
void os::Posix::print_siginfo_brief(outputStream* os, const siginfo_t* si) {
  char buf[20];
  os->print("siginfo: ");

  if (!si) {
    os->print("<null>");
    return;
  }

  // See print_siginfo_full() for details.
  const int sig = si->si_signo;

  os->print("si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));

  enum_sigcode_desc_t ed;
  if (get_signal_code_description(si, &ed)) {
    os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
  } else {
    os->print(", si_code: %d (unknown)", si->si_code);
  }

  if (si->si_errno) {
    os->print(", si_errno: %d", si->si_errno);
  }

  const int me = (int) ::getpid();
  const int pid = (int) si->si_pid;

  if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
    if (IS_VALID_PID(pid) && pid != me) {
      os->print(", sent from pid: %d (uid: %d)", pid, (int) si->si_uid);
    }
  } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
             sig == SIGTRAP || sig == SIGFPE) {
    os->print(", si_addr: " PTR_FORMAT, si->si_addr);
#ifdef SIGPOLL
  } else if (sig == SIGPOLL) {
    os->print(", si_band: " PTR64_FORMAT, (uint64_t)si->si_band);
#endif
  } else if (sig == SIGCHLD) {
    os->print_cr(", si_pid: %d, si_uid: %d, si_status: %d", (int) si->si_pid, si->si_uid, si->si_status);
  }
}

797 798 799 800 801 802 803 804 805 806 807
os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
}

/*
 * See the caveats for this class in os_posix.hpp
 * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
 * method and returns false. If none of the signals are raised, returns true.
 * The callback is supposed to provide the method that should be protected.
 */
bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
808 809
  sigset_t saved_sig_mask;

810 811 812 813
  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
      "crash_protection already set?");

814 815 816 817 818
  // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
  // since on at least some systems (OS X) siglongjmp will restore the mask
  // for the process, not the thread
  pthread_sigmask(0, NULL, &saved_sig_mask);
  if (sigsetjmp(_jmpbuf, 0) == 0) {
819 820 821 822 823 824 825 826 827
    // make sure we can see in the signal handler that we have crash protection
    // installed
    WatcherThread::watcher_thread()->set_crash_protection(this);
    cb.call();
    // and clear the crash protection
    WatcherThread::watcher_thread()->set_crash_protection(NULL);
    return true;
  }
  // this happens when we siglongjmp() back
828
  pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
  WatcherThread::watcher_thread()->set_crash_protection(NULL);
  return false;
}

void os::WatcherThreadCrashProtection::restore() {
  assert(WatcherThread::watcher_thread()->has_crash_protection(),
      "must have crash protection");

  siglongjmp(_jmpbuf, 1);
}

void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
    Thread* thread) {

  if (thread != NULL &&
      thread->is_Watcher_thread() &&
      WatcherThread::watcher_thread()->has_crash_protection()) {

    if (sig == SIGSEGV || sig == SIGBUS) {
      WatcherThread::watcher_thread()->crash_protection()->restore();
    }
  }
}