os_posix.cpp 10.0 KB
Newer Older
1
/*
2
* Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/

#include "prims/jvm.h"
Z
zgu 已提交
26
#include "runtime/frame.inline.hpp"
27 28 29 30 31
#include "runtime/os.hpp"
#include "utilities/vmError.hpp"

#include <unistd.h>
#include <sys/resource.h>
32 33
#include <sys/utsname.h>

34 35 36

// Check core dump limit and report possible place where core can be found
void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
37
  int n;
38 39 40
  struct rlimit rlim;
  bool success;

41
  n = get_core_path(buffer, bufferSize);
42 43

  if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
44
    jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (may not exist)", current_process_id());
45 46 47 48
    success = true;
  } else {
    switch(rlim.rlim_cur) {
      case RLIM_INFINITY:
49
        jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d", current_process_id());
50 51 52 53 54 55 56
        success = true;
        break;
      case 0:
        jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
        success = false;
        break;
      default:
57
        jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", current_process_id(), (unsigned long)(rlim.rlim_cur >> 10));
58 59 60 61 62 63 64
        success = true;
        break;
    }
  }
  VMError::report_coredump_status(buffer, success);
}

Z
zgu 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
address os::get_caller_pc(int n) {
#ifdef _NMT_NOINLINE_
  n ++;
#endif
  frame fr = os::current_frame();
  while (n > 0 && fr.pc() &&
    !os::is_first_C_frame(&fr) && fr.sender_pc()) {
    fr = os::get_sender_for_C_frame(&fr);
    n --;
  }
  if (n == 0) {
    return fr.pc();
  } else {
    return NULL;
  }
}

82 83 84 85
int os::get_last_error() {
  return errno;
}

86 87 88 89 90 91 92 93 94
bool os::is_debugger_attached() {
  // not implemented
  return false;
}

void os::wait_for_keypress_at_exit(void) {
  // don't do anything on posix platforms
  return;
}
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
// so on posix, unmap the section at the start and at the end of the chunk that we mapped
// rather than unmapping and remapping the whole chunk to get requested alignment.
char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
      "Alignment must be a multiple of allocation granularity (page size)");
  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");

  size_t extra_size = size + alignment;
  assert(extra_size >= size, "overflow, size is too large to allow alignment");

  char* extra_base = os::reserve_memory(extra_size, NULL, alignment);

  if (extra_base == NULL) {
    return NULL;
  }

  // Do manual alignment
  char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);

  // [  |                                       |  ]
  // ^ extra_base
  //    ^ extra_base + begin_offset == aligned_base
  //     extra_base + begin_offset + size       ^
  //                       extra_base + extra_size ^
  // |<>| == begin_offset
  //                              end_offset == |<>|
  size_t begin_offset = aligned_base - extra_base;
  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);

  if (begin_offset > 0) {
      os::release_memory(extra_base, begin_offset);
  }

  if (end_offset > 0) {
      os::release_memory(extra_base + begin_offset + size, end_offset);
  }

  return aligned_base;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
void os::Posix::print_load_average(outputStream* st) {
  st->print("load average:");
  double loadavg[3];
  os::loadavg(loadavg, 3);
  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  st->cr();
}

void os::Posix::print_rlimit_info(outputStream* st) {
  st->print("rlimit:");
  struct rlimit rlim;

  st->print(" STACK ");
  getrlimit(RLIMIT_STACK, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);

  st->print(", CORE ");
  getrlimit(RLIMIT_CORE, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);

  //Isn't there on solaris
#ifndef TARGET_OS_FAMILY_solaris
  st->print(", NPROC ");
  getrlimit(RLIMIT_NPROC, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%d", rlim.rlim_cur);
#endif

  st->print(", NOFILE ");
  getrlimit(RLIMIT_NOFILE, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%d", rlim.rlim_cur);

  st->print(", AS ");
  getrlimit(RLIMIT_AS, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);
  st->cr();
}

void os::Posix::print_uname_info(outputStream* st) {
  // kernel
  st->print("uname:");
  struct utsname name;
  uname(&name);
  st->print(name.sysname); st->print(" ");
  st->print(name.release); st->print(" ");
  st->print(name.version); st->print(" ");
  st->print(name.machine);
  st->cr();
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
bool os::has_allocatable_memory_limit(julong* limit) {
  struct rlimit rlim;
  int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
  // if there was an error when calling getrlimit, assume that there is no limitation
  // on virtual memory.
  bool result;
  if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
    result = false;
  } else {
    *limit = (julong)rlim.rlim_cur;
    result = true;
  }
#ifdef _LP64
  return result;
#else
  // arbitrary virtual space limit for 32 bit Unices found by testing. If
  // getrlimit above returned a limit, bound it with this limit. Otherwise
  // directly use it.
  const julong max_virtual_limit = (julong)3800*M;
  if (result) {
    *limit = MIN2(*limit, max_virtual_limit);
  } else {
    *limit = max_virtual_limit;
  }
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  // bound by actually allocatable memory. The algorithm uses two bounds, an
  // upper and a lower limit. The upper limit is the current highest amount of
  // memory that could not be allocated, the lower limit is the current highest
  // amount of memory that could be allocated.
  // The algorithm iteratively refines the result by halving the difference
  // between these limits, updating either the upper limit (if that value could
  // not be allocated) or the lower limit (if the that value could be allocated)
  // until the difference between these limits is "small".

  // the minimum amount of memory we care about allocating.
  const julong min_allocation_size = M;

  julong upper_limit = *limit;

  // first check a few trivial cases
  if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
    *limit = upper_limit;
  } else if (!is_allocatable(min_allocation_size)) {
    // we found that not even min_allocation_size is allocatable. Return it
    // anyway. There is no point to search for a better value any more.
    *limit = min_allocation_size;
  } else {
    // perform the binary search.
    julong lower_limit = min_allocation_size;
    while ((upper_limit - lower_limit) > min_allocation_size) {
      julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
      temp_limit = align_size_down_(temp_limit, min_allocation_size);
      if (is_allocatable(temp_limit)) {
        lower_limit = temp_limit;
      } else {
        upper_limit = temp_limit;
      }
    }
    *limit = lower_limit;
  }
  return true;
#endif
}
254 255 256 257 258 259 260 261

const char* os::get_current_directory(char *buf, size_t buflen) {
  return getcwd(buf, buflen);
}

FILE* os::open(int fd, const char* mode) {
  return ::fdopen(fd, mode);
}
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
}

/*
 * See the caveats for this class in os_posix.hpp
 * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
 * method and returns false. If none of the signals are raised, returns true.
 * The callback is supposed to provide the method that should be protected.
 */
bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
      "crash_protection already set?");

  if (sigsetjmp(_jmpbuf, 1) == 0) {
    // make sure we can see in the signal handler that we have crash protection
    // installed
    WatcherThread::watcher_thread()->set_crash_protection(this);
    cb.call();
    // and clear the crash protection
    WatcherThread::watcher_thread()->set_crash_protection(NULL);
    return true;
  }
  // this happens when we siglongjmp() back
  WatcherThread::watcher_thread()->set_crash_protection(NULL);
  return false;
}

void os::WatcherThreadCrashProtection::restore() {
  assert(WatcherThread::watcher_thread()->has_crash_protection(),
      "must have crash protection");

  siglongjmp(_jmpbuf, 1);
}

void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
    Thread* thread) {

  if (thread != NULL &&
      thread->is_Watcher_thread() &&
      WatcherThread::watcher_thread()->has_crash_protection()) {

    if (sig == SIGSEGV || sig == SIGBUS) {
      WatcherThread::watcher_thread()->crash_protection()->restore();
    }
  }
}