g1AllocRegion.cpp 11.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
28
#include "runtime/orderAccess.inline.hpp"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

G1CollectedHeap* G1AllocRegion::_g1h = NULL;
HeapRegion* G1AllocRegion::_dummy_region = NULL;

void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) {
  assert(_dummy_region == NULL, "should be set once");
  assert(dummy_region != NULL, "pre-condition");
  assert(dummy_region->free() == 0, "pre-condition");

  // Make sure that any allocation attempt on this region will fail
  // and will not trigger any asserts.
  assert(allocate(dummy_region, 1, false) == NULL, "should fail");
  assert(par_allocate(dummy_region, 1, false) == NULL, "should fail");
  assert(allocate(dummy_region, 1, true) == NULL, "should fail");
  assert(par_allocate(dummy_region, 1, true) == NULL, "should fail");

  _g1h = g1h;
  _dummy_region = dummy_region;
}

void G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region,
                                            bool bot_updates) {
  assert(alloc_region != NULL && alloc_region != _dummy_region,
         "pre-condition");

  // Other threads might still be trying to allocate using a CAS out
  // of the region we are trying to retire, as they can do so without
  // holding the lock. So, we first have to make sure that noone else
  // can allocate out of it by doing a maximal allocation. Even if our
  // CAS attempt fails a few times, we'll succeed sooner or later
  // given that failed CAS attempts mean that the region is getting
  // closed to being full.
  size_t free_word_size = alloc_region->free() / HeapWordSize;

  // This is the minimum free chunk we can turn into a dummy
  // object. If the free space falls below this, then noone can
  // allocate in this region anyway (all allocation requests will be
  // of a size larger than this) so we won't have to perform the dummy
  // allocation.
  size_t min_word_size_to_fill = CollectedHeap::min_fill_size();

  while (free_word_size >= min_word_size_to_fill) {
    HeapWord* dummy = par_allocate(alloc_region, free_word_size, bot_updates);
    if (dummy != NULL) {
      // If the allocation was successful we should fill in the space.
      CollectedHeap::fill_with_object(dummy, free_word_size);
      alloc_region->set_pre_dummy_top(dummy);
      break;
    }

    free_word_size = alloc_region->free() / HeapWordSize;
    // It's also possible that someone else beats us to the
    // allocation and they fill up the region. In that case, we can
    // just get out of the loop.
  }
  assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill,
         "post-condition");
}

void G1AllocRegion::retire(bool fill_up) {
  assert(_alloc_region != NULL, ar_ext_msg(this, "not initialized properly"));

  trace("retiring");
  HeapRegion* alloc_region = _alloc_region;
  if (alloc_region != _dummy_region) {
    // We never have to check whether the active region is empty or not,
    // and potentially free it if it is, given that it's guaranteed that
    // it will never be empty.
    assert(!alloc_region->is_empty(),
           ar_ext_msg(this, "the alloc region should never be empty"));

    if (fill_up) {
      fill_up_remaining_space(alloc_region, _bot_updates);
    }

    assert(alloc_region->used() >= _used_bytes_before,
           ar_ext_msg(this, "invariant"));
    size_t allocated_bytes = alloc_region->used() - _used_bytes_before;
    retire_region(alloc_region, allocated_bytes);
    _used_bytes_before = 0;
    _alloc_region = _dummy_region;
  }
  trace("retired");
}

HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size,
                                                       bool force) {
  assert(_alloc_region == _dummy_region, ar_ext_msg(this, "pre-condition"));
  assert(_used_bytes_before == 0, ar_ext_msg(this, "pre-condition"));

  trace("attempting region allocation");
  HeapRegion* new_alloc_region = allocate_new_region(word_size, force);
  if (new_alloc_region != NULL) {
    new_alloc_region->reset_pre_dummy_top();
    // Need to do this before the allocation
    _used_bytes_before = new_alloc_region->used();
    HeapWord* result = allocate(new_alloc_region, word_size, _bot_updates);
    assert(result != NULL, ar_ext_msg(this, "the allocation should succeeded"));

    OrderAccess::storestore();
    // Note that we first perform the allocation and then we store the
    // region in _alloc_region. This is the reason why an active region
    // can never be empty.
132
    update_alloc_region(new_alloc_region);
133 134 135 136 137 138 139 140 141 142
    trace("region allocation successful");
    return result;
  } else {
    trace("region allocation failed");
    return NULL;
  }
  ShouldNotReachHere();
}

void G1AllocRegion::fill_in_ext_msg(ar_ext_msg* msg, const char* message) {
143
  msg->append("[%s] %s c: %u b: %s r: "PTR_FORMAT" u: "SIZE_FORMAT,
144
              _name, message, _count, BOOL_TO_STR(_bot_updates),
145
              p2i(_alloc_region), _used_bytes_before);
146 147 148 149 150 151
}

void G1AllocRegion::init() {
  trace("initializing");
  assert(_alloc_region == NULL && _used_bytes_before == 0,
         ar_ext_msg(this, "pre-condition"));
152
  assert(_dummy_region != NULL, ar_ext_msg(this, "should have been set"));
153
  _alloc_region = _dummy_region;
154
  _count = 0;
155 156 157
  trace("initialized");
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
void G1AllocRegion::set(HeapRegion* alloc_region) {
  trace("setting");
  // We explicitly check that the region is not empty to make sure we
  // maintain the "the alloc region cannot be empty" invariant.
  assert(alloc_region != NULL && !alloc_region->is_empty(),
         ar_ext_msg(this, "pre-condition"));
  assert(_alloc_region == _dummy_region &&
         _used_bytes_before == 0 && _count == 0,
         ar_ext_msg(this, "pre-condition"));

  _used_bytes_before = alloc_region->used();
  _alloc_region = alloc_region;
  _count += 1;
  trace("set");
}

174 175 176 177 178 179 180 181 182 183 184 185 186
void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) {
  trace("update");
  // We explicitly check that the region is not empty to make sure we
  // maintain the "the alloc region cannot be empty" invariant.
  assert(alloc_region != NULL && !alloc_region->is_empty(),
         ar_ext_msg(this, "pre-condition"));

  _alloc_region = alloc_region;
  _alloc_region->set_allocation_context(allocation_context());
  _count += 1;
  trace("updated");
}

187 188 189 190
HeapRegion* G1AllocRegion::release() {
  trace("releasing");
  HeapRegion* alloc_region = _alloc_region;
  retire(false /* fill_up */);
191 192
  assert(_alloc_region == _dummy_region,
         ar_ext_msg(this, "post-condition of retire()"));
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  _alloc_region = NULL;
  trace("released");
  return (alloc_region == _dummy_region) ? NULL : alloc_region;
}

#if G1_ALLOC_REGION_TRACING
void G1AllocRegion::trace(const char* str, size_t word_size, HeapWord* result) {
  // All the calls to trace that set either just the size or the size
  // and the result are considered part of level 2 tracing and are
  // skipped during level 1 tracing.
  if ((word_size == 0 && result == NULL) || (G1_ALLOC_REGION_TRACING > 1)) {
    const size_t buffer_length = 128;
    char hr_buffer[buffer_length];
    char rest_buffer[buffer_length];

    HeapRegion* alloc_region = _alloc_region;
    if (alloc_region == NULL) {
      jio_snprintf(hr_buffer, buffer_length, "NULL");
    } else if (alloc_region == _dummy_region) {
      jio_snprintf(hr_buffer, buffer_length, "DUMMY");
    } else {
      jio_snprintf(hr_buffer, buffer_length,
                   HR_FORMAT, HR_FORMAT_PARAMS(alloc_region));
    }

    if (G1_ALLOC_REGION_TRACING > 1) {
      if (result != NULL) {
        jio_snprintf(rest_buffer, buffer_length, SIZE_FORMAT" "PTR_FORMAT,
                     word_size, result);
      } else if (word_size != 0) {
        jio_snprintf(rest_buffer, buffer_length, SIZE_FORMAT, word_size);
      } else {
        jio_snprintf(rest_buffer, buffer_length, "");
      }
    } else {
      jio_snprintf(rest_buffer, buffer_length, "");
    }

231
    tty->print_cr("[%s] %u %s : %s %s",
232
                  _name, _count, hr_buffer, str, rest_buffer);
233 234 235 236 237 238 239
  }
}
#endif // G1_ALLOC_REGION_TRACING

G1AllocRegion::G1AllocRegion(const char* name,
                             bool bot_updates)
  : _name(name), _bot_updates(bot_updates),
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    _alloc_region(NULL), _count(0), _used_bytes_before(0),
    _allocation_context(AllocationContext::system()) { }


HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}

HeapRegion* OldGCAllocRegion::release() {
  HeapRegion* cur = get();
  if (cur != NULL) {
    // Determine how far we are from the next card boundary. If it is smaller than
    // the minimum object size we can allocate into, expand into the next card.
    HeapWord* top = cur->top();
    HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes);

    size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);

    if (to_allocate_words != 0) {
      // We are not at a card boundary. Fill up, possibly into the next, taking the
      // end of the region and the minimum object size into account.
      to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
                               MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));

      // Skip allocation if there is not enough space to allocate even the smallest
      // possible object. In this case this region will not be retained, so the
      // original problem cannot occur.
      if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
        HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
        CollectedHeap::fill_with_object(dummy, to_allocate_words);
      }
    }
  }
  return G1AllocRegion::release();
}

306