parallelScavengeHeap.cpp 26.5 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37
#include "precompiled.hpp"
#include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
#include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
#include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
#include "gc_implementation/parallelScavenge/generationSizer.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
S
sla 已提交
38 39
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcWhen.hpp"
40 41 42 43 44
#include "memory/gcLocker.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/vmThread.hpp"
Z
zgu 已提交
45
#include "services/memTracker.hpp"
46
#include "utilities/vmError.hpp"
D
duke 已提交
47 48 49 50 51 52 53 54 55

PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;

jint ParallelScavengeHeap::initialize() {
56 57
  CollectedHeap::pre_initialize();

58
  // Initialize collector policy
59
  _collector_policy = new GenerationSizer();
60
  _collector_policy->initialize_all();
D
duke 已提交
61

62
  const size_t heap_size = _collector_policy->max_heap_byte_size();
63

64
  ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
Z
zgu 已提交
65 66
  MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);

67 68
  os::trace_page_sizes("ps main", _collector_policy->min_heap_byte_size(),
                       heap_size, generation_alignment(),
69 70
                       heap_rs.base(),
                       heap_rs.size());
D
duke 已提交
71 72 73 74 75 76 77 78 79 80
  if (!heap_rs.is_reserved()) {
    vm_shutdown_during_initialization(
      "Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  _reserved = MemRegion((HeapWord*)heap_rs.base(),
                        (HeapWord*)(heap_rs.base() + heap_rs.size()));

  CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
81
  barrier_set->initialize();
D
duke 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  _barrier_set = barrier_set;
  oopDesc::set_bs(_barrier_set);
  if (_barrier_set == NULL) {
    vm_shutdown_during_initialization(
      "Could not reserve enough space for barrier set");
    return JNI_ENOMEM;
  }

  // Make up the generations
  // Calculate the maximum size that a generation can grow.  This
  // includes growth into the other generation.  Note that the
  // parameter _max_gen_size is kept as the maximum
  // size of the generation as the boundaries currently stand.
  // _max_gen_size is still used as that value.
  double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;

99
  _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
D
duke 已提交
100 101 102 103 104 105 106 107 108 109 110

  _old_gen = _gens->old_gen();
  _young_gen = _gens->young_gen();

  const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  const size_t old_capacity = _old_gen->capacity_in_bytes();
  const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
  _size_policy =
    new PSAdaptiveSizePolicy(eden_capacity,
                             initial_promo_size,
                             young_gen()->to_space()->capacity_in_bytes(),
111
                             _collector_policy->gen_alignment(),
D
duke 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                             max_gc_pause_sec,
                             max_gc_minor_pause_sec,
                             GCTimeRatio
                             );

  assert(!UseAdaptiveGCBoundary ||
    (old_gen()->virtual_space()->high_boundary() ==
     young_gen()->virtual_space()->low_boundary()),
    "Boundaries must meet");
  // initialize the policy counters - 2 collectors, 3 generations
  _gc_policy_counters =
    new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
  _psh = this;

  // Set up the GCTaskManager
  _gc_task_manager = GCTaskManager::create(ParallelGCThreads);

  if (UseParallelOldGC && !PSParallelCompact::initialize()) {
    return JNI_ENOMEM;
  }

  return JNI_OK;
}

void ParallelScavengeHeap::post_initialize() {
  // Need to init the tenuring threshold
  PSScavenge::initialize();
  if (UseParallelOldGC) {
    PSParallelCompact::post_initialize();
  } else {
    PSMarkSweep::initialize();
  }
  PSPromotionManager::initialize();
}

void ParallelScavengeHeap::update_counters() {
  young_gen()->update_counters();
  old_gen()->update_counters();
150
  MetaspaceCounters::update_performance_counters();
151
  CompressedClassSpaceCounters::update_performance_counters();
D
duke 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
}

size_t ParallelScavengeHeap::capacity() const {
  size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
  return value;
}

size_t ParallelScavengeHeap::used() const {
  size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
  return value;
}

bool ParallelScavengeHeap::is_maximal_no_gc() const {
  return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
}


size_t ParallelScavengeHeap::max_capacity() const {
  size_t estimated = reserved_region().byte_size();
  if (UseAdaptiveSizePolicy) {
    estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
  } else {
    estimated -= young_gen()->to_space()->capacity_in_bytes();
  }
  return MAX2(estimated, capacity());
}

bool ParallelScavengeHeap::is_in(const void* p) const {
  if (young_gen()->is_in(p)) {
    return true;
  }

  if (old_gen()->is_in(p)) {
    return true;
  }

  return false;
}

bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
  if (young_gen()->is_in_reserved(p)) {
    return true;
  }

  if (old_gen()->is_in_reserved(p)) {
    return true;
  }

  return false;
}

203 204 205 206 207 208 209 210 211 212
bool ParallelScavengeHeap::is_scavengable(const void* addr) {
  return is_in_young((oop)addr);
}

#ifdef ASSERT
// Don't implement this by using is_in_young().  This method is used
// in some cases to check that is_in_young() is correct.
bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
  assert(is_in_reserved(p) || p == NULL,
    "Does not work if address is non-null and outside of the heap");
213
  // The order of the generations is old (low addr), young (high addr)
214 215 216 217
  return p >= old_gen()->reserved().end();
}
#endif

D
duke 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
// There are two levels of allocation policy here.
//
// When an allocation request fails, the requesting thread must invoke a VM
// operation, transfer control to the VM thread, and await the results of a
// garbage collection. That is quite expensive, and we should avoid doing it
// multiple times if possible.
//
// To accomplish this, we have a basic allocation policy, and also a
// failed allocation policy.
//
// The basic allocation policy controls how you allocate memory without
// attempting garbage collection. It is okay to grab locks and
// expand the heap, if that can be done without coming to a safepoint.
// It is likely that the basic allocation policy will not be very
// aggressive.
//
// The failed allocation policy is invoked from the VM thread after
// the basic allocation policy is unable to satisfy a mem_allocate
// request. This policy needs to cover the entire range of collection,
// heap expansion, and out-of-memory conditions. It should make every
// attempt to allocate the requested memory.

// Basic allocation policy. Should never be called at a safepoint, or
// from the VM thread.
//
// This method must handle cases where many mem_allocate requests fail
// simultaneously. When that happens, only one VM operation will succeed,
// and the rest will not be executed. For that reason, this method loops
// during failed allocation attempts. If the java heap becomes exhausted,
// we rely on the size_policy object to force a bail out.
HeapWord* ParallelScavengeHeap::mem_allocate(
                                     size_t size,
                                     bool* gc_overhead_limit_was_exceeded) {
  assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");

255 256 257 258 259
  // In general gc_overhead_limit_was_exceeded should be false so
  // set it so here and reset it to true only if the gc time
  // limit is being exceeded as checked below.
  *gc_overhead_limit_was_exceeded = false;

260
  HeapWord* result = young_gen()->allocate(size);
D
duke 已提交
261 262 263

  uint loop_count = 0;
  uint gc_count = 0;
264
  int gclocker_stalled_count = 0;
D
duke 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

  while (result == NULL) {
    // We don't want to have multiple collections for a single filled generation.
    // To prevent this, each thread tracks the total_collections() value, and if
    // the count has changed, does not do a new collection.
    //
    // The collection count must be read only while holding the heap lock. VM
    // operations also hold the heap lock during collections. There is a lock
    // contention case where thread A blocks waiting on the Heap_lock, while
    // thread B is holding it doing a collection. When thread A gets the lock,
    // the collection count has already changed. To prevent duplicate collections,
    // The policy MUST attempt allocations during the same period it reads the
    // total_collections() value!
    {
      MutexLocker ml(Heap_lock);
      gc_count = Universe::heap()->total_collections();

282
      result = young_gen()->allocate(size);
D
duke 已提交
283 284 285
      if (result != NULL) {
        return result;
      }
286 287 288 289 290

      // If certain conditions hold, try allocating from the old gen.
      result = mem_allocate_old_gen(size);
      if (result != NULL) {
        return result;
D
duke 已提交
291
      }
292

293 294 295 296
      if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
        return NULL;
      }

297
      // Failed to allocate without a gc.
D
duke 已提交
298 299 300 301 302 303 304 305 306 307 308
      if (GC_locker::is_active_and_needs_gc()) {
        // If this thread is not in a jni critical section, we stall
        // the requestor until the critical section has cleared and
        // GC allowed. When the critical section clears, a GC is
        // initiated by the last thread exiting the critical section; so
        // we retry the allocation sequence from the beginning of the loop,
        // rather than causing more, now probably unnecessary, GC attempts.
        JavaThread* jthr = JavaThread::current();
        if (!jthr->in_critical()) {
          MutexUnlocker mul(Heap_lock);
          GC_locker::stall_until_clear();
309
          gclocker_stalled_count += 1;
D
duke 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322
          continue;
        } else {
          if (CheckJNICalls) {
            fatal("Possible deadlock due to allocating while"
                  " in jni critical section");
          }
          return NULL;
        }
      }
    }

    if (result == NULL) {
      // Generate a VM operation
323
      VM_ParallelGCFailedAllocation op(size, gc_count);
D
duke 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
      VMThread::execute(&op);

      // Did the VM operation execute? If so, return the result directly.
      // This prevents us from looping until time out on requests that can
      // not be satisfied.
      if (op.prologue_succeeded()) {
        assert(Universe::heap()->is_in_or_null(op.result()),
          "result not in heap");

        // If GC was locked out during VM operation then retry allocation
        // and/or stall as necessary.
        if (op.gc_locked()) {
          assert(op.result() == NULL, "must be NULL if gc_locked() is true");
          continue;  // retry and/or stall as necessary
        }
339 340 341 342 343 344 345 346 347 348 349 350 351 352

        // Exit the loop if the gc time limit has been exceeded.
        // The allocation must have failed above ("result" guarding
        // this path is NULL) and the most recent collection has exceeded the
        // gc overhead limit (although enough may have been collected to
        // satisfy the allocation).  Exit the loop so that an out-of-memory
        // will be thrown (return a NULL ignoring the contents of
        // op.result()),
        // but clear gc_overhead_limit_exceeded so that the next collection
        // starts with a clean slate (i.e., forgets about previous overhead
        // excesses).  Fill op.result() with a filler object so that the
        // heap remains parsable.
        const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
        const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
353

354 355 356 357 358 359 360 361 362 363 364
        if (limit_exceeded && softrefs_clear) {
          *gc_overhead_limit_was_exceeded = true;
          size_policy()->set_gc_overhead_limit_exceeded(false);
          if (PrintGCDetails && Verbose) {
            gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
              "return NULL because gc_overhead_limit_exceeded is set");
          }
          if (op.result() != NULL) {
            CollectedHeap::fill_with_object(op.result(), size);
          }
          return NULL;
D
duke 已提交
365
        }
366

D
duke 已提交
367 368 369 370 371 372 373 374 375 376
        return op.result();
      }
    }

    // The policy object will prevent us from looping forever. If the
    // time spent in gc crosses a threshold, we will bail out.
    loop_count++;
    if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
        (loop_count % QueuedAllocationWarningCount == 0)) {
      warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
377
              " size=" SIZE_FORMAT, loop_count, size);
D
duke 已提交
378 379 380 381 382 383
    }
  }

  return result;
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
// A "death march" is a series of ultra-slow allocations in which a full gc is
// done before each allocation, and after the full gc the allocation still
// cannot be satisfied from the young gen.  This routine detects that condition;
// it should be called after a full gc has been done and the allocation
// attempted from the young gen. The parameter 'addr' should be the result of
// that young gen allocation attempt.
void
ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
  if (addr != NULL) {
    _death_march_count = 0;  // death march has ended
  } else if (_death_march_count == 0) {
    if (should_alloc_in_eden(size)) {
      _death_march_count = 1;    // death march has started
    }
  }
}

HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
  if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
    // Size is too big for eden, or gc is locked out.
    return old_gen()->allocate(size);
  }

  // If a "death march" is in progress, allocate from the old gen a limited
  // number of times before doing a GC.
  if (_death_march_count > 0) {
    if (_death_march_count < 64) {
      ++_death_march_count;
      return old_gen()->allocate(size);
    } else {
      _death_march_count = 0;
    }
  }
  return NULL;
}

420 421 422 423 424 425 426 427 428 429 430 431
void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
  if (UseParallelOldGC) {
    // The do_full_collection() parameter clear_all_soft_refs
    // is interpreted here as maximum_compaction which will
    // cause SoftRefs to be cleared.
    bool maximum_compaction = clear_all_soft_refs;
    PSParallelCompact::invoke(maximum_compaction);
  } else {
    PSMarkSweep::invoke(clear_all_soft_refs);
  }
}

D
duke 已提交
432 433 434 435 436 437
// Failed allocation policy. Must be called from the VM thread, and
// only at a safepoint! Note that this method has policy for allocation
// flow, and NOT collection policy. So we do not check for gc collection
// time over limit here, that is the responsibility of the heap specific
// collection methods. This method decides where to attempt allocations,
// and when to attempt collections, but no collection specific policy.
438
HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
D
duke 已提交
439 440 441 442 443
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  assert(!Universe::heap()->is_gc_active(), "not reentrant");
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");

444
  // We assume that allocation in eden will fail unless we collect.
D
duke 已提交
445 446 447

  // First level allocation failure, scavenge and allocate in young gen.
  GCCauseSetter gccs(this, GCCause::_allocation_failure);
448
  const bool invoked_full_gc = PSScavenge::invoke();
449
  HeapWord* result = young_gen()->allocate(size);
D
duke 已提交
450 451 452

  // Second level allocation failure.
  //   Mark sweep and allocate in young generation.
453
  if (result == NULL && !invoked_full_gc) {
454
    do_full_collection(false);
455
    result = young_gen()->allocate(size);
D
duke 已提交
456 457
  }

458 459
  death_march_check(result, size);

D
duke 已提交
460 461 462
  // Third level allocation failure.
  //   After mark sweep and young generation allocation failure,
  //   allocate in old generation.
463 464
  if (result == NULL) {
    result = old_gen()->allocate(size);
D
duke 已提交
465 466 467 468 469
  }

  // Fourth level allocation failure. We're running out of memory.
  //   More complete mark sweep and allocate in young generation.
  if (result == NULL) {
470
    do_full_collection(true);
471
    result = young_gen()->allocate(size);
D
duke 已提交
472 473 474 475
  }

  // Fifth level allocation failure.
  //   After more complete mark sweep, allocate in old generation.
476 477
  if (result == NULL) {
    result = old_gen()->allocate(size);
D
duke 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491
  }

  return result;
}

void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
  CollectedHeap::ensure_parsability(retire_tlabs);
  young_gen()->eden_space()->ensure_parsability();
}

size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
  return young_gen()->eden_space()->tlab_capacity(thr);
}

B
brutisso 已提交
492 493 494 495
size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
  return young_gen()->eden_space()->tlab_used(thr);
}

D
duke 已提交
496 497 498 499 500
size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
}

HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
501
  return young_gen()->allocate(size);
D
duke 已提交
502 503 504 505 506 507 508 509 510 511
}

void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
  CollectedHeap::accumulate_statistics_all_tlabs();
}

void ParallelScavengeHeap::resize_all_tlabs() {
  CollectedHeap::resize_all_tlabs();
}

512 513 514 515 516 517 518
bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
  // We don't need barriers for stores to objects in the
  // young gen and, a fortiori, for initializing stores to
  // objects therein.
  return is_in_young(new_obj);
}

D
duke 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
// This method is used by System.gc() and JVMTI.
void ParallelScavengeHeap::collect(GCCause::Cause cause) {
  assert(!Heap_lock->owned_by_self(),
    "this thread should not own the Heap_lock");

  unsigned int gc_count      = 0;
  unsigned int full_gc_count = 0;
  {
    MutexLocker ml(Heap_lock);
    // This value is guarded by the Heap_lock
    gc_count      = Universe::heap()->total_collections();
    full_gc_count = Universe::heap()->total_full_collections();
  }

  VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
  VMThread::execute(&op);
}

537
void ParallelScavengeHeap::oop_iterate(ExtendedOopClosure* cl) {
D
duke 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550
  Unimplemented();
}

void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
  young_gen()->object_iterate(cl);
  old_gen()->object_iterate(cl);
}


HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
  if (young_gen()->is_in_reserved(addr)) {
    assert(young_gen()->is_in(addr),
           "addr should be in allocated part of young gen");
N
never 已提交
551 552
    // called from os::print_location by find or VMError
    if (Debugging || VMError::fatal_error_in_progress())  return NULL;
D
duke 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    Unimplemented();
  } else if (old_gen()->is_in_reserved(addr)) {
    assert(old_gen()->is_in(addr),
           "addr should be in allocated part of old gen");
    return old_gen()->start_array()->object_start((HeapWord*)addr);
  }
  return 0;
}

size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
  return oop(addr)->size();
}

bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
  return block_start(addr) == addr;
}

jlong ParallelScavengeHeap::millis_since_last_gc() {
  return UseParallelOldGC ?
    PSParallelCompact::millis_since_last_gc() :
    PSMarkSweep::millis_since_last_gc();
}

void ParallelScavengeHeap::prepare_for_verify() {
  ensure_parsability(false);  // no need to retire TLABs for verification
}

S
sla 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
  PSOldGen* old = old_gen();
  HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
  VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
  SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());

  PSYoungGen* young = young_gen();
  VirtualSpaceSummary young_summary(young->reserved().start(),
    (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());

  MutableSpace* eden = young_gen()->eden_space();
  SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());

  MutableSpace* from = young_gen()->from_space();
  SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());

  MutableSpace* to = young_gen()->to_space();
  SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());

  VirtualSpaceSummary heap_summary = create_heap_space_summary();
  return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
}

D
duke 已提交
603 604 605
void ParallelScavengeHeap::print_on(outputStream* st) const {
  young_gen()->print_on(st);
  old_gen()->print_on(st);
606
  MetaspaceAux::print_on(st);
D
duke 已提交
607 608
}

609 610 611 612 613 614 615 616 617
void ParallelScavengeHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (UseParallelOldGC) {
    st->cr();
    PSParallelCompact::print_on_error(st);
  }
}

D
duke 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631
void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
  PSScavenge::gc_task_manager()->threads_do(tc);
}

void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
  PSScavenge::gc_task_manager()->print_threads_on(st);
}

void ParallelScavengeHeap::print_tracing_info() const {
  if (TraceGen0Time) {
    double time = PSScavenge::accumulated_time()->seconds();
    tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
  }
  if (TraceGen1Time) {
632
    double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
D
duke 已提交
633 634 635 636 637
    tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
  }
}


638
void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
D
duke 已提交
639 640 641 642 643
  // Why do we need the total_collections()-filter below?
  if (total_collections() > 0) {
    if (!silent) {
      gclog_or_tty->print("tenured ");
    }
644
    old_gen()->verify();
D
duke 已提交
645 646 647 648

    if (!silent) {
      gclog_or_tty->print("eden ");
    }
649
    young_gen()->verify();
D
duke 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
  }
}

void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
                        "("  SIZE_FORMAT ")",
                        prev_used, used(), capacity());
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
                        "("  SIZE_FORMAT "K)",
                        prev_used / K, used() / K, capacity() / K);
  }
}

S
sla 已提交
667 668
void ParallelScavengeHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
  const PSHeapSummary& heap_summary = create_ps_heap_summary();
669 670
  gc_tracer->report_gc_heap_summary(when, heap_summary);

S
sla 已提交
671
  const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
672
  gc_tracer->report_metaspace_summary(when, metaspace_summary);
S
sla 已提交
673 674
}

D
duke 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
ParallelScavengeHeap* ParallelScavengeHeap::heap() {
  assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
  assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
  return _psh;
}

// Before delegating the resize to the young generation,
// the reserved space for the young and old generations
// may be changed to accomodate the desired resize.
void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
    size_t survivor_size) {
  if (UseAdaptiveGCBoundary) {
    if (size_policy()->bytes_absorbed_from_eden() != 0) {
      size_policy()->reset_bytes_absorbed_from_eden();
      return;  // The generation changed size already.
    }
    gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
  }

  // Delegate the resize to the generation.
  _young_gen->resize(eden_size, survivor_size);
}

// Before delegating the resize to the old generation,
// the reserved space for the young and old generations
// may be changed to accomodate the desired resize.
void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
  if (UseAdaptiveGCBoundary) {
    if (size_policy()->bytes_absorbed_from_eden() != 0) {
      size_policy()->reset_bytes_absorbed_from_eden();
      return;  // The generation changed size already.
    }
    gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
  }

  // Delegate the resize to the generation.
  _old_gen->resize(desired_free_space);
}
713

714 715 716 717 718 719 720 721
ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
  // nothing particular
}

ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
  // nothing particular
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
#ifndef PRODUCT
void ParallelScavengeHeap::record_gen_tops_before_GC() {
  if (ZapUnusedHeapArea) {
    young_gen()->record_spaces_top();
    old_gen()->record_spaces_top();
  }
}

void ParallelScavengeHeap::gen_mangle_unused_area() {
  if (ZapUnusedHeapArea) {
    young_gen()->eden_space()->mangle_unused_area();
    young_gen()->to_space()->mangle_unused_area();
    young_gen()->from_space()->mangle_unused_area();
    old_gen()->object_space()->mangle_unused_area();
  }
}
#endif