advancedThresholdPolicy.cpp 20.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
24 25 26 27 28 29 30 31 32

#include "precompiled.hpp"
#include "runtime/advancedThresholdPolicy.hpp"
#include "runtime/simpleThresholdPolicy.inline.hpp"

#ifdef TIERED
// Print an event.
void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
                                             int bci, CompLevel level) {
33
  tty->print(" rate=");
34 35 36
  if (mh->prev_time() == 0) tty->print("n/a");
  else tty->print("%f", mh->rate());

37 38
  tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

}

void AdvancedThresholdPolicy::initialize() {
  // Turn on ergonomic compiler count selection
  if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  }
  int count = CICompilerCount;
  if (CICompilerCountPerCPU) {
    // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    int log_cpu = log2_intptr(os::active_processor_count());
    int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  }

  set_c1_count(MAX2(count / 3, 1));
56 57
  set_c2_count(MAX2(count - c1_count(), 1));
  FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
58 59 60 61 62 63 64 65 66 67 68 69 70 71

  // Some inlining tuning
#ifdef X86
  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  }
#endif

#ifdef SPARC
  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  }
#endif

72
  set_increase_threshold_at_ratio();
73 74 75 76
  set_start_time(os::javaTimeMillis());
}

// update_rate() is called from select_task() while holding a compile queue lock.
77
void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
78 79 80 81
  // Skip update if counters are absent.
  // Can't allocate them since we are holding compile queue lock.
  if (m->method_counters() == NULL)  return;

82 83 84
  if (is_old(m)) {
    // We don't remove old methods from the queue,
    // so we can just zero the rate.
85
    m->set_rate(0);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    return;
  }

  // We don't update the rate if we've just came out of a safepoint.
  // delta_s is the time since last safepoint in milliseconds.
  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  // How many events were there since the last time?
  int event_count = m->invocation_count() + m->backedge_count();
  int delta_e = event_count - m->prev_event_count();

  // We should be running for at least 1ms.
  if (delta_s >= TieredRateUpdateMinTime) {
    // And we must've taken the previous point at least 1ms before.
    if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
101 102 103 104
      m->set_prev_time(t);
      m->set_prev_event_count(event_count);
      m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
    } else {
105 106
      if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
        // If nothing happened for 25ms, zero the rate. Don't modify prev values.
107
        m->set_rate(0);
108
      }
109
    }
110 111 112 113 114
  }
}

// Check if this method has been stale from a given number of milliseconds.
// See select_task().
115
bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
116 117 118 119 120 121 122 123 124 125 126 127 128
  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  jlong delta_t = t - m->prev_time();
  if (delta_t > timeout && delta_s > timeout) {
    int event_count = m->invocation_count() + m->backedge_count();
    int delta_e = event_count - m->prev_event_count();
    // Return true if there were no events.
    return delta_e == 0;
  }
  return false;
}

// We don't remove old methods from the compile queue even if they have
// very low activity. See select_task().
129
bool AdvancedThresholdPolicy::is_old(Method* method) {
130 131 132
  return method->invocation_count() > 50000 || method->backedge_count() > 500000;
}

133
double AdvancedThresholdPolicy::weight(Method* method) {
A
aph 已提交
134 135
  return (double)(method->rate() + 1) *
    (method->invocation_count() + 1) * (method->backedge_count() + 1);
136 137 138
}

// Apply heuristics and return true if x should be compiled before y
139
bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
140 141 142 143 144 145 146 147 148 149 150 151 152
  if (x->highest_comp_level() > y->highest_comp_level()) {
    // recompilation after deopt
    return true;
  } else
    if (x->highest_comp_level() == y->highest_comp_level()) {
      if (weight(x) > weight(y)) {
        return true;
      }
    }
  return false;
}

// Is method profiled enough?
153 154
bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
  MethodData* mdo = method->method_data();
155 156 157 158 159 160 161 162 163 164 165
  if (mdo != NULL) {
    int i = mdo->invocation_count_delta();
    int b = mdo->backedge_count_delta();
    return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
  }
  return false;
}

// Called with the queue locked and with at least one element
CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
  CompileTask *max_task = NULL;
166
  Method* max_method = NULL;
167 168 169 170
  jlong t = os::javaTimeMillis();
  // Iterate through the queue and find a method with a maximum rate.
  for (CompileTask* task = compile_queue->first(); task != NULL;) {
    CompileTask* next_task = task->next();
171 172
    Method* method = task->method();
    update_rate(t, method);
173 174 175 176 177
    if (max_task == NULL) {
      max_task = task;
      max_method = method;
    } else {
      // If a method has been stale for some time, remove it from the queue.
178
      if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
179
        if (PrintTieredEvents) {
180
          print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
181
        }
182
        compile_queue->remove_and_mark_stale(task);
183 184 185 186 187 188
        method->clear_queued_for_compilation();
        task = next_task;
        continue;
      }

      // Select a method with a higher rate
189
      if (compare_methods(method, max_method)) {
190 191 192 193 194 195 196
        max_task = task;
        max_method = method;
      }
    }
    task = next_task;
  }

197
  if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
198
      && is_method_profiled(max_method)) {
199 200
    max_task->set_comp_level(CompLevel_limited_profile);
    if (PrintTieredEvents) {
201
      print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
202 203 204 205 206 207 208 209 210 211
    }
  }

  return max_task;
}

double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
  double queue_size = CompileBroker::queue_size(level);
  int comp_count = compiler_count(level);
  double k = queue_size / (feedback_k * comp_count) + 1;
212 213 214 215 216 217 218 219 220 221 222

  // Increase C1 compile threshold when the code cache is filled more
  // than specified by IncreaseFirstTierCompileThresholdAt percentage.
  // The main intention is to keep enough free space for C2 compiled code
  // to achieve peak performance if the code cache is under stress.
  if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
    double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
    if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
      k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
    }
  }
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  return k;
}

// Call and loop predicates determine whether a transition to a higher
// compilation level should be performed (pointers to predicate functions
// are passed to common()).
// Tier?LoadFeedback is basically a coefficient that determines of
// how many methods per compiler thread can be in the queue before
// the threshold values double.
bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
    return loop_predicate_helper<CompLevel_none>(i, b, k);
  }
  case CompLevel_full_profile: {
    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
    return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  default:
    return true;
  }
}

bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
    return call_predicate_helper<CompLevel_none>(i, b, k);
  }
  case CompLevel_full_profile: {
    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
    return call_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  default:
    return true;
  }
}

// If a method is old enough and is still in the interpreter we would want to
// start profiling without waiting for the compiled method to arrive.
// We also take the load on compilers into the account.
267
bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
268 269 270 271 272 273 274 275 276 277 278
  if (cur_level == CompLevel_none &&
      CompileBroker::queue_size(CompLevel_full_optimization) <=
      Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
    int i = method->invocation_count();
    int b = method->backedge_count();
    double k = Tier0ProfilingStartPercentage / 100.0;
    return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
  }
  return false;
}

279 280 281 282 283 284 285 286 287 288 289
// Inlining control: if we're compiling a profiled method with C1 and the callee
// is known to have OSRed in a C2 version, don't inline it.
bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
  CompLevel comp_level = (CompLevel)env->comp_level();
  if (comp_level == CompLevel_full_profile ||
      comp_level == CompLevel_limited_profile) {
    return callee->highest_osr_comp_level() == CompLevel_full_optimization;
  }
  return false;
}

290
// Create MDO if necessary.
291
void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
292 293
  if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
  if (mh->method_data() == NULL) {
294
    Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  }
}


/*
 * Method states:
 *   0 - interpreter (CompLevel_none)
 *   1 - pure C1 (CompLevel_simple)
 *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 *   3 - C1 with full profiling (CompLevel_full_profile)
 *   4 - C2 (CompLevel_full_optimization)
 *
 * Common state transition patterns:
 * a. 0 -> 3 -> 4.
 *    The most common path. But note that even in this straightforward case
 *    profiling can start at level 0 and finish at level 3.
 *
 * b. 0 -> 2 -> 3 -> 4.
 *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
 *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 *
 * c. 0 -> (3->2) -> 4.
 *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
320 321
 *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 *    without full profiling while c2 is compiling.
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
 *
 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 *
 * e. 0 -> 4.
 *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 *    the compiled version already exists).
 *
 * Note that since state 0 can be reached from any other state via deoptimization different loops
 * are possible.
 *
 */

// Common transition function. Given a predicate determines if a method should transition to another level.
338
CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
339 340 341 342
  CompLevel next_level = cur_level;
  int i = method->invocation_count();
  int b = method->backedge_count();

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  if (is_trivial(method)) {
    next_level = CompLevel_simple;
  } else {
    switch(cur_level) {
    case CompLevel_none:
      // If we were at full profile level, would we switch to full opt?
      if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
        next_level = CompLevel_full_optimization;
      } else if ((this->*p)(i, b, cur_level)) {
        // C1-generated fully profiled code is about 30% slower than the limited profile
        // code that has only invocation and backedge counters. The observation is that
        // if C2 queue is large enough we can spend too much time in the fully profiled code
        // while waiting for C2 to pick the method from the queue. To alleviate this problem
        // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
        // we choose to compile a limited profiled version and then recompile with full profiling
        // when the load on C2 goes down.
        if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
                                 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
          next_level = CompLevel_limited_profile;
        } else {
          next_level = CompLevel_full_profile;
        }
365
      }
366 367 368 369 370 371
      break;
    case CompLevel_limited_profile:
      if (is_method_profiled(method)) {
        // Special case: we got here because this method was fully profiled in the interpreter.
        next_level = CompLevel_full_optimization;
      } else {
372
        MethodData* mdo = method->method_data();
373 374 375 376 377 378 379 380 381
        if (mdo != NULL) {
          if (mdo->would_profile()) {
            if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
                                     Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
                                     (this->*p)(i, b, cur_level))) {
              next_level = CompLevel_full_profile;
            }
          } else {
            next_level = CompLevel_full_optimization;
382 383 384
          }
        }
      }
385 386 387
      break;
    case CompLevel_full_profile:
      {
388
        MethodData* mdo = method->method_data();
389 390 391 392 393 394 395 396
        if (mdo != NULL) {
          if (mdo->would_profile()) {
            int mdo_i = mdo->invocation_count_delta();
            int mdo_b = mdo->backedge_count_delta();
            if ((this->*p)(mdo_i, mdo_b, cur_level)) {
              next_level = CompLevel_full_optimization;
            }
          } else {
397 398 399 400
            next_level = CompLevel_full_optimization;
          }
        }
      }
401
      break;
402 403
    }
  }
404
  return MIN2(next_level, (CompLevel)TieredStopAtLevel);
405 406 407
}

// Determine if a method should be compiled with a normal entry point at a different level.
408
CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
409
  CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
410
                             common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
411 412 413 414 415 416
  CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);

  // If OSR method level is greater than the regular method level, the levels should be
  // equalized by raising the regular method level in order to avoid OSRs during each
  // invocation of the method.
  if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
417
    MethodData* mdo = method->method_data();
418 419 420 421 422 423 424 425 426 427 428
    guarantee(mdo != NULL, "MDO should not be NULL");
    if (mdo->invocation_count() >= 1) {
      next_level = CompLevel_full_optimization;
    }
  } else {
    next_level = MAX2(osr_level, next_level);
  }
  return next_level;
}

// Determine if we should do an OSR compilation of a given method.
429
CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
430
  CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
431 432 433
  if (cur_level == CompLevel_none) {
    // If there is a live OSR method that means that we deopted to the interpreter
    // for the transition.
434
    CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
435 436 437 438
    if (osr_level > CompLevel_none) {
      return osr_level;
    }
  }
439
  return next_level;
440 441 442
}

// Update the rate and submit compile
443
void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
444 445
  int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
  update_rate(os::javaTimeMillis(), mh());
446
  CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
447 448 449 450
}

// Handle the invocation event.
void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
451
                                                      CompLevel level, nmethod* nm, JavaThread* thread) {
452
  if (should_create_mdo(mh(), level)) {
453
    create_mdo(mh, thread);
454
  }
455
  if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
456 457
    CompLevel next_level = call_event(mh(), level);
    if (next_level != level) {
458
      compile(mh, InvocationEntryBci, next_level, thread);
459 460 461 462 463 464 465
    }
  }
}

// Handle the back branch event. Notice that we can compile the method
// with a regular entry from here.
void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
466
                                                       int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
467
  if (should_create_mdo(mh(), level)) {
468
    create_mdo(mh, thread);
469
  }
470 471
  // Check if MDO should be created for the inlined method
  if (should_create_mdo(imh(), level)) {
472
    create_mdo(imh, thread);
473
  }
474

475 476 477 478
  if (is_compilation_enabled()) {
    CompLevel next_osr_level = loop_event(imh(), level);
    CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
    // At the very least compile the OSR version
479
    if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
480
      compile(imh, bci, next_osr_level, thread);
481 482
    }

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    // Use loop event as an opportunity to also check if there's been
    // enough calls.
    CompLevel cur_level, next_level;
    if (mh() != imh()) { // If there is an enclosing method
      guarantee(nm != NULL, "Should have nmethod here");
      cur_level = comp_level(mh());
      next_level = call_event(mh(), cur_level);

      if (max_osr_level == CompLevel_full_optimization) {
        // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
        bool make_not_entrant = false;
        if (nm->is_osr_method()) {
          // This is an osr method, just make it not entrant and recompile later if needed
          make_not_entrant = true;
        } else {
          if (next_level != CompLevel_full_optimization) {
            // next_level is not full opt, so we need to recompile the
            // enclosing method without the inlinee
            cur_level = CompLevel_none;
            make_not_entrant = true;
          }
        }
        if (make_not_entrant) {
          if (PrintTieredEvents) {
            int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
            print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
          }
          nm->make_not_entrant();
        }
      }
513
      if (!CompileBroker::compilation_is_in_queue(mh)) {
514 515 516 517 518
        // Fix up next_level if necessary to avoid deopts
        if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
          next_level = CompLevel_full_profile;
        }
        if (cur_level != next_level) {
519
          compile(mh, InvocationEntryBci, next_level, thread);
520 521 522 523 524
        }
      }
    } else {
      cur_level = comp_level(imh());
      next_level = call_event(imh(), cur_level);
525
      if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
526
        compile(imh, InvocationEntryBci, next_level, thread);
527
      }
528 529 530 531 532
    }
  }
}

#endif // TIERED