advancedThresholdPolicy.cpp 20.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2010, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#include "precompiled.hpp"
#include "runtime/advancedThresholdPolicy.hpp"
#include "runtime/simpleThresholdPolicy.inline.hpp"

#ifdef TIERED
// Print an event.
void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
                                             int bci, CompLevel level) {
  tty->print(" rate: ");
  if (mh->prev_time() == 0) tty->print("n/a");
  else tty->print("%f", mh->rate());

  tty->print(" k: %.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));

}

void AdvancedThresholdPolicy::initialize() {
  // Turn on ergonomic compiler count selection
  if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  }
  int count = CICompilerCount;
  if (CICompilerCountPerCPU) {
    // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    int log_cpu = log2_intptr(os::active_processor_count());
    int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  }

  set_c1_count(MAX2(count / 3, 1));
  set_c2_count(MAX2(count - count / 3, 1));

  // Some inlining tuning
#ifdef X86
  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  }
#endif

#ifdef SPARC
  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  }
#endif


  set_start_time(os::javaTimeMillis());
}

// update_rate() is called from select_task() while holding a compile queue lock.
76
void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  if (is_old(m)) {
    // We don't remove old methods from the queue,
    // so we can just zero the rate.
    m->set_rate(0);
    return;
  }

  // We don't update the rate if we've just came out of a safepoint.
  // delta_s is the time since last safepoint in milliseconds.
  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  // How many events were there since the last time?
  int event_count = m->invocation_count() + m->backedge_count();
  int delta_e = event_count - m->prev_event_count();

  // We should be running for at least 1ms.
  if (delta_s >= TieredRateUpdateMinTime) {
    // And we must've taken the previous point at least 1ms before.
    if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
      m->set_prev_time(t);
      m->set_prev_event_count(event_count);
      m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
    } else
      if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
        // If nothing happened for 25ms, zero the rate. Don't modify prev values.
        m->set_rate(0);
      }
  }
}

// Check if this method has been stale from a given number of milliseconds.
// See select_task().
109
bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
110 111 112 113 114 115 116 117 118 119 120 121 122
  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  jlong delta_t = t - m->prev_time();
  if (delta_t > timeout && delta_s > timeout) {
    int event_count = m->invocation_count() + m->backedge_count();
    int delta_e = event_count - m->prev_event_count();
    // Return true if there were no events.
    return delta_e == 0;
  }
  return false;
}

// We don't remove old methods from the compile queue even if they have
// very low activity. See select_task().
123
bool AdvancedThresholdPolicy::is_old(Method* method) {
124 125 126
  return method->invocation_count() > 50000 || method->backedge_count() > 500000;
}

127
double AdvancedThresholdPolicy::weight(Method* method) {
128 129 130 131
  return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
}

// Apply heuristics and return true if x should be compiled before y
132
bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
133 134 135 136 137 138 139 140 141 142 143 144 145
  if (x->highest_comp_level() > y->highest_comp_level()) {
    // recompilation after deopt
    return true;
  } else
    if (x->highest_comp_level() == y->highest_comp_level()) {
      if (weight(x) > weight(y)) {
        return true;
      }
    }
  return false;
}

// Is method profiled enough?
146 147
bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
  MethodData* mdo = method->method_data();
148 149 150 151 152 153 154 155 156 157 158
  if (mdo != NULL) {
    int i = mdo->invocation_count_delta();
    int b = mdo->backedge_count_delta();
    return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
  }
  return false;
}

// Called with the queue locked and with at least one element
CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
  CompileTask *max_task = NULL;
159
  Method* max_method;
160 161 162 163
  jlong t = os::javaTimeMillis();
  // Iterate through the queue and find a method with a maximum rate.
  for (CompileTask* task = compile_queue->first(); task != NULL;) {
    CompileTask* next_task = task->next();
164 165 166
    Method* method = task->method();
    MethodData* mdo = method->method_data();
    update_rate(t, method);
167 168 169 170 171
    if (max_task == NULL) {
      max_task = task;
      max_method = method;
    } else {
      // If a method has been stale for some time, remove it from the queue.
172
      if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
173
        if (PrintTieredEvents) {
174
          print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
175 176 177 178 179 180 181 182 183
        }
        CompileTaskWrapper ctw(task); // Frees the task
        compile_queue->remove(task);
        method->clear_queued_for_compilation();
        task = next_task;
        continue;
      }

      // Select a method with a higher rate
184
      if (compare_methods(method, max_method)) {
185 186 187 188 189 190 191
        max_task = task;
        max_method = method;
      }
    }
    task = next_task;
  }

192
  if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
193
      && is_method_profiled(max_method)) {
194 195
    max_task->set_comp_level(CompLevel_limited_profile);
    if (PrintTieredEvents) {
196
      print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    }
  }

  return max_task;
}

double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
  double queue_size = CompileBroker::queue_size(level);
  int comp_count = compiler_count(level);
  double k = queue_size / (feedback_k * comp_count) + 1;
  return k;
}

// Call and loop predicates determine whether a transition to a higher
// compilation level should be performed (pointers to predicate functions
// are passed to common()).
// Tier?LoadFeedback is basically a coefficient that determines of
// how many methods per compiler thread can be in the queue before
// the threshold values double.
bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
    return loop_predicate_helper<CompLevel_none>(i, b, k);
  }
  case CompLevel_full_profile: {
    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
    return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  default:
    return true;
  }
}

bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
    return call_predicate_helper<CompLevel_none>(i, b, k);
  }
  case CompLevel_full_profile: {
    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
    return call_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  default:
    return true;
  }
}

// If a method is old enough and is still in the interpreter we would want to
// start profiling without waiting for the compiled method to arrive.
// We also take the load on compilers into the account.
251
bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
252 253 254 255 256 257 258 259 260 261 262
  if (cur_level == CompLevel_none &&
      CompileBroker::queue_size(CompLevel_full_optimization) <=
      Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
    int i = method->invocation_count();
    int b = method->backedge_count();
    double k = Tier0ProfilingStartPercentage / 100.0;
    return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
  }
  return false;
}

263 264 265 266 267 268 269 270 271 272 273
// Inlining control: if we're compiling a profiled method with C1 and the callee
// is known to have OSRed in a C2 version, don't inline it.
bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
  CompLevel comp_level = (CompLevel)env->comp_level();
  if (comp_level == CompLevel_full_profile ||
      comp_level == CompLevel_limited_profile) {
    return callee->highest_osr_comp_level() == CompLevel_full_optimization;
  }
  return false;
}

274
// Create MDO if necessary.
275
void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
276 277
  if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
  if (mh->method_data() == NULL) {
278
    Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  }
}


/*
 * Method states:
 *   0 - interpreter (CompLevel_none)
 *   1 - pure C1 (CompLevel_simple)
 *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 *   3 - C1 with full profiling (CompLevel_full_profile)
 *   4 - C2 (CompLevel_full_optimization)
 *
 * Common state transition patterns:
 * a. 0 -> 3 -> 4.
 *    The most common path. But note that even in this straightforward case
 *    profiling can start at level 0 and finish at level 3.
 *
 * b. 0 -> 2 -> 3 -> 4.
 *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
 *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 *
 * c. 0 -> (3->2) -> 4.
 *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
 *    is compiling.
 *
 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 *
 * e. 0 -> 4.
 *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 *    the compiled version already exists).
 *
 * Note that since state 0 can be reached from any other state via deoptimization different loops
 * are possible.
 *
 */

// Common transition function. Given a predicate determines if a method should transition to another level.
322
CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
323 324 325 326
  CompLevel next_level = cur_level;
  int i = method->invocation_count();
  int b = method->backedge_count();

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
  if (is_trivial(method)) {
    next_level = CompLevel_simple;
  } else {
    switch(cur_level) {
    case CompLevel_none:
      // If we were at full profile level, would we switch to full opt?
      if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
        next_level = CompLevel_full_optimization;
      } else if ((this->*p)(i, b, cur_level)) {
        // C1-generated fully profiled code is about 30% slower than the limited profile
        // code that has only invocation and backedge counters. The observation is that
        // if C2 queue is large enough we can spend too much time in the fully profiled code
        // while waiting for C2 to pick the method from the queue. To alleviate this problem
        // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
        // we choose to compile a limited profiled version and then recompile with full profiling
        // when the load on C2 goes down.
        if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
                                 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
          next_level = CompLevel_limited_profile;
        } else {
          next_level = CompLevel_full_profile;
        }
349
      }
350 351 352 353 354 355
      break;
    case CompLevel_limited_profile:
      if (is_method_profiled(method)) {
        // Special case: we got here because this method was fully profiled in the interpreter.
        next_level = CompLevel_full_optimization;
      } else {
356
        MethodData* mdo = method->method_data();
357 358 359 360 361 362 363 364 365
        if (mdo != NULL) {
          if (mdo->would_profile()) {
            if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
                                     Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
                                     (this->*p)(i, b, cur_level))) {
              next_level = CompLevel_full_profile;
            }
          } else {
            next_level = CompLevel_full_optimization;
366 367 368
          }
        }
      }
369 370 371
      break;
    case CompLevel_full_profile:
      {
372
        MethodData* mdo = method->method_data();
373 374 375 376 377 378 379 380
        if (mdo != NULL) {
          if (mdo->would_profile()) {
            int mdo_i = mdo->invocation_count_delta();
            int mdo_b = mdo->backedge_count_delta();
            if ((this->*p)(mdo_i, mdo_b, cur_level)) {
              next_level = CompLevel_full_optimization;
            }
          } else {
381 382 383 384
            next_level = CompLevel_full_optimization;
          }
        }
      }
385
      break;
386 387
    }
  }
388
  return MIN2(next_level, (CompLevel)TieredStopAtLevel);
389 390 391
}

// Determine if a method should be compiled with a normal entry point at a different level.
392
CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
393
  CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
394
                             common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
395 396 397 398 399 400
  CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);

  // If OSR method level is greater than the regular method level, the levels should be
  // equalized by raising the regular method level in order to avoid OSRs during each
  // invocation of the method.
  if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
401
    MethodData* mdo = method->method_data();
402 403 404 405 406 407 408 409 410 411 412
    guarantee(mdo != NULL, "MDO should not be NULL");
    if (mdo->invocation_count() >= 1) {
      next_level = CompLevel_full_optimization;
    }
  } else {
    next_level = MAX2(osr_level, next_level);
  }
  return next_level;
}

// Determine if we should do an OSR compilation of a given method.
413
CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
414
  CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
415 416 417
  if (cur_level == CompLevel_none) {
    // If there is a live OSR method that means that we deopted to the interpreter
    // for the transition.
418
    CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
419 420 421 422
    if (osr_level > CompLevel_none) {
      return osr_level;
    }
  }
423
  return next_level;
424 425 426
}

// Update the rate and submit compile
427
void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
428 429
  int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
  update_rate(os::javaTimeMillis(), mh());
430
  CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
431 432 433 434
}

// Handle the invocation event.
void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
435
                                                      CompLevel level, nmethod* nm, JavaThread* thread) {
436
  if (should_create_mdo(mh(), level)) {
437
    create_mdo(mh, thread);
438 439 440 441
  }
  if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
    CompLevel next_level = call_event(mh(), level);
    if (next_level != level) {
442
      compile(mh, InvocationEntryBci, next_level, thread);
443 444 445 446 447 448 449
    }
  }
}

// Handle the back branch event. Notice that we can compile the method
// with a regular entry from here.
void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
450
                                                       int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
451
  if (should_create_mdo(mh(), level)) {
452
    create_mdo(mh, thread);
453
  }
454 455
  // Check if MDO should be created for the inlined method
  if (should_create_mdo(imh(), level)) {
456
    create_mdo(imh, thread);
457
  }
458

459 460 461 462
  if (is_compilation_enabled()) {
    CompLevel next_osr_level = loop_event(imh(), level);
    CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
    // At the very least compile the OSR version
463
    if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
464
      compile(imh, bci, next_osr_level, thread);
465 466
    }

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    // Use loop event as an opportunity to also check if there's been
    // enough calls.
    CompLevel cur_level, next_level;
    if (mh() != imh()) { // If there is an enclosing method
      guarantee(nm != NULL, "Should have nmethod here");
      cur_level = comp_level(mh());
      next_level = call_event(mh(), cur_level);

      if (max_osr_level == CompLevel_full_optimization) {
        // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
        bool make_not_entrant = false;
        if (nm->is_osr_method()) {
          // This is an osr method, just make it not entrant and recompile later if needed
          make_not_entrant = true;
        } else {
          if (next_level != CompLevel_full_optimization) {
            // next_level is not full opt, so we need to recompile the
            // enclosing method without the inlinee
            cur_level = CompLevel_none;
            make_not_entrant = true;
          }
        }
        if (make_not_entrant) {
          if (PrintTieredEvents) {
            int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
            print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
          }
          nm->make_not_entrant();
        }
      }
      if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
        // Fix up next_level if necessary to avoid deopts
        if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
          next_level = CompLevel_full_profile;
        }
        if (cur_level != next_level) {
503
          compile(mh, InvocationEntryBci, next_level, thread);
504 505 506 507 508 509
        }
      }
    } else {
      cur_level = comp_level(imh());
      next_level = call_event(imh(), cur_level);
      if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
510
        compile(imh, InvocationEntryBci, next_level, thread);
511
      }
512 513 514 515 516
    }
  }
}

#endif // TIERED