templateTable_ppc_64.cpp 142.9 KB
Newer Older
1
/*
2 3
 * Copyright (c) 2014, 2017 Oracle and/or its affiliates. All rights reserved.
 * Copyright 2013, 2017 SAP AG. All rights reserved.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateInterpreter.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "utilities/macros.hpp"

#ifndef CC_INTERP

#undef __
#define __ _masm->

// ============================================================================
// Misc helpers

// Do an oop store like *(base + index) = val OR *(base + offset) = val
// (only one of both variants is possible at the same time).
// Index can be noreg.
// Kills:
//   Rbase, Rtmp
static void do_oop_store(InterpreterMacroAssembler* _masm,
                         Register           Rbase,
                         RegisterOrConstant offset,
                         Register           Rval,         // Noreg means always null.
                         Register           Rtmp1,
                         Register           Rtmp2,
                         Register           Rtmp3,
                         BarrierSet::Name   barrier,
                         bool               precise,
                         bool               check_null) {
  assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);

  switch (barrier) {
67
#if INCLUDE_ALL_GCS
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    case BarrierSet::G1SATBCT:
    case BarrierSet::G1SATBCTLogging:
      {
        // Load and record the previous value.
        __ g1_write_barrier_pre(Rbase, offset,
                                Rtmp3, /* holder of pre_val ? */
                                Rtmp1, Rtmp2, false /* frame */);

        Label Lnull, Ldone;
        if (Rval != noreg) {
          if (check_null) {
            __ cmpdi(CCR0, Rval, 0);
            __ beq(CCR0, Lnull);
          }
          __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
          // Mark the card.
          if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
            __ add(Rbase, offset, Rbase);
          }
          __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
          if (check_null) { __ b(Ldone); }
        }

        if (Rval == noreg || check_null) { // Store null oop.
          Register Rnull = Rval;
          __ bind(Lnull);
          if (Rval == noreg) {
            Rnull = Rtmp1;
            __ li(Rnull, 0);
          }
          if (UseCompressedOops) {
            __ stw(Rnull, offset, Rbase);
          } else {
            __ std(Rnull, offset, Rbase);
          }
        }
        __ bind(Ldone);
      }
      break;
107
#endif // INCLUDE_ALL_GCS
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    case BarrierSet::CardTableModRef:
    case BarrierSet::CardTableExtension:
      {
        Label Lnull, Ldone;
        if (Rval != noreg) {
          if (check_null) {
            __ cmpdi(CCR0, Rval, 0);
            __ beq(CCR0, Lnull);
          }
          __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
          // Mark the card.
          if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
            __ add(Rbase, offset, Rbase);
          }
          __ card_write_barrier_post(Rbase, Rval, Rtmp1);
          if (check_null) {
            __ b(Ldone);
          }
        }

        if (Rval == noreg || check_null) { // Store null oop.
          Register Rnull = Rval;
          __ bind(Lnull);
          if (Rval == noreg) {
            Rnull = Rtmp1;
            __ li(Rnull, 0);
          }
          if (UseCompressedOops) {
            __ stw(Rnull, offset, Rbase);
          } else {
            __ std(Rnull, offset, Rbase);
          }
        }
        __ bind(Ldone);
      }
      break;
    case BarrierSet::ModRef:
    case BarrierSet::Other:
      ShouldNotReachHere();
      break;
    default:
      ShouldNotReachHere();
  }
}

// ============================================================================
// Platform-dependent initialization

void TemplateTable::pd_initialize() {
  // No ppc64 specific initialization.
}

Address TemplateTable::at_bcp(int offset) {
  // Not used on ppc.
  ShouldNotReachHere();
  return Address();
}

// Patches the current bytecode (ptr to it located in bcp)
// in the bytecode stream with a new one.
void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
  // With sharing on, may need to test method flag.
  if (!RewriteBytecodes) return;
  Label L_patch_done;

  switch (new_bc) {
    case Bytecodes::_fast_aputfield:
    case Bytecodes::_fast_bputfield:
S
simonis 已提交
176
    case Bytecodes::_fast_zputfield:
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    case Bytecodes::_fast_cputfield:
    case Bytecodes::_fast_dputfield:
    case Bytecodes::_fast_fputfield:
    case Bytecodes::_fast_iputfield:
    case Bytecodes::_fast_lputfield:
    case Bytecodes::_fast_sputfield:
    {
      // We skip bytecode quickening for putfield instructions when
      // the put_code written to the constant pool cache is zero.
      // This is required so that every execution of this instruction
      // calls out to InterpreterRuntime::resolve_get_put to do
      // additional, required work.
      assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
      assert(load_bc_into_bc_reg, "we use bc_reg as temp");
      __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
192 193 194 195
      // ((*(cache+indices))>>((1+byte_no)*8))&0xFF:
#if defined(VM_LITTLE_ENDIAN)
      __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp);
#else
196
      __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
197
#endif
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
      __ cmpwi(CCR0, Rnew_bc, 0);
      __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
      __ beq(CCR0, L_patch_done);
      // __ isync(); // acquire not needed
      break;
    }

    default:
      assert(byte_no == -1, "sanity");
      if (load_bc_into_bc_reg) {
        __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
      }
  }

  if (JvmtiExport::can_post_breakpoint()) {
    Label L_fast_patch;
    __ lbz(Rtemp, 0, R14_bcp);
    __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
    __ bne(CCR0, L_fast_patch);
    // Perform the quickening, slowly, in the bowels of the breakpoint table.
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
    __ b(L_patch_done);
    __ bind(L_fast_patch);
  }

  // Patch bytecode.
  __ stb(Rnew_bc, 0, R14_bcp);

  __ bind(L_patch_done);
}

// ============================================================================
// Individual instructions

void TemplateTable::nop() {
  transition(vtos, vtos);
  // Nothing to do.
}

void TemplateTable::shouldnotreachhere() {
  transition(vtos, vtos);
  __ stop("shouldnotreachhere bytecode");
}

void TemplateTable::aconst_null() {
  transition(vtos, atos);
  __ li(R17_tos, 0);
}

void TemplateTable::iconst(int value) {
  transition(vtos, itos);
  assert(value >= -1 && value <= 5, "");
  __ li(R17_tos, value);
}

void TemplateTable::lconst(int value) {
  transition(vtos, ltos);
  assert(value >= -1 && value <= 5, "");
  __ li(R17_tos, value);
}

void TemplateTable::fconst(int value) {
  transition(vtos, ftos);
  static float zero = 0.0;
  static float one  = 1.0;
  static float two  = 2.0;
  switch (value) {
    default: ShouldNotReachHere();
    case 0: {
267
      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
268 269 270 271
      __ lfs(F15_ftos, simm16_offset, R11_scratch1);
      break;
    }
    case 1: {
272
      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
273 274 275 276
      __ lfs(F15_ftos, simm16_offset, R11_scratch1);
      break;
    }
    case 2: {
277
      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
278 279 280 281 282 283 284 285 286 287 288 289
      __ lfs(F15_ftos, simm16_offset, R11_scratch1);
      break;
    }
  }
}

void TemplateTable::dconst(int value) {
  transition(vtos, dtos);
  static double zero = 0.0;
  static double one  = 1.0;
  switch (value) {
    case 0: {
290
      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
291 292 293 294
      __ lfd(F15_ftos, simm16_offset, R11_scratch1);
      break;
    }
    case 1: {
295
      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
      __ lfd(F15_ftos, simm16_offset, R11_scratch1);
      break;
    }
    default: ShouldNotReachHere();
  }
}

void TemplateTable::bipush() {
  transition(vtos, itos);
  __ lbz(R17_tos, 1, R14_bcp);
  __ extsb(R17_tos, R17_tos);
}

void TemplateTable::sipush() {
  transition(vtos, itos);
  __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
}

void TemplateTable::ldc(bool wide) {
  Register Rscratch1 = R11_scratch1,
           Rscratch2 = R12_scratch2,
           Rcpool    = R3_ARG1;

  transition(vtos, vtos);
  Label notInt, notClass, exit;

  __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
  if (wide) { // Read index.
    __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
  } else {
    __ lbz(Rscratch1, 1, R14_bcp);
  }

  const int base_offset = ConstantPool::header_size() * wordSize;
  const int tags_offset = Array<u1>::base_offset_in_bytes();

  // Get type from tags.
  __ addi(Rscratch2, Rscratch2, tags_offset);
  __ lbzx(Rscratch2, Rscratch2, Rscratch1);

  __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
  __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
  __ cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);

  // Resolved class - need to call vm to get java mirror of the class.
  __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
  __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Neither resolved class nor unresolved case from above?
  __ beq(CCR0, notClass);

  __ li(R4, wide ? 1 : 0);
  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
  __ push(atos);
  __ b(exit);

  __ align(32, 12);
  __ bind(notClass);
  __ addi(Rcpool, Rcpool, base_offset);
  __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
  __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
  __ bne(CCR0, notInt);
  __ lwax(R17_tos, Rcpool, Rscratch1);
  __ push(itos);
  __ b(exit);

  __ align(32, 12);
  __ bind(notInt);
#ifdef ASSERT
  // String and Object are rewritten to fast_aldc
  __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
  __ asm_assert_eq("unexpected type", 0x8765);
#endif
  __ lfsx(F15_ftos, Rcpool, Rscratch1);
  __ push(ftos);

  __ align(32, 12);
  __ bind(exit);
}

// Fast path for caching oop constants.
void TemplateTable::fast_aldc(bool wide) {
  transition(vtos, atos);

  int index_size = wide ? sizeof(u2) : sizeof(u1);
  const Register Rscratch = R11_scratch1;
  Label resolved;

  // We are resolved if the resolved reference cache entry contains a
  // non-null object (CallSite, etc.)
  __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
  __ load_resolved_reference_at_index(R17_tos, Rscratch);
  __ cmpdi(CCR0, R17_tos, 0);
  __ bne(CCR0, resolved);
  __ load_const_optimized(R3_ARG1, (int)bytecode());

  address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);

  // First time invocation - must resolve first.
  __ call_VM(R17_tos, entry, R3_ARG1);

  __ align(32, 12);
  __ bind(resolved);
  __ verify_oop(R17_tos);
}

void TemplateTable::ldc2_w() {
  transition(vtos, vtos);
  Label Llong, Lexit;

  Register Rindex = R11_scratch1,
           Rcpool = R12_scratch2,
           Rtag   = R3_ARG1;
  __ get_cpool_and_tags(Rcpool, Rtag);
  __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);

  const int base_offset = ConstantPool::header_size() * wordSize;
  const int tags_offset = Array<u1>::base_offset_in_bytes();
  // Get type from tags.
  __ addi(Rcpool, Rcpool, base_offset);
  __ addi(Rtag, Rtag, tags_offset);

  __ lbzx(Rtag, Rtag, Rindex);

  __ sldi(Rindex, Rindex, LogBytesPerWord);
  __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
  __ bne(CCR0, Llong);
  // A double can be placed at word-aligned locations in the constant pool.
  // Check out Conversions.java for an example.
  // Also ConstantPool::header_size() is 20, which makes it very difficult
  // to double-align double on the constant pool. SG, 11/7/97
  __ lfdx(F15_ftos, Rcpool, Rindex);
  __ push(dtos);
  __ b(Lexit);

  __ bind(Llong);
  __ ldx(R17_tos, Rcpool, Rindex);
  __ push(ltos);

  __ bind(Lexit);
}

// Get the locals index located in the bytecode stream at bcp + offset.
void TemplateTable::locals_index(Register Rdst, int offset) {
  __ lbz(Rdst, offset, R14_bcp);
}

void TemplateTable::iload() {
  transition(vtos, itos);

  // Get the local value into tos
  const Register Rindex = R22_tmp2;
  locals_index(Rindex);

  // Rewrite iload,iload  pair into fast_iload2
  //         iload,caload pair into fast_icaload
  if (RewriteFrequentPairs) {
    Label Lrewrite, Ldone;
    Register Rnext_byte  = R3_ARG1,
             Rrewrite_to = R6_ARG4,
             Rscratch    = R11_scratch1;

    // get next byte
    __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);

    // if _iload, wait to rewrite to iload2. We only want to rewrite the
    // last two iloads in a pair. Comparing against fast_iload means that
    // the next bytecode is neither an iload or a caload, and therefore
    // an iload pair.
    __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
    __ beq(CCR0, Ldone);

    __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
    __ beq(CCR1, Lrewrite);

    __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
    __ beq(CCR0, Lrewrite);

    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);

    __ bind(Lrewrite);
    patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
    __ bind(Ldone);
  }

  __ load_local_int(R17_tos, Rindex, Rindex);
}

// Load 2 integers in a row without dispatching
void TemplateTable::fast_iload2() {
  transition(vtos, itos);

  __ lbz(R3_ARG1, 1, R14_bcp);
  __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);

  __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
  __ load_local_int(R17_tos, R12_scratch2, R17_tos);
  __ push_i(R3_ARG1);
}

void TemplateTable::fast_iload() {
  transition(vtos, itos);
  // Get the local value into tos

  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ load_local_int(R17_tos, Rindex, Rindex);
}

// Load a local variable type long from locals area to TOS cache register.
// Local index resides in bytecodestream.
void TemplateTable::lload() {
  transition(vtos, ltos);

  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ load_local_long(R17_tos, Rindex, Rindex);
}

void TemplateTable::fload() {
  transition(vtos, ftos);

  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ load_local_float(F15_ftos, Rindex, Rindex);
}

void TemplateTable::dload() {
  transition(vtos, dtos);

  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ load_local_double(F15_ftos, Rindex, Rindex);
}

void TemplateTable::aload() {
  transition(vtos, atos);

  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ load_local_ptr(R17_tos, Rindex, Rindex);
}

void TemplateTable::locals_index_wide(Register Rdst) {
  // Offset is 2, not 1, because Lbcp points to wide prefix code.
  __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
}

void TemplateTable::wide_iload() {
  // Get the local value into tos.

  const Register Rindex = R11_scratch1;
  locals_index_wide(Rindex);
  __ load_local_int(R17_tos, Rindex, Rindex);
}

void TemplateTable::wide_lload() {
  transition(vtos, ltos);

  const Register Rindex = R11_scratch1;
  locals_index_wide(Rindex);
  __ load_local_long(R17_tos, Rindex, Rindex);
}

void TemplateTable::wide_fload() {
  transition(vtos, ftos);

  const Register Rindex = R11_scratch1;
  locals_index_wide(Rindex);
  __ load_local_float(F15_ftos, Rindex, Rindex);
}

void TemplateTable::wide_dload() {
  transition(vtos, dtos);

  const Register Rindex = R11_scratch1;
  locals_index_wide(Rindex);
  __ load_local_double(F15_ftos, Rindex, Rindex);
}

void TemplateTable::wide_aload() {
  transition(vtos, atos);

  const Register Rindex = R11_scratch1;
  locals_index_wide(Rindex);
  __ load_local_ptr(R17_tos, Rindex, Rindex);
}

void TemplateTable::iaload() {
  transition(itos, itos);

  const Register Rload_addr = R3_ARG1,
                 Rarray     = R4_ARG2,
                 Rtemp      = R5_ARG3;
  __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
  __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
}

void TemplateTable::laload() {
  transition(itos, ltos);

  const Register Rload_addr = R3_ARG1,
                 Rarray     = R4_ARG2,
                 Rtemp      = R5_ARG3;
  __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
  __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
}

void TemplateTable::faload() {
  transition(itos, ftos);

  const Register Rload_addr = R3_ARG1,
                 Rarray     = R4_ARG2,
                 Rtemp      = R5_ARG3;
  __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
  __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
}

void TemplateTable::daload() {
  transition(itos, dtos);

  const Register Rload_addr = R3_ARG1,
                 Rarray     = R4_ARG2,
                 Rtemp      = R5_ARG3;
  __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
  __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
}

void TemplateTable::aaload() {
  transition(itos, atos);

  // tos: index
  // result tos: array
  const Register Rload_addr = R3_ARG1,
                 Rarray     = R4_ARG2,
                 Rtemp      = R5_ARG3;
  __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
  __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
  __ verify_oop(R17_tos);
  //__ dcbt(R17_tos); // prefetch
}

void TemplateTable::baload() {
  transition(itos, itos);

  const Register Rload_addr = R3_ARG1,
                 Rarray     = R4_ARG2,
                 Rtemp      = R5_ARG3;
  __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
  __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
  __ extsb(R17_tos, R17_tos);
}

void TemplateTable::caload() {
  transition(itos, itos);

  const Register Rload_addr = R3_ARG1,
                 Rarray     = R4_ARG2,
                 Rtemp      = R5_ARG3;
  __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
  __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
}

// Iload followed by caload frequent pair.
void TemplateTable::fast_icaload() {
  transition(vtos, itos);

  const Register Rload_addr = R3_ARG1,
                 Rarray     = R4_ARG2,
                 Rtemp      = R11_scratch1;

  locals_index(R17_tos);
  __ load_local_int(R17_tos, Rtemp, R17_tos);
  __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
  __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
}

void TemplateTable::saload() {
  transition(itos, itos);

  const Register Rload_addr = R11_scratch1,
                 Rarray     = R12_scratch2,
                 Rtemp      = R3_ARG1;
  __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
  __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
}

void TemplateTable::iload(int n) {
  transition(vtos, itos);

  __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
}

void TemplateTable::lload(int n) {
  transition(vtos, ltos);

  __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
}

void TemplateTable::fload(int n) {
  transition(vtos, ftos);

  __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
}

void TemplateTable::dload(int n) {
  transition(vtos, dtos);

  __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
}

void TemplateTable::aload(int n) {
  transition(vtos, atos);

  __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
}

void TemplateTable::aload_0() {
  transition(vtos, atos);
  // According to bytecode histograms, the pairs:
  //
  // _aload_0, _fast_igetfield
  // _aload_0, _fast_agetfield
  // _aload_0, _fast_fgetfield
  //
  // occur frequently. If RewriteFrequentPairs is set, the (slow)
  // _aload_0 bytecode checks if the next bytecode is either
  // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
  // rewrites the current bytecode into a pair bytecode; otherwise it
  // rewrites the current bytecode into _0 that doesn't do
  // the pair check anymore.
  //
  // Note: If the next bytecode is _getfield, the rewrite must be
  //       delayed, otherwise we may miss an opportunity for a pair.
  //
  // Also rewrite frequent pairs
  //   aload_0, aload_1
  //   aload_0, iload_1
  // These bytecodes with a small amount of code are most profitable
  // to rewrite.

  if (RewriteFrequentPairs) {

    Label Lrewrite, Ldont_rewrite;
    Register Rnext_byte  = R3_ARG1,
             Rrewrite_to = R6_ARG4,
             Rscratch    = R11_scratch1;

    // Get next byte.
    __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);

    // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
    __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
    __ beq(CCR0, Ldont_rewrite);

    __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
    __ beq(CCR1, Lrewrite);

    __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
    __ beq(CCR0, Lrewrite);

    __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
    __ beq(CCR1, Lrewrite);

    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);

    __ bind(Lrewrite);
    patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
    __ bind(Ldont_rewrite);
  }

  // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
  aload(0);
}

void TemplateTable::istore() {
  transition(itos, vtos);

  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ store_local_int(R17_tos, Rindex);
}

void TemplateTable::lstore() {
  transition(ltos, vtos);
  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ store_local_long(R17_tos, Rindex);
}

void TemplateTable::fstore() {
  transition(ftos, vtos);

  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ store_local_float(F15_ftos, Rindex);
}

void TemplateTable::dstore() {
  transition(dtos, vtos);

  const Register Rindex = R11_scratch1;
  locals_index(Rindex);
  __ store_local_double(F15_ftos, Rindex);
}

void TemplateTable::astore() {
  transition(vtos, vtos);

  const Register Rindex = R11_scratch1;
  __ pop_ptr();
  __ verify_oop_or_return_address(R17_tos, Rindex);
  locals_index(Rindex);
  __ store_local_ptr(R17_tos, Rindex);
}

void TemplateTable::wide_istore() {
  transition(vtos, vtos);

  const Register Rindex = R11_scratch1;
  __ pop_i();
  locals_index_wide(Rindex);
  __ store_local_int(R17_tos, Rindex);
}

void TemplateTable::wide_lstore() {
  transition(vtos, vtos);

  const Register Rindex = R11_scratch1;
  __ pop_l();
  locals_index_wide(Rindex);
  __ store_local_long(R17_tos, Rindex);
}

void TemplateTable::wide_fstore() {
  transition(vtos, vtos);

  const Register Rindex = R11_scratch1;
  __ pop_f();
  locals_index_wide(Rindex);
  __ store_local_float(F15_ftos, Rindex);
}

void TemplateTable::wide_dstore() {
  transition(vtos, vtos);

  const Register Rindex = R11_scratch1;
  __ pop_d();
  locals_index_wide(Rindex);
  __ store_local_double(F15_ftos, Rindex);
}

void TemplateTable::wide_astore() {
  transition(vtos, vtos);

  const Register Rindex = R11_scratch1;
  __ pop_ptr();
  __ verify_oop_or_return_address(R17_tos, Rindex);
  locals_index_wide(Rindex);
  __ store_local_ptr(R17_tos, Rindex);
}

void TemplateTable::iastore() {
  transition(itos, vtos);

  const Register Rindex      = R3_ARG1,
                 Rstore_addr = R4_ARG2,
                 Rarray      = R5_ARG3,
                 Rtemp       = R6_ARG4;
  __ pop_i(Rindex);
  __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
  __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
  }

void TemplateTable::lastore() {
  transition(ltos, vtos);

  const Register Rindex      = R3_ARG1,
                 Rstore_addr = R4_ARG2,
                 Rarray      = R5_ARG3,
                 Rtemp       = R6_ARG4;
  __ pop_i(Rindex);
  __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
  __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
  }

void TemplateTable::fastore() {
  transition(ftos, vtos);

  const Register Rindex      = R3_ARG1,
                 Rstore_addr = R4_ARG2,
                 Rarray      = R5_ARG3,
                 Rtemp       = R6_ARG4;
  __ pop_i(Rindex);
  __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
  __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
  }

void TemplateTable::dastore() {
  transition(dtos, vtos);

  const Register Rindex      = R3_ARG1,
                 Rstore_addr = R4_ARG2,
                 Rarray      = R5_ARG3,
                 Rtemp       = R6_ARG4;
  __ pop_i(Rindex);
  __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
  __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
  }

// Pop 3 values from the stack and...
void TemplateTable::aastore() {
  transition(vtos, vtos);

  Label Lstore_ok, Lis_null, Ldone;
  const Register Rindex    = R3_ARG1,
                 Rarray    = R4_ARG2,
                 Rscratch  = R11_scratch1,
                 Rscratch2 = R12_scratch2,
                 Rarray_klass = R5_ARG3,
                 Rarray_element_klass = Rarray_klass,
                 Rvalue_klass = R6_ARG4,
                 Rstore_addr = R31;    // Use register which survives VM call.

  __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
  __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
  __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.

  __ verify_oop(R17_tos);
  __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
  // Rindex is dead!
  Register Rscratch3 = Rindex;

  // Do array store check - check for NULL value first.
  __ cmpdi(CCR0, R17_tos, 0);
  __ beq(CCR0, Lis_null);

  __ load_klass(Rarray_klass, Rarray);
  __ load_klass(Rvalue_klass, R17_tos);

  // Do fast instanceof cache test.
  __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);

  // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
  __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);

  // Fell through: subtype check failed => throw an exception.
  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
  __ mtctr(R11_scratch1);
  __ bctr();

  __ bind(Lis_null);
  do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
               Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
  __ profile_null_seen(Rscratch, Rscratch2);
  __ b(Ldone);

  // Store is OK.
  __ bind(Lstore_ok);
  do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
               Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);

  __ bind(Ldone);
  // Adjust sp (pops array, index and value).
  __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
}

void TemplateTable::bastore() {
  transition(itos, vtos);

  const Register Rindex   = R11_scratch1,
                 Rarray   = R12_scratch2,
                 Rscratch = R3_ARG1;
  __ pop_i(Rindex);
S
simonis 已提交
973
  __ pop_ptr(Rarray);
974
  // tos: val
S
simonis 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987

  // Need to check whether array is boolean or byte
  // since both types share the bastore bytecode.
  __ load_klass(Rscratch, Rarray);
  __ lwz(Rscratch, in_bytes(Klass::layout_helper_offset()), Rscratch);
  int diffbit = exact_log2(Klass::layout_helper_boolean_diffbit());
  __ testbitdi(CCR0, R0, Rscratch, diffbit);
  Label L_skip;
  __ bfalse(CCR0, L_skip);
  __ andi(R17_tos, R17_tos, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
  __ bind(L_skip);

  __ index_check_without_pop(Rarray, Rindex, 0, Rscratch, Rarray);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
  __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
}

void TemplateTable::castore() {
  transition(itos, vtos);

  const Register Rindex   = R11_scratch1,
                 Rarray   = R12_scratch2,
                 Rscratch = R3_ARG1;
  __ pop_i(Rindex);
  // tos: val
  // Rarray: array ptr (popped by index_check)
  __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
  __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
}

void TemplateTable::sastore() {
  castore();
}

void TemplateTable::istore(int n) {
  transition(itos, vtos);
  __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
}

void TemplateTable::lstore(int n) {
  transition(ltos, vtos);
  __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
}

void TemplateTable::fstore(int n) {
  transition(ftos, vtos);
  __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
}

void TemplateTable::dstore(int n) {
  transition(dtos, vtos);
  __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
}

void TemplateTable::astore(int n) {
  transition(vtos, vtos);

  __ pop_ptr();
  __ verify_oop_or_return_address(R17_tos, R11_scratch1);
  __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
}

void TemplateTable::pop() {
  transition(vtos, vtos);

  __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
}

void TemplateTable::pop2() {
  transition(vtos, vtos);

  __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
}

void TemplateTable::dup() {
  transition(vtos, vtos);

  __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
  __ push_ptr(R11_scratch1);
}

void TemplateTable::dup_x1() {
  transition(vtos, vtos);

  Register Ra = R11_scratch1,
           Rb = R12_scratch2;
  // stack: ..., a, b
  __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
  __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
  __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
  __ std(Ra, Interpreter::stackElementSize,     R15_esp);
  __ push_ptr(Rb);
  // stack: ..., b, a, b
}

void TemplateTable::dup_x2() {
  transition(vtos, vtos);

  Register Ra = R11_scratch1,
           Rb = R12_scratch2,
           Rc = R3_ARG1;

  // stack: ..., a, b, c
  __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
  __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
  __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
  __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
  // stack: ..., c, b, c
  __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
  // stack: ..., c, a, c
  __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
  __ push_ptr(Rc);                                        // push c
  // stack: ..., c, a, b, c
}

void TemplateTable::dup2() {
  transition(vtos, vtos);

  Register Ra = R11_scratch1,
           Rb = R12_scratch2;
  // stack: ..., a, b
  __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
  __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
  __ push_2ptrs(Ra, Rb);
  // stack: ..., a, b, a, b
}

void TemplateTable::dup2_x1() {
  transition(vtos, vtos);

  Register Ra = R11_scratch1,
           Rb = R12_scratch2,
           Rc = R3_ARG1;
  // stack: ..., a, b, c
  __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
  __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
  __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
  __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
  __ std(Ra, Interpreter::stackElementSize,     R15_esp);
  __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
  // stack: ..., b, c, a
  __ push_2ptrs(Rb, Rc);
  // stack: ..., b, c, a, b, c
}

void TemplateTable::dup2_x2() {
  transition(vtos, vtos);

  Register Ra = R11_scratch1,
           Rb = R12_scratch2,
           Rc = R3_ARG1,
           Rd = R4_ARG2;
  // stack: ..., a, b, c, d
  __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
  __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
  __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
  __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
  __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
  __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
  __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
  __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
  // stack: ..., c, d, a, b
  __ push_2ptrs(Rc, Rd);
  // stack: ..., c, d, a, b, c, d
}

void TemplateTable::swap() {
  transition(vtos, vtos);
  // stack: ..., a, b

  Register Ra = R11_scratch1,
           Rb = R12_scratch2;
  // stack: ..., a, b
  __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
  __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
  __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
  __ std(Ra, Interpreter::stackElementSize,     R15_esp);
  // stack: ..., b, a
}

void TemplateTable::iop2(Operation op) {
  transition(itos, itos);

  Register Rscratch = R11_scratch1;

  __ pop_i(Rscratch);
  // tos  = number of bits to shift
  // Rscratch = value to shift
  switch (op) {
    case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
    case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
    case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
    case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
    case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
    case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
    case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
    case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
    case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
    default:     ShouldNotReachHere();
  }
}

void TemplateTable::lop2(Operation op) {
  transition(ltos, ltos);

  Register Rscratch = R11_scratch1;
  __ pop_l(Rscratch);
  switch (op) {
    case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
    case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
    case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
    case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
    case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
    default:     ShouldNotReachHere();
  }
}

void TemplateTable::idiv() {
  transition(itos, itos);

  Label Lnormal, Lexception, Ldone;
  Register Rdividend = R11_scratch1; // Used by irem.

  __ addi(R0, R17_tos, 1);
  __ cmplwi(CCR0, R0, 2);
  __ bgt(CCR0, Lnormal); // divisor <-1 or >1

  __ cmpwi(CCR1, R17_tos, 0);
  __ beq(CCR1, Lexception); // divisor == 0

  __ pop_i(Rdividend);
  __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
  __ b(Ldone);

  __ bind(Lexception);
  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
  __ mtctr(R11_scratch1);
  __ bctr();

  __ align(32, 12);
  __ bind(Lnormal);
  __ pop_i(Rdividend);
  __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
  __ bind(Ldone);
}

void TemplateTable::irem() {
  transition(itos, itos);

  __ mr(R12_scratch2, R17_tos);
  idiv();
  __ mullw(R17_tos, R17_tos, R12_scratch2);
  __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
}

void TemplateTable::lmul() {
  transition(ltos, ltos);

  __ pop_l(R11_scratch1);
  __ mulld(R17_tos, R11_scratch1, R17_tos);
}

void TemplateTable::ldiv() {
  transition(ltos, ltos);

  Label Lnormal, Lexception, Ldone;
  Register Rdividend = R11_scratch1; // Used by lrem.

  __ addi(R0, R17_tos, 1);
  __ cmpldi(CCR0, R0, 2);
  __ bgt(CCR0, Lnormal); // divisor <-1 or >1

  __ cmpdi(CCR1, R17_tos, 0);
  __ beq(CCR1, Lexception); // divisor == 0

  __ pop_l(Rdividend);
  __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
  __ b(Ldone);

  __ bind(Lexception);
  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
  __ mtctr(R11_scratch1);
  __ bctr();

  __ align(32, 12);
  __ bind(Lnormal);
  __ pop_l(Rdividend);
  __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
  __ bind(Ldone);
}

void TemplateTable::lrem() {
  transition(ltos, ltos);

  __ mr(R12_scratch2, R17_tos);
  ldiv();
  __ mulld(R17_tos, R17_tos, R12_scratch2);
  __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
}

void TemplateTable::lshl() {
  transition(itos, ltos);

  __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
  __ pop_l(R11_scratch1);
  __ sld(R17_tos, R11_scratch1, R17_tos);
}

void TemplateTable::lshr() {
  transition(itos, ltos);

  __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
  __ pop_l(R11_scratch1);
  __ srad(R17_tos, R11_scratch1, R17_tos);
}

void TemplateTable::lushr() {
  transition(itos, ltos);

  __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
  __ pop_l(R11_scratch1);
  __ srd(R17_tos, R11_scratch1, R17_tos);
}

void TemplateTable::fop2(Operation op) {
  transition(ftos, ftos);

  switch (op) {
    case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
    case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
    case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
    case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
    case rem:
      __ pop_f(F1_ARG1);
      __ fmr(F2_ARG2, F15_ftos);
      __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
      __ fmr(F15_ftos, F1_RET);
      break;

    default: ShouldNotReachHere();
  }
}

void TemplateTable::dop2(Operation op) {
  transition(dtos, dtos);

  switch (op) {
    case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
    case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
    case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
    case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
    case rem:
      __ pop_d(F1_ARG1);
      __ fmr(F2_ARG2, F15_ftos);
      __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
      __ fmr(F15_ftos, F1_RET);
      break;

    default: ShouldNotReachHere();
  }
}

// Negate the value in the TOS cache.
void TemplateTable::ineg() {
  transition(itos, itos);

  __ neg(R17_tos, R17_tos);
}

// Negate the value in the TOS cache.
void TemplateTable::lneg() {
  transition(ltos, ltos);

  __ neg(R17_tos, R17_tos);
}

void TemplateTable::fneg() {
  transition(ftos, ftos);

  __ fneg(F15_ftos, F15_ftos);
}

void TemplateTable::dneg() {
  transition(dtos, dtos);

  __ fneg(F15_ftos, F15_ftos);
}

// Increments a local variable in place.
void TemplateTable::iinc() {
  transition(vtos, vtos);

  const Register Rindex     = R11_scratch1,
                 Rincrement = R0,
                 Rvalue     = R12_scratch2;

  locals_index(Rindex);              // Load locals index from bytecode stream.
  __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
  __ extsb(Rincrement, Rincrement);

  __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.

  __ add(Rvalue, Rincrement, Rvalue);
  __ stw(Rvalue, 0, Rindex);
}

void TemplateTable::wide_iinc() {
  transition(vtos, vtos);

  Register Rindex       = R11_scratch1,
           Rlocals_addr = Rindex,
           Rincr        = R12_scratch2;
  locals_index_wide(Rindex);
  __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
  __ load_local_int(R17_tos, Rlocals_addr, Rindex);
  __ add(R17_tos, Rincr, R17_tos);
  __ stw(R17_tos, 0, Rlocals_addr);
}

void TemplateTable::convert() {
  // %%%%% Factor this first part accross platforms
#ifdef ASSERT
  TosState tos_in  = ilgl;
  TosState tos_out = ilgl;
  switch (bytecode()) {
    case Bytecodes::_i2l: // fall through
    case Bytecodes::_i2f: // fall through
    case Bytecodes::_i2d: // fall through
    case Bytecodes::_i2b: // fall through
    case Bytecodes::_i2c: // fall through
    case Bytecodes::_i2s: tos_in = itos; break;
    case Bytecodes::_l2i: // fall through
    case Bytecodes::_l2f: // fall through
    case Bytecodes::_l2d: tos_in = ltos; break;
    case Bytecodes::_f2i: // fall through
    case Bytecodes::_f2l: // fall through
    case Bytecodes::_f2d: tos_in = ftos; break;
    case Bytecodes::_d2i: // fall through
    case Bytecodes::_d2l: // fall through
    case Bytecodes::_d2f: tos_in = dtos; break;
    default             : ShouldNotReachHere();
  }
  switch (bytecode()) {
    case Bytecodes::_l2i: // fall through
    case Bytecodes::_f2i: // fall through
    case Bytecodes::_d2i: // fall through
    case Bytecodes::_i2b: // fall through
    case Bytecodes::_i2c: // fall through
    case Bytecodes::_i2s: tos_out = itos; break;
    case Bytecodes::_i2l: // fall through
    case Bytecodes::_f2l: // fall through
    case Bytecodes::_d2l: tos_out = ltos; break;
    case Bytecodes::_i2f: // fall through
    case Bytecodes::_l2f: // fall through
    case Bytecodes::_d2f: tos_out = ftos; break;
    case Bytecodes::_i2d: // fall through
    case Bytecodes::_l2d: // fall through
    case Bytecodes::_f2d: tos_out = dtos; break;
    default             : ShouldNotReachHere();
  }
  transition(tos_in, tos_out);
#endif

  // Conversion
  Label done;
  switch (bytecode()) {
    case Bytecodes::_i2l:
      __ extsw(R17_tos, R17_tos);
      break;

    case Bytecodes::_l2i:
      // Nothing to do, we'll continue to work with the lower bits.
      break;

    case Bytecodes::_i2b:
      __ extsb(R17_tos, R17_tos);
      break;

    case Bytecodes::_i2c:
      __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
      break;

    case Bytecodes::_i2s:
      __ extsh(R17_tos, R17_tos);
      break;

    case Bytecodes::_i2d:
      __ extsw(R17_tos, R17_tos);
    case Bytecodes::_l2d:
      __ push_l_pop_d();
      __ fcfid(F15_ftos, F15_ftos);
      break;

    case Bytecodes::_i2f:
      __ extsw(R17_tos, R17_tos);
      __ push_l_pop_d();
      if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
        // Comment: alternatively, load with sign extend could be done by lfiwax.
        __ fcfids(F15_ftos, F15_ftos);
      } else {
        __ fcfid(F15_ftos, F15_ftos);
        __ frsp(F15_ftos, F15_ftos);
      }
      break;

    case Bytecodes::_l2f:
      if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
        __ push_l_pop_d();
        __ fcfids(F15_ftos, F15_ftos);
      } else {
        // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
        __ mr(R3_ARG1, R17_tos);
        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
        __ fmr(F15_ftos, F1_RET);
      }
      break;

    case Bytecodes::_f2d:
      // empty
      break;

    case Bytecodes::_d2f:
      __ frsp(F15_ftos, F15_ftos);
      break;

    case Bytecodes::_d2i:
    case Bytecodes::_f2i:
      __ fcmpu(CCR0, F15_ftos, F15_ftos);
      __ li(R17_tos, 0); // 0 in case of NAN
      __ bso(CCR0, done);
      __ fctiwz(F15_ftos, F15_ftos);
      __ push_d_pop_l();
      break;

    case Bytecodes::_d2l:
    case Bytecodes::_f2l:
      __ fcmpu(CCR0, F15_ftos, F15_ftos);
      __ li(R17_tos, 0); // 0 in case of NAN
      __ bso(CCR0, done);
      __ fctidz(F15_ftos, F15_ftos);
      __ push_d_pop_l();
      break;

    default: ShouldNotReachHere();
  }
  __ bind(done);
}

// Long compare
void TemplateTable::lcmp() {
  transition(ltos, itos);

  const Register Rscratch = R11_scratch1;
  __ pop_l(Rscratch); // first operand, deeper in stack

  __ cmpd(CCR0, Rscratch, R17_tos); // compare
  __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
  __ srwi(Rscratch, R17_tos, 30);
  __ srawi(R17_tos, R17_tos, 31);
  __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
}

// fcmpl/fcmpg and dcmpl/dcmpg bytecodes
// unordered_result == -1 => fcmpl or dcmpl
// unordered_result ==  1 => fcmpg or dcmpg
void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  const FloatRegister Rfirst  = F0_SCRATCH,
                      Rsecond = F15_ftos;
  const Register Rscratch = R11_scratch1;

  if (is_float) {
    __ pop_f(Rfirst);
  } else {
    __ pop_d(Rfirst);
  }

  Label Lunordered, Ldone;
  __ fcmpu(CCR0, Rfirst, Rsecond); // compare
  if (unordered_result) {
    __ bso(CCR0, Lunordered);
  }
  __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
  __ srwi(Rscratch, R17_tos, 30);
  __ srawi(R17_tos, R17_tos, 31);
  __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
  if (unordered_result) {
    __ b(Ldone);
    __ bind(Lunordered);
    __ load_const_optimized(R17_tos, unordered_result);
  }
  __ bind(Ldone);
}

// Branch_conditional which takes TemplateTable::Condition.
void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
  bool positive = false;
  Assembler::Condition cond = Assembler::equal;
  switch (cc) {
    case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
    case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
    case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
    case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
    case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
    case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
    default: ShouldNotReachHere();
  }
  int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
  int bi = Assembler::bi0(crx, cond);
  __ bc(bo, bi, L);
}

void TemplateTable::branch(bool is_jsr, bool is_wide) {

  // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  __ verify_thread();

  const Register Rscratch1    = R11_scratch1,
                 Rscratch2    = R12_scratch2,
                 Rscratch3    = R3_ARG1,
                 R4_counters  = R4_ARG2,
                 bumped_count = R31,
                 Rdisp        = R22_tmp2;

  __ profile_taken_branch(Rscratch1, bumped_count);

  // Get (wide) offset.
  if (is_wide) {
    __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
  } else {
    __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
  }

  // --------------------------------------------------------------------------
  // Handle all the JSR stuff here, then exit.
  // It's much shorter and cleaner than intermingling with the
  // non-JSR normal-branch stuff occurring below.
  if (is_jsr) {
    // Compute return address as bci in Otos_i.
    __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
    __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
    __ subf(R17_tos, Rscratch1, Rscratch2);

    // Bump bcp to target of JSR.
    __ add(R14_bcp, Rdisp, R14_bcp);
    // Push returnAddress for "ret" on stack.
    __ push_ptr(R17_tos);
    // And away we go!
    __ dispatch_next(vtos);
    return;
  }

  // --------------------------------------------------------------------------
  // Normal (non-jsr) branch handling

  const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  if (increment_invocation_counter_for_backward_branches) {
    //__ unimplemented("branch invocation counter");

    Label Lforward;
    __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.

    // Check branch direction.
    __ cmpdi(CCR0, Rdisp, 0);
    __ bgt(CCR0, Lforward);

    __ get_method_counters(R19_method, R4_counters, Lforward);

    if (TieredCompilation) {
      Label Lno_mdo, Loverflow;
      const int increment = InvocationCounter::count_increment;
      const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
      if (ProfileInterpreter) {
        Register Rmdo = Rscratch1;

        // If no method data exists, go to profile_continue.
        __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
        __ cmpdi(CCR0, Rmdo, 0);
        __ beq(CCR0, Lno_mdo);

        // Increment backedge counter in the MDO.
        const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
        __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
        __ load_const_optimized(Rscratch3, mask, R0);
        __ addi(Rscratch2, Rscratch2, increment);
        __ stw(Rscratch2, mdo_bc_offs, Rmdo);
        __ and_(Rscratch3, Rscratch2, Rscratch3);
        __ bne(CCR0, Lforward);
        __ b(Loverflow);
      }

      // If there's no MDO, increment counter in method.
      const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
      __ bind(Lno_mdo);
      __ lwz(Rscratch2, mo_bc_offs, R4_counters);
      __ load_const_optimized(Rscratch3, mask, R0);
      __ addi(Rscratch2, Rscratch2, increment);
      __ stw(Rscratch2, mo_bc_offs, R19_method);
      __ and_(Rscratch3, Rscratch2, Rscratch3);
      __ bne(CCR0, Lforward);

      __ bind(Loverflow);

      // Notify point for loop, pass branch bytecode.
      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);

      // Was an OSR adapter generated?
      // O0 = osr nmethod
      __ cmpdi(CCR0, R3_RET, 0);
      __ beq(CCR0, Lforward);

      // Has the nmethod been invalidated already?
      __ lwz(R0, nmethod::entry_bci_offset(), R3_RET);
      __ cmpwi(CCR0, R0, InvalidOSREntryBci);
      __ beq(CCR0, Lforward);

      // Migrate the interpreter frame off of the stack.
      // We can use all registers because we will not return to interpreter from this point.

      // Save nmethod.
      const Register osr_nmethod = R31;
      __ mr(osr_nmethod, R3_RET);
      __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
      __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
      __ reset_last_Java_frame();
      // OSR buffer is in ARG1.

      // Remove the interpreter frame.
      __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);

      // Jump to the osr code.
      __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
      __ mtlr(R0);
      __ mtctr(R11_scratch1);
      __ bctr();

    } else {

      const Register invoke_ctr = Rscratch1;
      // Update Backedge branch separately from invocations.
      __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);

      if (ProfileInterpreter) {
        __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
        if (UseOnStackReplacement) {
          __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
        }
      } else {
        if (UseOnStackReplacement) {
          __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
        }
      }
    }

    __ bind(Lforward);

  } else {
    // Bump bytecode pointer by displacement (take the branch).
    __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
  }
  // Continue with bytecode @ target.
  // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  // %%%%% and changing dispatch_next to dispatch_only.
  __ dispatch_next(vtos);
}

// Helper function for if_cmp* methods below.
// Factored out common compare and branch code.
void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
  Label Lnot_taken;
  // Note: The condition code we get is the condition under which we
  // *fall through*! So we have to inverse the CC here.

  if (is_jint) {
    if (cmp0) {
      __ cmpwi(CCR0, Rfirst, 0);
    } else {
      __ cmpw(CCR0, Rfirst, Rsecond);
    }
  } else {
    if (cmp0) {
      __ cmpdi(CCR0, Rfirst, 0);
    } else {
      __ cmpd(CCR0, Rfirst, Rsecond);
    }
  }
  branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);

  // Conition is false => Jump!
  branch(false, false);

  // Condition is not true => Continue.
  __ align(32, 12);
  __ bind(Lnot_taken);
  __ profile_not_taken_branch(Rscratch1, Rscratch2);
}

// Compare integer values with zero and fall through if CC holds, branch away otherwise.
void TemplateTable::if_0cmp(Condition cc) {
  transition(itos, vtos);

  if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
}

// Compare integer values and fall through if CC holds, branch away otherwise.
//
// Interface:
//  - Rfirst: First operand  (older stack value)
//  - tos:    Second operand (younger stack value)
void TemplateTable::if_icmp(Condition cc) {
  transition(itos, vtos);

  const Register Rfirst  = R0,
                 Rsecond = R17_tos;

  __ pop_i(Rfirst);
  if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
}

void TemplateTable::if_nullcmp(Condition cc) {
  transition(atos, vtos);

  if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
}

void TemplateTable::if_acmp(Condition cc) {
  transition(atos, vtos);

  const Register Rfirst  = R0,
                 Rsecond = R17_tos;

  __ pop_ptr(Rfirst);
  if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
}

void TemplateTable::ret() {
  locals_index(R11_scratch1);
  __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);

  __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);

  __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
  __ add(R11_scratch1, R17_tos, R11_scratch1);
  __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
  __ dispatch_next(vtos);
}

void TemplateTable::wide_ret() {
  transition(vtos, vtos);

  const Register Rindex = R3_ARG1,
                 Rscratch1 = R11_scratch1,
                 Rscratch2 = R12_scratch2;

  locals_index_wide(Rindex);
  __ load_local_ptr(R17_tos, R17_tos, Rindex);
  __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
  // Tos now contains the bci, compute the bcp from that.
  __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
  __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
  __ add(R14_bcp, Rscratch1, Rscratch2);
  __ dispatch_next(vtos);
}

void TemplateTable::tableswitch() {
  transition(itos, vtos);

  Label Ldispatch, Ldefault_case;
  Register Rlow_byte         = R3_ARG1,
           Rindex            = Rlow_byte,
           Rhigh_byte        = R4_ARG2,
           Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
           Rscratch1         = R11_scratch1,
           Rscratch2         = R12_scratch2,
           Roffset           = R6_ARG4;

  // Align bcp.
  __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
  __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));

  // Load lo & hi.
1854 1855
  __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
  __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

  // Check for default case (=index outside [low,high]).
  __ cmpw(CCR0, R17_tos, Rlow_byte);
  __ cmpw(CCR1, R17_tos, Rhigh_byte);
  __ blt(CCR0, Ldefault_case);
  __ bgt(CCR1, Ldefault_case);

  // Lookup dispatch offset.
  __ sub(Rindex, R17_tos, Rlow_byte);
  __ extsw(Rindex, Rindex);
  __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
  __ sldi(Rindex, Rindex, LogBytesPerInt);
  __ addi(Rindex, Rindex, 3 * BytesPerInt);
1869 1870 1871 1872
#if defined(VM_LITTLE_ENDIAN)
  __ lwbrx(Roffset, Rdef_offset_addr, Rindex);
  __ extsw(Roffset, Roffset);
#else
1873
  __ lwax(Roffset, Rdef_offset_addr, Rindex);
1874
#endif
1875 1876 1877 1878
  __ b(Ldispatch);

  __ bind(Ldefault_case);
  __ profile_switch_default(Rhigh_byte, Rscratch1);
1879
  __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

  __ bind(Ldispatch);

  __ add(R14_bcp, Roffset, R14_bcp);
  __ dispatch_next(vtos);
}

void TemplateTable::lookupswitch() {
  transition(itos, itos);
  __ stop("lookupswitch bytecode should have been rewritten");
}

// Table switch using linear search through cases.
// Bytecode stream format:
// Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1895
// Note: Everything is big-endian format here.
1896 1897 1898
void TemplateTable::fast_linearswitch() {
  transition(itos, vtos);

1899
  Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
  Register Rcount           = R3_ARG1,
           Rcurrent_pair    = R4_ARG2,
           Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
           Roffset          = R31,     // Might need to survive C call.
           Rvalue           = R12_scratch2,
           Rscratch         = R11_scratch1,
           Rcmp_value       = R17_tos;

  // Align bcp.
  __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
  __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));

  // Setup loop counter and limit.
1913
  __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1914 1915 1916
  __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.

  __ mtctr(Rcount);
1917 1918
  __ cmpwi(CCR0, Rcount, 0);
  __ bne(CCR0, Lloop_entry);
1919

1920
  // Default case
1921
  __ bind(Ldefault_case);
1922
  __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1923 1924 1925
  if (ProfileInterpreter) {
    __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
  }
1926
  __ b(Lcontinue_execution);
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
  // Next iteration
  __ bind(Lsearch_loop);
  __ bdz(Ldefault_case);
  __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
  __ bind(Lloop_entry);
  __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned);
  __ cmpw(CCR0, Rvalue, Rcmp_value);
  __ bne(CCR0, Lsearch_loop);

  // Found, load offset.
  __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed);
  // Calculate case index and profile
  __ mfctr(Rcurrent_pair);
1941
  if (ProfileInterpreter) {
1942
    __ sub(Rcurrent_pair, Rcount, Rcurrent_pair);
1943 1944
    __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
  }
1945 1946

  __ bind(Lcontinue_execution);
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
  __ add(R14_bcp, Roffset, R14_bcp);
  __ dispatch_next(vtos);
}

// Table switch using binary search (value/offset pairs are ordered).
// Bytecode stream format:
// Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
// Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
void TemplateTable::fast_binaryswitch() {

  transition(itos, vtos);
  // Implementation using the following core algorithm: (copied from Intel)
  //
  // int binary_search(int key, LookupswitchPair* array, int n) {
  //   // Binary search according to "Methodik des Programmierens" by
  //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  //   int i = 0;
  //   int j = n;
  //   while (i+1 < j) {
  //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  //     // with      Q: for all i: 0 <= i < n: key < a[i]
  //     // where a stands for the array and assuming that the (inexisting)
  //     // element a[n] is infinitely big.
  //     int h = (i + j) >> 1;
  //     // i < h < j
  //     if (key < array[h].fast_match()) {
  //       j = h;
  //     } else {
  //       i = h;
  //     }
  //   }
  //   // R: a[i] <= key < a[i+1] or Q
  //   // (i.e., if key is within array, i is the correct index)
  //   return i;
  // }

  // register allocation
  const Register Rkey     = R17_tos;          // already set (tosca)
  const Register Rarray   = R3_ARG1;
  const Register Ri       = R4_ARG2;
  const Register Rj       = R5_ARG3;
  const Register Rh       = R6_ARG4;
  const Register Rscratch = R11_scratch1;

  const int log_entry_size = 3;
  const int entry_size = 1 << log_entry_size;

  Label found;

  // Find Array start,
  __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
  __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));

  // initialize i & j
  __ li(Ri,0);
2002
  __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned);
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

  // and start.
  Label entry;
  __ b(entry);

  // binary search loop
  { Label loop;
    __ bind(loop);
    // int h = (i + j) >> 1;
    __ srdi(Rh, Rh, 1);
    // if (key < array[h].fast_match()) {
    //   j = h;
    // } else {
    //   i = h;
    // }
    __ sldi(Rscratch, Rh, log_entry_size);
2019 2020 2021
#if defined(VM_LITTLE_ENDIAN)
    __ lwbrx(Rscratch, Rscratch, Rarray);
#else
2022
    __ lwzx(Rscratch, Rscratch, Rarray);
2023
#endif
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

    // if (key < current value)
    //   Rh = Rj
    // else
    //   Rh = Ri
    Label Lgreater;
    __ cmpw(CCR0, Rkey, Rscratch);
    __ bge(CCR0, Lgreater);
    __ mr(Rj, Rh);
    __ b(entry);
    __ bind(Lgreater);
    __ mr(Ri, Rh);

    // while (i+1 < j)
    __ bind(entry);
    __ addi(Rscratch, Ri, 1);
    __ cmpw(CCR0, Rscratch, Rj);
    __ add(Rh, Ri, Rj); // start h = i + j >> 1;

    __ blt(CCR0, loop);
  }

  // End of binary search, result index is i (must check again!).
  Label default_case;
  Label continue_execution;
  if (ProfileInterpreter) {
    __ mr(Rh, Ri);              // Save index in i for profiling.
  }
  // Ri = value offset
  __ sldi(Ri, Ri, log_entry_size);
  __ add(Ri, Ri, Rarray);
2055
  __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned);
2056 2057 2058 2059 2060 2061

  Label not_found;
  // Ri = offset offset
  __ cmpw(CCR0, Rkey, Rscratch);
  __ beq(CCR0, not_found);
  // entry not found -> j = default offset
2062
  __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned);
2063 2064 2065 2066 2067
  __ b(default_case);

  __ bind(not_found);
  // entry found -> j = offset
  __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
2068
  __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

  if (ProfileInterpreter) {
    __ b(continue_execution);
  }

  __ bind(default_case); // fall through (if not profiling)
  __ profile_switch_default(Ri, Rscratch);

  __ bind(continue_execution);

  __ extsw(Rj, Rj);
  __ add(R14_bcp, Rj, R14_bcp);
  __ dispatch_next(vtos);
}

void TemplateTable::_return(TosState state) {
  transition(state, state);
  assert(_desc->calls_vm(),
         "inconsistent calls_vm information"); // call in remove_activation

  if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {

    Register Rscratch     = R11_scratch1,
             Rklass       = R12_scratch2,
             Rklass_flags = Rklass;
    Label Lskip_register_finalizer;

    // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
    assert(state == vtos, "only valid state");
    __ ld(R17_tos, 0, R18_locals);

    // Load klass of this obj.
    __ load_klass(Rklass, R17_tos);
    __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
    __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
    __ bfalse(CCR0, Lskip_register_finalizer);

    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);

    __ align(32, 12);
    __ bind(Lskip_register_finalizer);
  }

  // Move the result value into the correct register and remove memory stack frame.
  __ remove_activation(state, /* throw_monitor_exception */ true);
  // Restoration of lr done by remove_activation.
  switch (state) {
S
simonis 已提交
2116 2117 2118 2119
    // Narrow result if state is itos but result type is smaller.
    // Need to narrow in the return bytecode rather than in generate_return_entry
    // since compiled code callers expect the result to already be narrowed.
    case itos: __ narrow(R17_tos); /* fall through */
2120 2121
    case ltos:
    case btos:
S
simonis 已提交
2122
    case ztos:
2123 2124
    case ctos:
    case stos:
S
simonis 已提交
2125
    case atos: __ mr(R3_RET, R17_tos); break;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
    case ftos:
    case dtos: __ fmr(F1_RET, F15_ftos); break;
    case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
               // to get visible before the reference to the object gets stored anywhere.
               __ membar(Assembler::StoreStore); break;
    default  : ShouldNotReachHere();
  }
  __ blr();
}

// ============================================================================
// Constant pool cache access
//
// Memory ordering:
//
// Like done in C++ interpreter, we load the fields
//   - _indices
//   - _f12_oop
// acquired, because these are asked if the cache is already resolved. We don't
// want to float loads above this check.
// See also comments in ConstantPoolCacheEntry::bytecode_1(),
// ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();

// Call into the VM if call site is not yet resolved
//
// Input regs:
//   - None, all passed regs are outputs.
//
// Returns:
//   - Rcache:  The const pool cache entry that contains the resolved result.
//   - Rresult: Either noreg or output for f1/f2.
//
// Kills:
//   - Rscratch
void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {

  __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
  Label Lresolved, Ldone;

  assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  // We are resolved if the indices offset contains the current bytecode.
2167 2168 2169
#if defined(VM_LITTLE_ENDIAN)
  __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache);
#else
2170
  __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
2171
#endif
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
  // Acquire by cmp-br-isync (see below).
  __ cmpdi(CCR0, Rscratch, (int)bytecode());
  __ beq(CCR0, Lresolved);

  address entry = NULL;
  switch (bytecode()) {
    case Bytecodes::_getstatic      : // fall through
    case Bytecodes::_putstatic      : // fall through
    case Bytecodes::_getfield       : // fall through
    case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
    case Bytecodes::_invokevirtual  : // fall through
    case Bytecodes::_invokespecial  : // fall through
    case Bytecodes::_invokestatic   : // fall through
    case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
    case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
    case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
    default                         : ShouldNotReachHere(); break;
  }
  __ li(R4_ARG2, (int)bytecode());
  __ call_VM(noreg, entry, R4_ARG2, true);

  // Update registers with resolved info.
  __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
  __ b(Ldone);

  __ bind(Lresolved);
  __ isync(); // Order load wrt. succeeding loads.
  __ bind(Ldone);
}

// Load the constant pool cache entry at field accesses into registers.
// The Rcache and Rindex registers must be set before call.
// Input:
//   - Rcache, Rindex
// Output:
//   - Robj, Roffset, Rflags
void TemplateTable::load_field_cp_cache_entry(Register Robj,
                                              Register Rcache,
                                              Register Rindex /* unused on PPC64 */,
                                              Register Roffset,
                                              Register Rflags,
                                              bool is_static = false) {
  assert_different_registers(Rcache, Rflags, Roffset);
  // assert(Rindex == noreg, "parameter not used on PPC64");

  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
  __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
  if (is_static) {
    __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
    __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
    // Acquire not needed here. Following access has an address dependency on this value.
  }
}

// Load the constant pool cache entry at invokes into registers.
// Resolve if necessary.

// Input Registers:
//   - None, bcp is used, though
//
// Return registers:
//   - Rmethod       (f1 field or f2 if invokevirtual)
//   - Ritable_index (f2 field)
//   - Rflags        (flags field)
//
// Kills:
//   - R21
//
void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
                                               Register Rmethod,
                                               Register Ritable_index,
                                               Register Rflags,
                                               bool is_invokevirtual,
                                               bool is_invokevfinal,
                                               bool is_invokedynamic) {

  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  // Determine constant pool cache field offsets.
  assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
  const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
  // Access constant pool cache fields.
  const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());

  Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.

  if (is_invokevfinal) {
    assert(Ritable_index == noreg, "register not used");
    // Already resolved.
    __ get_cache_and_index_at_bcp(Rcache, 1);
  } else {
    resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
  }

  __ ld(Rmethod, method_offset, Rcache);
  __ ld(Rflags, flags_offset, Rcache);

  if (Ritable_index != noreg) {
    __ ld(Ritable_index, index_offset, Rcache);
  }
}

// ============================================================================
// Field access

// Volatile variables demand their effects be made known to all CPU's
// in order. Store buffers on most chips allow reads & writes to
// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
// without some kind of memory barrier (i.e., it's not sufficient that
// the interpreter does not reorder volatile references, the hardware
// also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other. ALSO reads &
//     writes act as aquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that
//     happen after the read float up to before the read. It's OK for
//     non-volatile memory refs that happen before the volatile read to
//     float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile
//     memory refs that happen BEFORE the write float down to after the
//     write. It's OK for non-volatile memory refs that happen after the
//     volatile write to float up before it.
//
// We only put in barriers around volatile refs (they are expensive),
// not _between_ memory refs (that would require us to track the
// flavor of the previous memory refs). Requirements (2) and (3)
// require some barriers before volatile stores and after volatile
// loads. These nearly cover requirement (1) but miss the
// volatile-store-volatile-load case.  This final case is placed after
// volatile-stores although it could just as well go before
// volatile-loads.

// The registers cache and index expected to be set before call.
// Correct values of the cache and index registers are preserved.
// Kills:
//   Rcache (if has_tos)
//   Rscratch
void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {

  assert_different_registers(Rcache, Rscratch);

  if (JvmtiExport::can_post_field_access()) {
    ByteSize cp_base_offset = ConstantPoolCache::base_offset();
    Label Lno_field_access_post;

    // Check if post field access in enabled.
    int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
    __ lwz(Rscratch, offs, Rscratch);

    __ cmpwi(CCR0, Rscratch, 0);
    __ beq(CCR0, Lno_field_access_post);

    // Post access enabled - do it!
    __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
    if (is_static) {
      __ li(R17_tos, 0);
    } else {
      if (has_tos) {
        // The fast bytecode versions have obj ptr in register.
        // Thus, save object pointer before call_VM() clobbers it
        // put object on tos where GC wants it.
        __ push_ptr(R17_tos);
      } else {
        // Load top of stack (do not pop the value off the stack).
        __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
      }
      __ verify_oop(R17_tos);
    }
    // tos:   object pointer or NULL if static
    // cache: cache entry pointer
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
    if (!is_static && has_tos) {
      // Restore object pointer.
      __ pop_ptr(R17_tos);
      __ verify_oop(R17_tos);
    } else {
      // Cache is still needed to get class or obj.
      __ get_cache_and_index_at_bcp(Rcache, 1);
    }

    __ align(32, 12);
    __ bind(Lno_field_access_post);
  }
}

// kills R11_scratch1
void TemplateTable::pop_and_check_object(Register Roop) {
  Register Rtmp = R11_scratch1;

  assert_different_registers(Rtmp, Roop);
  __ pop_ptr(Roop);
  // For field access must check obj.
  __ null_check_throw(Roop, -1, Rtmp);
  __ verify_oop(Roop);
}

// PPC64: implement volatile loads as fence-store-acquire.
void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  transition(vtos, vtos);

  Label Lacquire, Lisync;

  const Register Rcache        = R3_ARG1,
                 Rclass_or_obj = R22_tmp2,
                 Roffset       = R23_tmp3,
                 Rflags        = R31,
                 Rbtable       = R5_ARG3,
                 Rbc           = R6_ARG4,
                 Rscratch      = R12_scratch2;

  static address field_branch_table[number_of_states],
                 static_branch_table[number_of_states];

  address* branch_table = is_static ? static_branch_table : field_branch_table;

  // Get field offset.
  resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));

  // JVMTI support
  jvmti_post_field_access(Rcache, Rscratch, is_static, false);

  // Load after possible GC.
  load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);

  // Load pointer to branch table.
  __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);

  // Get volatile flag.
  __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
  // Note: sync is needed before volatile load on PPC64.

  // Check field type.
  __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);

#ifdef ASSERT
  Label LFlagInvalid;
  __ cmpldi(CCR0, Rflags, number_of_states);
  __ bge(CCR0, LFlagInvalid);
#endif

  // Load from branch table and dispatch (volatile case: one instruction ahead).
  __ sldi(Rflags, Rflags, LogBytesPerWord);
  __ cmpwi(CCR6, Rscratch, 1); // Volatile?
  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
  }
  __ ldx(Rbtable, Rbtable, Rflags);

  // Get the obj from stack.
  if (!is_static) {
    pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
  } else {
    __ verify_oop(Rclass_or_obj);
  }

  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
  }
  __ mtctr(Rbtable);
  __ bctr();

#ifdef ASSERT
  __ bind(LFlagInvalid);
  __ stop("got invalid flag", 0x654);

  // __ bind(Lvtos);
  address pc_before_fence = __ pc();
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
  assert(branch_table[vtos] == 0, "can't compute twice");
  branch_table[vtos] = __ pc(); // non-volatile_entry point
  __ stop("vtos unexpected", 0x655);
#endif

  __ align(32, 28, 28); // Align load.
  // __ bind(Ldtos);
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[dtos] == 0, "can't compute twice");
  branch_table[dtos] = __ pc(); // non-volatile_entry point
  __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
  __ push(dtos);
  if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
  {
    Label acquire_double;
    __ beq(CCR6, acquire_double); // Volatile?
    __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

    __ bind(acquire_double);
    __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
    __ beq_predict_taken(CCR0, Lisync);
    __ b(Lisync); // In case of NAN.
  }

  __ align(32, 28, 28); // Align load.
  // __ bind(Lftos);
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[ftos] == 0, "can't compute twice");
  branch_table[ftos] = __ pc(); // non-volatile_entry point
  __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
  __ push(ftos);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
  {
    Label acquire_float;
    __ beq(CCR6, acquire_float); // Volatile?
    __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

    __ bind(acquire_float);
    __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
    __ beq_predict_taken(CCR0, Lisync);
    __ b(Lisync); // In case of NAN.
  }

  __ align(32, 28, 28); // Align load.
  // __ bind(Litos);
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[itos] == 0, "can't compute twice");
  branch_table[itos] = __ pc(); // non-volatile_entry point
  __ lwax(R17_tos, Rclass_or_obj, Roffset);
  __ push(itos);
  if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
  __ beq(CCR6, Lacquire); // Volatile?
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align load.
  // __ bind(Lltos);
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[ltos] == 0, "can't compute twice");
  branch_table[ltos] = __ pc(); // non-volatile_entry point
  __ ldx(R17_tos, Rclass_or_obj, Roffset);
  __ push(ltos);
  if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
  __ beq(CCR6, Lacquire); // Volatile?
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align load.
  // __ bind(Lbtos);
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[btos] == 0, "can't compute twice");
  branch_table[btos] = __ pc(); // non-volatile_entry point
  __ lbzx(R17_tos, Rclass_or_obj, Roffset);
  __ extsb(R17_tos, R17_tos);
  __ push(btos);
  if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
  __ beq(CCR6, Lacquire); // Volatile?
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

S
simonis 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
  __ align(32, 28, 28); // Align load.
  // __ bind(Lztos); (same code as btos)
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[ztos] == 0, "can't compute twice");
  branch_table[ztos] = __ pc(); // non-volatile_entry point
  __ lbzx(R17_tos, Rclass_or_obj, Roffset);
  __ extsb(R17_tos, R17_tos);
  __ push(ztos);
  if (!is_static) {
    // use btos rewriting, no truncating to t/f bit is needed for getfield.
    patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
  }
  __ beq(CCR6, Lacquire); // Volatile?
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
  __ align(32, 28, 28); // Align load.
  // __ bind(Lctos);
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[ctos] == 0, "can't compute twice");
  branch_table[ctos] = __ pc(); // non-volatile_entry point
  __ lhzx(R17_tos, Rclass_or_obj, Roffset);
  __ push(ctos);
  if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
  __ beq(CCR6, Lacquire); // Volatile?
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align load.
  // __ bind(Lstos);
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[stos] == 0, "can't compute twice");
  branch_table[stos] = __ pc(); // non-volatile_entry point
  __ lhax(R17_tos, Rclass_or_obj, Roffset);
  __ push(stos);
  if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
  __ beq(CCR6, Lacquire); // Volatile?
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align load.
  // __ bind(Latos);
  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[atos] == 0, "can't compute twice");
  branch_table[atos] = __ pc(); // non-volatile_entry point
  __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
  __ verify_oop(R17_tos);
  __ push(atos);
  //__ dcbt(R17_tos); // prefetch
  if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
  __ beq(CCR6, Lacquire); // Volatile?
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 12);
  __ bind(Lacquire);
  __ twi_0(R17_tos);
  __ bind(Lisync);
  __ isync(); // acquire

#ifdef ASSERT
  for (int i = 0; i<number_of_states; ++i) {
    assert(branch_table[i], "get initialization");
    //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
    //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
  }
#endif
}

void TemplateTable::getfield(int byte_no) {
  getfield_or_static(byte_no, false);
}

void TemplateTable::getstatic(int byte_no) {
  getfield_or_static(byte_no, true);
}

// The registers cache and index expected to be set before call.
// The function may destroy various registers, just not the cache and index registers.
void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {

  assert_different_registers(Rcache, Rscratch, R6_ARG4);

  if (JvmtiExport::can_post_field_modification()) {
    Label Lno_field_mod_post;

    // Check if post field access in enabled.
    int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
    __ lwz(Rscratch, offs, Rscratch);

    __ cmpwi(CCR0, Rscratch, 0);
    __ beq(CCR0, Lno_field_mod_post);

    // Do the post
    ByteSize cp_base_offset = ConstantPoolCache::base_offset();
    const Register Robj = Rscratch;

    __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
    if (is_static) {
      // Life is simple. Null out the object pointer.
      __ li(Robj, 0);
    } else {
      // In case of the fast versions, value lives in registers => put it back on tos.
      int offs = Interpreter::expr_offset_in_bytes(0);
      Register base = R15_esp;
      switch(bytecode()) {
        case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
        case Bytecodes::_fast_iputfield: // Fall through
        case Bytecodes::_fast_bputfield: // Fall through
S
simonis 已提交
2625
        case Bytecodes::_fast_zputfield: // Fall through
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
        case Bytecodes::_fast_cputfield: // Fall through
        case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
        case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
        case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
        case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
        default: {
          offs = 0;
          base = Robj;
          const Register Rflags = Robj;
          Label is_one_slot;
          // Life is harder. The stack holds the value on top, followed by the
          // object. We don't know the size of the value, though; it could be
          // one or two words depending on its type. As a result, we must find
          // the type to determine where the object is.
          __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
          __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);

          __ cmpwi(CCR0, Rflags, ltos);
          __ cmpwi(CCR1, Rflags, dtos);
          __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
          __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
          __ beq(CCR0, is_one_slot);
          __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
          __ bind(is_one_slot);
          break;
        }
      }
      __ ld(Robj, offs, base);
      __ verify_oop(Robj);
    }

    __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
    __ get_cache_and_index_at_bcp(Rcache, 1);

    // In case of the fast versions, value lives in registers => put it back on tos.
    switch(bytecode()) {
      case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
      case Bytecodes::_fast_iputfield: // Fall through
      case Bytecodes::_fast_bputfield: // Fall through
S
simonis 已提交
2666
      case Bytecodes::_fast_zputfield: // Fall through
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
      case Bytecodes::_fast_cputfield: // Fall through
      case Bytecodes::_fast_sputfield: __ pop_i(); break;
      case Bytecodes::_fast_lputfield: __ pop_l(); break;
      case Bytecodes::_fast_fputfield: __ pop_f(); break;
      case Bytecodes::_fast_dputfield: __ pop_d(); break;
      default: break; // Nothin' to do.
    }

    __ align(32, 12);
    __ bind(Lno_field_mod_post);
  }
}

// PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  Label Lvolatile;

  const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
                 Rclass_or_obj = R31,      // Needs to survive C call.
                 Roffset       = R22_tmp2, // Needs to survive C call.
                 Rflags        = R3_ARG1,
                 Rbtable       = R4_ARG2,
                 Rscratch      = R11_scratch1,
                 Rscratch2     = R12_scratch2,
                 Rscratch3     = R6_ARG4,
                 Rbc           = Rscratch3;
  const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).

  static address field_branch_table[number_of_states],
                 static_branch_table[number_of_states];

  address* branch_table = is_static ? static_branch_table : field_branch_table;

  // Stack (grows up):
  //  value
  //  obj

  // Load the field offset.
  resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
  jvmti_post_field_mod(Rcache, Rscratch, is_static);
  load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);

  // Load pointer to branch table.
  __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);

  // Get volatile flag.
  __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.

  // Check the field type.
  __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);

#ifdef ASSERT
  Label LFlagInvalid;
  __ cmpldi(CCR0, Rflags, number_of_states);
  __ bge(CCR0, LFlagInvalid);
#endif

  // Load from branch table and dispatch (volatile case: one instruction ahead).
  __ sldi(Rflags, Rflags, LogBytesPerWord);
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
  __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
  __ ldx(Rbtable, Rbtable, Rflags);

  __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
  __ mtctr(Rbtable);
  __ bctr();

#ifdef ASSERT
  __ bind(LFlagInvalid);
  __ stop("got invalid flag", 0x656);

  // __ bind(Lvtos);
  address pc_before_release = __ pc();
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
  assert(branch_table[vtos] == 0, "can't compute twice");
  branch_table[vtos] = __ pc(); // non-volatile_entry point
  __ stop("vtos unexpected", 0x657);
#endif

  __ align(32, 28, 28); // Align pop.
  // __ bind(Ldtos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[dtos] == 0, "can't compute twice");
  branch_table[dtos] = __ pc(); // non-volatile_entry point
  __ pop(dtos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
  __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
  }
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align pop.
  // __ bind(Lftos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[ftos] == 0, "can't compute twice");
  branch_table[ftos] = __ pc(); // non-volatile_entry point
  __ pop(ftos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
  __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
  }
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align pop.
  // __ bind(Litos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[itos] == 0, "can't compute twice");
  branch_table[itos] = __ pc(); // non-volatile_entry point
  __ pop(itos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
  __ stwx(R17_tos, Rclass_or_obj, Roffset);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
  }
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align pop.
  // __ bind(Lltos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[ltos] == 0, "can't compute twice");
  branch_table[ltos] = __ pc(); // non-volatile_entry point
  __ pop(ltos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
  __ stdx(R17_tos, Rclass_or_obj, Roffset);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
  }
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align pop.
  // __ bind(Lbtos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[btos] == 0, "can't compute twice");
  branch_table[btos] = __ pc(); // non-volatile_entry point
  __ pop(btos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
  __ stbx(R17_tos, Rclass_or_obj, Roffset);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
  }
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

S
simonis 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
  __ align(32, 28, 28); // Align pop.
  // __ bind(Lztos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[ztos] == 0, "can't compute twice");
  branch_table[ztos] = __ pc(); // non-volatile_entry point
  __ pop(ztos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
  __ andi(R17_tos, R17_tos, 0x1);
  __ stbx(R17_tos, Rclass_or_obj, Roffset);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_zputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
  }
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
  __ align(32, 28, 28); // Align pop.
  // __ bind(Lctos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[ctos] == 0, "can't compute twice");
  branch_table[ctos] = __ pc(); // non-volatile_entry point
  __ pop(ctos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
  __ sthx(R17_tos, Rclass_or_obj, Roffset);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
  }
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align pop.
  // __ bind(Lstos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[stos] == 0, "can't compute twice");
  branch_table[stos] = __ pc(); // non-volatile_entry point
  __ pop(stos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
  __ sthx(R17_tos, Rclass_or_obj, Roffset);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
  }
  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

  __ align(32, 28, 28); // Align pop.
  // __ bind(Latos);
  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
  assert(branch_table[atos] == 0, "can't compute twice");
  branch_table[atos] = __ pc(); // non-volatile_entry point
  __ pop(atos);
  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
  do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
  if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ beq(CR_is_vol, Lvolatile); // Volatile?
    __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

    __ align(32, 12);
    __ bind(Lvolatile);
    __ fence();
  }
  // fallthru: __ b(Lexit);

#ifdef ASSERT
  for (int i = 0; i<number_of_states; ++i) {
    assert(branch_table[i], "put initialization");
    //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
    //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
  }
#endif
}

void TemplateTable::putfield(int byte_no) {
  putfield_or_static(byte_no, false);
}

void TemplateTable::putstatic(int byte_no) {
  putfield_or_static(byte_no, true);
}

// See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
void TemplateTable::jvmti_post_fast_field_mod() {
  __ should_not_reach_here();
}

void TemplateTable::fast_storefield(TosState state) {
  transition(state, vtos);

  const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
                 Rclass_or_obj = R31,      // Needs to survive C call.
                 Roffset       = R22_tmp2, // Needs to survive C call.
                 Rflags        = R3_ARG1,
                 Rscratch      = R11_scratch1,
                 Rscratch2     = R12_scratch2,
                 Rscratch3     = R4_ARG2;
  const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).

  // Constant pool already resolved => Load flags and offset of field.
  __ get_cache_and_index_at_bcp(Rcache, 1);
  jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
  load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);

  // Get the obj and the final store addr.
  pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.

  // Get volatile flag.
  __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
  {
    Label LnotVolatile;
    __ beq(CCR0, LnotVolatile);
    __ release();
    __ align(32, 12);
    __ bind(LnotVolatile);
  }

  // Do the store and fencing.
  switch(bytecode()) {
    case Bytecodes::_fast_aputfield:
      // Store into the field.
      do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
      break;

    case Bytecodes::_fast_iputfield:
      __ stwx(R17_tos, Rclass_or_obj, Roffset);
      break;

    case Bytecodes::_fast_lputfield:
      __ stdx(R17_tos, Rclass_or_obj, Roffset);
      break;

S
simonis 已提交
2947 2948 2949
    case Bytecodes::_fast_zputfield:
      __ andi(R17_tos, R17_tos, 0x1);  // boolean is true if LSB is 1
      // fall through to bputfield
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
    case Bytecodes::_fast_bputfield:
      __ stbx(R17_tos, Rclass_or_obj, Roffset);
      break;

    case Bytecodes::_fast_cputfield:
    case Bytecodes::_fast_sputfield:
      __ sthx(R17_tos, Rclass_or_obj, Roffset);
      break;

    case Bytecodes::_fast_fputfield:
      __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
      break;

    case Bytecodes::_fast_dputfield:
      __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
      break;

    default: ShouldNotReachHere();
  }

  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
    Label LVolatile;
    __ beq(CR_is_vol, LVolatile);
    __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));

    __ align(32, 12);
    __ bind(LVolatile);
    __ fence();
  }
}

void TemplateTable::fast_accessfield(TosState state) {
  transition(atos, state);

  Label LisVolatile;
  ByteSize cp_base_offset = ConstantPoolCache::base_offset();

  const Register Rcache        = R3_ARG1,
                 Rclass_or_obj = R17_tos,
                 Roffset       = R22_tmp2,
                 Rflags        = R23_tmp3,
                 Rscratch      = R12_scratch2;

  // Constant pool already resolved. Get the field offset.
  __ get_cache_and_index_at_bcp(Rcache, 1);
  load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);

  // JVMTI support
  jvmti_post_field_access(Rcache, Rscratch, false, true);

  // Get the load address.
  __ null_check_throw(Rclass_or_obj, -1, Rscratch);

  // Get volatile flag.
  __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
  __ bne(CCR0, LisVolatile);

  switch(bytecode()) {
    case Bytecodes::_fast_agetfield:
    {
      __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
      __ verify_oop(R17_tos);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));

      __ bind(LisVolatile);
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
      __ verify_oop(R17_tos);
      __ twi_0(R17_tos);
      __ isync();
      break;
    }
    case Bytecodes::_fast_igetfield:
    {
      __ lwax(R17_tos, Rclass_or_obj, Roffset);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));

      __ bind(LisVolatile);
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ lwax(R17_tos, Rclass_or_obj, Roffset);
      __ twi_0(R17_tos);
      __ isync();
      break;
    }
    case Bytecodes::_fast_lgetfield:
    {
      __ ldx(R17_tos, Rclass_or_obj, Roffset);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));

      __ bind(LisVolatile);
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ ldx(R17_tos, Rclass_or_obj, Roffset);
      __ twi_0(R17_tos);
      __ isync();
      break;
    }
    case Bytecodes::_fast_bgetfield:
    {
      __ lbzx(R17_tos, Rclass_or_obj, Roffset);
      __ extsb(R17_tos, R17_tos);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));

      __ bind(LisVolatile);
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ lbzx(R17_tos, Rclass_or_obj, Roffset);
      __ twi_0(R17_tos);
      __ extsb(R17_tos, R17_tos);
      __ isync();
      break;
    }
    case Bytecodes::_fast_cgetfield:
    {
      __ lhzx(R17_tos, Rclass_or_obj, Roffset);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));

      __ bind(LisVolatile);
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ lhzx(R17_tos, Rclass_or_obj, Roffset);
      __ twi_0(R17_tos);
      __ isync();
      break;
    }
    case Bytecodes::_fast_sgetfield:
    {
      __ lhax(R17_tos, Rclass_or_obj, Roffset);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));

      __ bind(LisVolatile);
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ lhax(R17_tos, Rclass_or_obj, Roffset);
      __ twi_0(R17_tos);
      __ isync();
      break;
    }
    case Bytecodes::_fast_fgetfield:
    {
      __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));

      __ bind(LisVolatile);
      Label Ldummy;
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
      __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
      __ bne_predict_not_taken(CCR0, Ldummy);
      __ bind(Ldummy);
      __ isync();
      break;
    }
    case Bytecodes::_fast_dgetfield:
    {
      __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));

      __ bind(LisVolatile);
      Label Ldummy;
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
      __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
      __ bne_predict_not_taken(CCR0, Ldummy);
      __ bind(Ldummy);
      __ isync();
      break;
    }
    default: ShouldNotReachHere();
  }
}

void TemplateTable::fast_xaccess(TosState state) {
  transition(vtos, state);

  Label LisVolatile;
  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  const Register Rcache        = R3_ARG1,
                 Rclass_or_obj = R17_tos,
                 Roffset       = R22_tmp2,
                 Rflags        = R23_tmp3,
                 Rscratch      = R12_scratch2;

  __ ld(Rclass_or_obj, 0, R18_locals);

  // Constant pool already resolved. Get the field offset.
  __ get_cache_and_index_at_bcp(Rcache, 2);
  load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);

  // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.

  // Needed to report exception at the correct bcp.
  __ addi(R14_bcp, R14_bcp, 1);

  // Get the load address.
  __ null_check_throw(Rclass_or_obj, -1, Rscratch);

  // Get volatile flag.
  __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
  __ bne(CCR0, LisVolatile);

  switch(state) {
  case atos:
    {
      __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
      __ verify_oop(R17_tos);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.

      __ bind(LisVolatile);
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
      __ verify_oop(R17_tos);
      __ twi_0(R17_tos);
      __ isync();
      break;
    }
  case itos:
    {
      __ lwax(R17_tos, Rclass_or_obj, Roffset);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.

      __ bind(LisVolatile);
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ lwax(R17_tos, Rclass_or_obj, Roffset);
      __ twi_0(R17_tos);
      __ isync();
      break;
    }
  case ftos:
    {
      __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.

      __ bind(LisVolatile);
      Label Ldummy;
      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
      __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
      __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
      __ bne_predict_not_taken(CCR0, Ldummy);
      __ bind(Ldummy);
      __ isync();
      break;
    }
  default: ShouldNotReachHere();
  }
  __ addi(R14_bcp, R14_bcp, -1);
}

// ============================================================================
// Calls

// Common code for invoke
//
// Input:
//   - byte_no
//
// Output:
//   - Rmethod:        The method to invoke next.
//   - Rret_addr:      The return address to return to.
//   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
//   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
//   - Rflags:         Method flags from const pool cache.
//
//  Kills:
//   - Rscratch1
//
void TemplateTable::prepare_invoke(int byte_no,
                                   Register Rmethod,  // linked method (or i-klass)
                                   Register Rret_addr,// return address
                                   Register Rindex,   // itable index, MethodType, etc.
                                   Register Rrecv,    // If caller wants to see it.
                                   Register Rflags,   // If caller wants to test it.
                                   Register Rscratch
                                   ) {
  // Determine flags.
  const Bytecodes::Code code = bytecode();
  const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  const bool load_receiver       = (Rrecv != noreg);
  assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");

  assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
  assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
  assert_different_registers(Rret_addr, Rscratch);

  load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);

  // Saving of SP done in call_from_interpreter.

  // Maybe push "appendix" to arguments.
  if (is_invokedynamic || is_invokehandle) {
    Label Ldone;
    __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
    __ beq(CCR0, Ldone);
    // Push "appendix" (MethodType, CallSite, etc.).
    // This must be done before we get the receiver,
    // since the parameter_size includes it.
    __ load_resolved_reference_at_index(Rscratch, Rindex);
    __ verify_oop(Rscratch);
    __ push_ptr(Rscratch);
    __ bind(Ldone);
  }

  // Load receiver if needed (after appendix is pushed so parameter size is correct).
  if (load_receiver) {
    const Register Rparam_count = Rscratch;
    __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
    __ load_receiver(Rparam_count, Rrecv);
    __ verify_oop(Rrecv);
  }

  // Get return address.
  {
    Register Rtable_addr = Rscratch;
    Register Rret_type = Rret_addr;
    address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);

    // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
    __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
    __ load_dispatch_table(Rtable_addr, (address*)table_addr);
    __ sldi(Rret_type, Rret_type, LogBytesPerWord);
    // Get return address.
    __ ldx(Rret_addr, Rtable_addr, Rret_type);
  }
}

// Helper for virtual calls. Load target out of vtable and jump off!
// Kills all passed registers.
void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {

  assert_different_registers(Rrecv_klass, Rtemp, Rret);
  const Register Rtarget_method = Rindex;

  // Get target method & entry point.
  const int base = InstanceKlass::vtable_start_offset() * wordSize;
  // Calc vtable addr scale the vtable index by 8.
  __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
  // Load target.
  __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
  __ ldx(Rtarget_method, Rindex, Rrecv_klass);
3289 3290
  // Argument and return type profiling.
  __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true);
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
  __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
}

// Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
void TemplateTable::invokevirtual(int byte_no) {
  transition(vtos, vtos);

  Register Rtable_addr = R11_scratch1,
           Rret_type = R12_scratch2,
           Rret_addr = R5_ARG3,
           Rflags = R22_tmp2, // Should survive C call.
           Rrecv = R3_ARG1,
           Rrecv_klass = Rrecv,
           Rvtableindex_or_method = R31, // Should survive C call.
           Rnum_params = R4_ARG2,
           Rnew_bc = R6_ARG4;

  Label LnotFinal;

  load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);

  __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
  __ bfalse(CCR0, LnotFinal);

  patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
  invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);

  __ align(32, 12);
  __ bind(LnotFinal);
  // Load "this" pointer (receiver).
  __ rldicl(Rnum_params, Rflags, 64, 48);
  __ load_receiver(Rnum_params, Rrecv);
  __ verify_oop(Rrecv);

  // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
  __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
  __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
  __ sldi(Rret_type, Rret_type, LogBytesPerWord);
  __ ldx(Rret_addr, Rret_type, Rtable_addr);
  __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
  __ load_klass(Rrecv_klass, Rrecv);
  __ verify_klass_ptr(Rrecv_klass);
  __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);

  generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
}

void TemplateTable::fast_invokevfinal(int byte_no) {
  transition(vtos, vtos);

  assert(byte_no == f2_byte, "use this argument");
  Register Rflags  = R22_tmp2,
           Rmethod = R31;
  load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
  invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
}

void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {

  assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);

  // Load receiver from stack slot.
  Register Rrecv = Rscratch2;
  Register Rnum_params = Rrecv;

  __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
  __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);

  // Get return address.
  Register Rtable_addr = Rscratch1,
           Rret_addr   = Rflags,
           Rret_type   = Rret_addr;
  // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
  __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
  __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
  __ sldi(Rret_type, Rret_type, LogBytesPerWord);
  __ ldx(Rret_addr, Rret_type, Rtable_addr);

  // Load receiver and receiver NULL check.
  __ load_receiver(Rnum_params, Rrecv);
  __ null_check_throw(Rrecv, -1, Rscratch1);

  __ profile_final_call(Rrecv, Rscratch1);
3374 3375
  // Argument and return type profiling.
  __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396

  // Do the call.
  __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
}

void TemplateTable::invokespecial(int byte_no) {
  assert(byte_no == f1_byte, "use this argument");
  transition(vtos, vtos);

  Register Rtable_addr = R3_ARG1,
           Rret_addr   = R4_ARG2,
           Rflags      = R5_ARG3,
           Rreceiver   = R6_ARG4,
           Rmethod     = R31;

  prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);

  // Receiver NULL check.
  __ null_check_throw(Rreceiver, -1, R11_scratch1);

  __ profile_call(R11_scratch1, R12_scratch2);
3397 3398
  // Argument and return type profiling.
  __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
  __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
}

void TemplateTable::invokestatic(int byte_no) {
  assert(byte_no == f1_byte, "use this argument");
  transition(vtos, vtos);

  Register Rtable_addr = R3_ARG1,
           Rret_addr   = R4_ARG2,
           Rflags      = R5_ARG3;

  prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);

  __ profile_call(R11_scratch1, R12_scratch2);
3413 3414
  // Argument and return type profiling.
  __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false);
3415 3416 3417 3418 3419 3420
  __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
}

void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
                                                  Register Rret,
                                                  Register Rflags,
3421
                                                  Register Rmethod,
3422 3423 3424
                                                  Register Rtemp1,
                                                  Register Rtemp2) {

3425
  assert_different_registers(Rmethod, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
  Label LnotFinal;

  // Check for vfinal.
  __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
  __ bfalse(CCR0, LnotFinal);

  Register Rscratch = Rflags; // Rflags is dead now.

  // Final call case.
  __ profile_final_call(Rtemp1, Rscratch);
3436
  // Argument and return type profiling.
3437
  __ profile_arguments_type(Rmethod, Rscratch, Rrecv_klass /* scratch */, true);
3438
  // Do the final call - the index (f2) contains the method.
3439
  __ call_from_interpreter(Rmethod, Rret, Rscratch, Rrecv_klass /* scratch */);
3440 3441 3442 3443

  // Non-final callc case.
  __ bind(LnotFinal);
  __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
3444
  generate_vtable_call(Rrecv_klass, Rmethod, Rret, Rscratch);
3445 3446 3447 3448 3449 3450 3451 3452
}

void TemplateTable::invokeinterface(int byte_no) {
  assert(byte_no == f1_byte, "use this argument");
  transition(vtos, vtos);

  const Register Rscratch1        = R11_scratch1,
                 Rscratch2        = R12_scratch2,
3453 3454
                 Rmethod          = R6_ARG4,
                 Rmethod2         = R9_ARG7,
3455
                 Rinterface_klass = R5_ARG3,
3456 3457 3458 3459
                 Rret_addr        = R8_ARG6,
                 Rindex           = R10_ARG8,
                 Rreceiver        = R3_ARG1,
                 Rrecv_klass      = R4_ARG2,
3460 3461
                 Rflags           = R7_ARG5;

3462
  prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rmethod, Rreceiver, Rflags, Rscratch1);
3463 3464

  // Get receiver klass.
3465
  __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch2);
3466 3467 3468
  __ load_klass(Rrecv_klass, Rreceiver);

  // Check corner case object method.
3469
  Label LobjectMethod, L_no_such_interface, Lthrow_ame;
3470 3471 3472
  __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
  __ btrue(CCR0, LobjectMethod);

3473 3474 3475
  __ lookup_interface_method(Rrecv_klass, Rinterface_klass, noreg, noreg, Rscratch1, Rscratch2,
                             L_no_such_interface, /*return_method=*/false);

3476 3477 3478 3479
  __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);

  // Find entry point to call.

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
  // Get declaring interface class from method
  __ ld(Rinterface_klass, in_bytes(Method::const_offset()), Rmethod);
  __ ld(Rinterface_klass, in_bytes(ConstMethod::constants_offset()), Rinterface_klass);
  __ ld(Rinterface_klass, ConstantPool::pool_holder_offset_in_bytes(), Rinterface_klass);

  // Get itable index from method
  __ lwa(Rindex, in_bytes(Method::itable_index_offset()), Rmethod);
  __ subfic(Rindex, Rindex, Method::itable_index_max);

  __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rmethod2, Rscratch1, Rscratch2,
                             L_no_such_interface);

  __ cmpdi(CCR0, Rmethod2, 0);
3493 3494
  __ beq(CCR0, Lthrow_ame);
  // Found entry. Jump off!
3495
  // Argument and return type profiling.
3496 3497 3498
  __ profile_arguments_type(Rmethod2, Rscratch1, Rscratch2, true);
  //__ profile_called_method(Rindex, Rscratch1);
  __ call_from_interpreter(Rmethod2, Rret_addr, Rscratch1, Rscratch2);
3499 3500 3501 3502 3503 3504

  // Vtable entry was NULL => Throw abstract method error.
  __ bind(Lthrow_ame);
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));

  // Interface was not found => Throw incompatible class change error.
3505
  __ bind(L_no_such_interface);
3506
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3507
  DEBUG_ONLY( __ should_not_reach_here(); )
3508 3509 3510 3511 3512 3513 3514

  // Special case of invokeinterface called for virtual method of
  // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
  // The invokeinterface was rewritten to a invokevirtual, hence we have
  // to handle this corner case. This code isn't produced by javac, but could
  // be produced by another compliant java compiler.
  __ bind(LobjectMethod);
3515
  invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rmethod, Rscratch1, Rscratch2);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
}

void TemplateTable::invokedynamic(int byte_no) {
  transition(vtos, vtos);

  const Register Rret_addr = R3_ARG1,
                 Rflags    = R4_ARG2,
                 Rmethod   = R22_tmp2,
                 Rscratch1 = R11_scratch1,
                 Rscratch2 = R12_scratch2;

  if (!EnableInvokeDynamic) {
    // We should not encounter this bytecode if !EnableInvokeDynamic.
    // The verifier will stop it. However, if we get past the verifier,
    // this will stop the thread in a reasonable way, without crashing the JVM.
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
    // The call_VM checks for exception, so we should never return here.
    __ should_not_reach_here();
    return;
  }

  prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);

  // Profile this call.
  __ profile_call(Rscratch1, Rscratch2);

  // Off we go. With the new method handles, we don't jump to a method handle
  // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
  // to be the callsite object the bootstrap method returned. This is passed to a
  // "link" method which does the dispatch (Most likely just grabs the MH stored
  // inside the callsite and does an invokehandle).
3547 3548
  // Argument and return type profiling.
  __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
  __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
}

void TemplateTable::invokehandle(int byte_no) {
  transition(vtos, vtos);

  const Register Rret_addr = R3_ARG1,
                 Rflags    = R4_ARG2,
                 Rrecv     = R5_ARG3,
                 Rmethod   = R22_tmp2,
                 Rscratch1 = R11_scratch1,
                 Rscratch2 = R12_scratch2;

  if (!EnableInvokeDynamic) {
    // Rewriter does not generate this bytecode.
    __ should_not_reach_here();
    return;
  }

  prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
  __ verify_method_ptr(Rmethod);
  __ null_check_throw(Rrecv, -1, Rscratch2);

  __ profile_final_call(Rrecv, Rscratch1);

  // Still no call from handle => We call the method handle interpreter here.
3575 3576
  // Argument and return type profiling.
  __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
  __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
}

// =============================================================================
// Allocation

// Puts allocated obj ref onto the expression stack.
void TemplateTable::_new() {
  transition(vtos, atos);

  Label Lslow_case,
        Ldone,
        Linitialize_header,
        Lallocate_shared,
        Linitialize_object;  // Including clearing the fields.

  const Register RallocatedObject = R17_tos,
                 RinstanceKlass   = R9_ARG7,
                 Rscratch         = R11_scratch1,
                 Roffset          = R8_ARG6,
                 Rinstance_size   = Roffset,
                 Rcpool           = R4_ARG2,
                 Rtags            = R3_ARG1,
                 Rindex           = R5_ARG3;

  const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;

  // --------------------------------------------------------------------------
  // Check if fast case is possible.

  // Load pointers to const pool and const pool's tags array.
  __ get_cpool_and_tags(Rcpool, Rtags);
  // Load index of constant pool entry.
  __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);

  if (UseTLAB) {
    // Make sure the class we're about to instantiate has been resolved
    // This is done before loading instanceKlass to be consistent with the order
    // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
    __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
    __ lbzx(Rtags, Rindex, Rtags);

    __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
    __ bne(CCR0, Lslow_case);

    // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
    __ sldi(Roffset, Rindex, LogBytesPerWord);
    __ addi(Rscratch, Rcpool, sizeof(ConstantPool));
    __ isync(); // Order load of instance Klass wrt. tags.
    __ ldx(RinstanceKlass, Roffset, Rscratch);

    // Make sure klass is fully initialized and get instance_size.
    __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
    __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);

    __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
    // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
    __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?

    __ crnand(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // slow path bit set or not fully initialized?
    __ beq(CCR0, Lslow_case);

    // --------------------------------------------------------------------------
    // Fast case:
    // Allocate the instance.
    // 1) Try to allocate in the TLAB.
    // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
    // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).

    Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
    Register RnewTopValue = R6_ARG4;
    Register RendValue    = R7_ARG5;

    // Check if we can allocate in the TLAB.
    __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
    __ ld(RendValue,    in_bytes(JavaThread::tlab_end_offset()), R16_thread);

    __ add(RnewTopValue, Rinstance_size, RoldTopValue);

    // If there is enough space, we do not CAS and do not clear.
    __ cmpld(CCR0, RnewTopValue, RendValue);
    __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);

    __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);

    if (ZeroTLAB) {
      // The fields have already been cleared.
      __ b(Linitialize_header);
    } else {
      // Initialize both the header and fields.
      __ b(Linitialize_object);
    }

    // Fall through: TLAB was too small.
    if (allow_shared_alloc) {
      Register RtlabWasteLimitValue = R10_ARG8;
      Register RfreeValue = RnewTopValue;

      __ bind(Lallocate_shared);
      // Check if tlab should be discarded (refill_waste_limit >= free).
      __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
      __ subf(RfreeValue, RoldTopValue, RendValue);
      __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
      __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
      __ bge(CCR0, Lslow_case);

      // Increment waste limit to prevent getting stuck on this slow path.
      __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
      __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
    }
    // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
  }
  // else: Always go the slow path.

  // --------------------------------------------------------------------------
  // slow case
  __ bind(Lslow_case);
  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);

  if (UseTLAB) {
    __ b(Ldone);
    // --------------------------------------------------------------------------
    // Init1: Zero out newly allocated memory.

    if (!ZeroTLAB || allow_shared_alloc) {
      // Clear object fields.
      __ bind(Linitialize_object);

      // Initialize remaining object fields.
      Register Rbase = Rtags;
      __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
      __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
      __ srdi(Rinstance_size, Rinstance_size, 3);

      // Clear out object skipping header. Takes also care of the zero length case.
      __ clear_memory_doubleword(Rbase, Rinstance_size);
      // fallthru: __ b(Linitialize_header);
    }

    // --------------------------------------------------------------------------
    // Init2: Initialize the header: mark, klass
    __ bind(Linitialize_header);

    // Init mark.
    if (UseBiasedLocking) {
      __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
    } else {
      __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
    }
    __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);

    // Init klass.
    __ store_klass_gap(RallocatedObject);
    __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)

    // Check and trigger dtrace event.
    {
      SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
      __ push(atos);
      __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
      __ pop(atos);
    }
  }

  // continue
  __ bind(Ldone);

  // Must prevent reordering of stores for object initialization with stores that publish the new object.
  __ membar(Assembler::StoreStore);
}

void TemplateTable::newarray() {
  transition(itos, atos);

  __ lbz(R4, 1, R14_bcp);
  __ extsw(R5, R17_tos);
  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);

  // Must prevent reordering of stores for object initialization with stores that publish the new object.
  __ membar(Assembler::StoreStore);
}

void TemplateTable::anewarray() {
  transition(itos, atos);

  __ get_constant_pool(R4);
  __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
  __ extsw(R6, R17_tos); // size
  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);

  // Must prevent reordering of stores for object initialization with stores that publish the new object.
  __ membar(Assembler::StoreStore);
}

// Allocate a multi dimensional array
void TemplateTable::multianewarray() {
  transition(vtos, atos);

  Register Rptr = R31; // Needs to survive C call.

  // Put ndims * wordSize into frame temp slot
  __ lbz(Rptr, 3, R14_bcp);
  __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
  // Esp points past last_dim, so set to R4 to first_dim address.
  __ add(R4, Rptr, R15_esp);
  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
  // Pop all dimensions off the stack.
  __ add(R15_esp, Rptr, R15_esp);

  // Must prevent reordering of stores for object initialization with stores that publish the new object.
  __ membar(Assembler::StoreStore);
}

void TemplateTable::arraylength() {
  transition(atos, itos);

  Label LnoException;
  __ verify_oop(R17_tos);
  __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
  __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
}

// ============================================================================
// Typechecks

void TemplateTable::checkcast() {
  transition(atos, atos);

  Label Ldone, Lis_null, Lquicked, Lresolved;
3806
  Register Roffset         = R6_ARG4,
3807
           RobjKlass       = R4_ARG2,
3808
           RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
           Rcpool          = R11_scratch1,
           Rtags           = R12_scratch2;

  // Null does not pass.
  __ cmpdi(CCR0, R17_tos, 0);
  __ beq(CCR0, Lis_null);

  // Get constant pool tag to find out if the bytecode has already been "quickened".
  __ get_cpool_and_tags(Rcpool, Rtags);

  __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);

  __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
  __ lbzx(Rtags, Rtags, Roffset);

  __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
  __ beq(CCR0, Lquicked);

  // Call into the VM to "quicken" instanceof.
  __ push_ptr();  // for GC
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  __ get_vm_result_2(RspecifiedKlass);
  __ pop_ptr();   // Restore receiver.
  __ b(Lresolved);

  // Extract target class from constant pool.
  __ bind(Lquicked);
  __ sldi(Roffset, Roffset, LogBytesPerWord);
  __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
  __ isync(); // Order load of specified Klass wrt. tags.
  __ ldx(RspecifiedKlass, Rcpool, Roffset);

  // Do the checkcast.
  __ bind(Lresolved);
  // Get value klass in RobjKlass.
  __ load_klass(RobjKlass, R17_tos);
  // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
  __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);

  // Not a subtype; so must throw exception
  // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
  __ mtctr(R11_scratch1);
  __ bctr();

  // Profile the null case.
  __ align(32, 12);
  __ bind(Lis_null);
  __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.

  __ align(32, 12);
  __ bind(Ldone);
}

// Output:
//   - tos == 0: Obj was null or not an instance of class.
//   - tos == 1: Obj was an instance of class.
void TemplateTable::instanceof() {
  transition(atos, itos);

  Label Ldone, Lis_null, Lquicked, Lresolved;
  Register Roffset         = R5_ARG3,
           RobjKlass       = R4_ARG2,
           RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register.
           Rcpool          = R11_scratch1,
           Rtags           = R12_scratch2;

  // Null does not pass.
  __ cmpdi(CCR0, R17_tos, 0);
  __ beq(CCR0, Lis_null);

  // Get constant pool tag to find out if the bytecode has already been "quickened".
  __ get_cpool_and_tags(Rcpool, Rtags);

  __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);

  __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
  __ lbzx(Rtags, Rtags, Roffset);

  __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
  __ beq(CCR0, Lquicked);

  // Call into the VM to "quicken" instanceof.
  __ push_ptr();  // for GC
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  __ get_vm_result_2(RspecifiedKlass);
  __ pop_ptr();   // Restore receiver.
  __ b(Lresolved);

  // Extract target class from constant pool.
  __ bind(Lquicked);
  __ sldi(Roffset, Roffset, LogBytesPerWord);
  __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
  __ isync(); // Order load of specified Klass wrt. tags.
  __ ldx(RspecifiedKlass, Rcpool, Roffset);

  // Do the checkcast.
  __ bind(Lresolved);
  // Get value klass in RobjKlass.
  __ load_klass(RobjKlass, R17_tos);
  // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
  __ li(R17_tos, 1);
  __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
  __ li(R17_tos, 0);

  if (ProfileInterpreter) {
    __ b(Ldone);
  }

  // Profile the null case.
  __ align(32, 12);
  __ bind(Lis_null);
  __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.

  __ align(32, 12);
  __ bind(Ldone);
}

// =============================================================================
// Breakpoints

void TemplateTable::_breakpoint() {
  transition(vtos, vtos);

  // Get the unpatched byte code.
  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
  __ mr(R31, R3_RET);

  // Post the breakpoint event.
  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);

  // Complete the execution of original bytecode.
  __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
}

// =============================================================================
// Exceptions

void TemplateTable::athrow() {
  transition(atos, vtos);

  // Exception oop is in tos
  __ verify_oop(R17_tos);

  __ null_check_throw(R17_tos, -1, R11_scratch1);

  // Throw exception interpreter entry expects exception oop to be in R3.
  __ mr(R3_RET, R17_tos);
  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
  __ mtctr(R11_scratch1);
  __ bctr();
}

// =============================================================================
// Synchronization
// Searches the basic object lock list on the stack for a free slot
// and uses it to lock the obect in tos.
//
// Recursive locking is enabled by exiting the search if the same
// object is already found in the list. Thus, a new basic lock obj lock
// is allocated "higher up" in the stack and thus is found first
// at next monitor exit.
void TemplateTable::monitorenter() {
  transition(atos, vtos);

  __ verify_oop(R17_tos);

  Register Rcurrent_monitor  = R11_scratch1,
           Rcurrent_obj      = R12_scratch2,
           Robj_to_lock      = R17_tos,
           Rscratch1         = R3_ARG1,
           Rscratch2         = R4_ARG2,
           Rscratch3         = R5_ARG3,
           Rcurrent_obj_addr = R6_ARG4;

  // ------------------------------------------------------------------------------
  // Null pointer exception.
  __ null_check_throw(Robj_to_lock, -1, R11_scratch1);

  // Try to acquire a lock on the object.
  // Repeat until succeeded (i.e., until monitorenter returns true).

  // ------------------------------------------------------------------------------
  // Find a free slot in the monitor block.
  Label Lfound, Lexit, Lallocate_new;
  ConditionRegister found_free_slot = CCR0,
                    found_same_obj  = CCR1,
                    reached_limit   = CCR6;
  {
    Label Lloop, Lentry;
    Register Rlimit = Rcurrent_monitor;

    // Set up search loop - start with topmost monitor.
    __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);

    __ ld(Rlimit, 0, R1_SP);
    __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base

    // Check if any slot is present => short cut to allocation if not.
    __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
    __ bgt(reached_limit, Lallocate_new);

    // Pre-load topmost slot.
    __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
    __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
    // The search loop.
    __ bind(Lloop);
    // Found free slot?
    __ cmpdi(found_free_slot, Rcurrent_obj, 0);
    // Is this entry for same obj? If so, stop the search and take the found
    // free slot or allocate a new one to enable recursive locking.
    __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
    __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
    __ beq(found_free_slot, Lexit);
    __ beq(found_same_obj, Lallocate_new);
    __ bgt(reached_limit, Lallocate_new);
    // Check if last allocated BasicLockObj reached.
    __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
    __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
    // Next iteration if unchecked BasicObjectLocks exist on the stack.
    __ b(Lloop);
  }

  // ------------------------------------------------------------------------------
  // Check if we found a free slot.
  __ bind(Lexit);

  __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
  __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
  __ b(Lfound);

  // We didn't find a free BasicObjLock => allocate one.
  __ align(32, 12);
  __ bind(Lallocate_new);
  __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
  __ mr(Rcurrent_monitor, R26_monitor);
  __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());

  // ------------------------------------------------------------------------------
  // We now have a slot to lock.
  __ bind(Lfound);

  // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  // The object has already been poped from the stack, so the expression stack looks correct.
  __ addi(R14_bcp, R14_bcp, 1);

  __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
  __ lock_object(Rcurrent_monitor, Robj_to_lock);

  // Check if there's enough space on the stack for the monitors after locking.
  Label Lskip_stack_check;
  // Optimization: If the monitors stack section is less then a std page size (4K) don't run
  // the stack check. There should be enough shadow pages to fit that in.
  __ ld(Rscratch3, 0, R1_SP);
  __ sub(Rscratch3, Rscratch3, R26_monitor);
  __ cmpdi(CCR0, Rscratch3, 4*K);
  __ blt(CCR0, Lskip_stack_check);

  DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
  __ li(Rscratch1, 0);
  __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);

  __ align(32, 12);
  __ bind(Lskip_stack_check);

  // The bcp has already been incremented. Just need to dispatch to next instruction.
  __ dispatch_next(vtos);
}

void TemplateTable::monitorexit() {
  transition(atos, vtos);
  __ verify_oop(R17_tos);

  Register Rcurrent_monitor  = R11_scratch1,
           Rcurrent_obj      = R12_scratch2,
           Robj_to_lock      = R17_tos,
           Rcurrent_obj_addr = R3_ARG1,
           Rlimit            = R4_ARG2;
  Label Lfound, Lillegal_monitor_state;

  // Check corner case: unbalanced monitorEnter / Exit.
  __ ld(Rlimit, 0, R1_SP);
  __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base

  // Null pointer check.
  __ null_check_throw(Robj_to_lock, -1, R11_scratch1);

  __ cmpld(CCR0, R26_monitor, Rlimit);
  __ bgt(CCR0, Lillegal_monitor_state);

  // Find the corresponding slot in the monitors stack section.
  {
    Label Lloop;

    // Start with topmost monitor.
    __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
    __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
    __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
    __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);

    __ bind(Lloop);
    // Is this entry for same obj?
    __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
    __ beq(CCR0, Lfound);

    // Check if last allocated BasicLockObj reached.

    __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
    __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
    __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);

    // Next iteration if unchecked BasicObjectLocks exist on the stack.
    __ ble(CCR0, Lloop);
  }

  // Fell through without finding the basic obj lock => throw up!
  __ bind(Lillegal_monitor_state);
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  __ should_not_reach_here();

  __ align(32, 12);
  __ bind(Lfound);
  __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
          -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
  __ unlock_object(Rcurrent_monitor);
}

// ============================================================================
// Wide bytecodes

// Wide instructions. Simply redirects to the wide entry point for that instruction.
void TemplateTable::wide() {
  transition(vtos, vtos);

  const Register Rtable = R11_scratch1,
                 Rindex = R12_scratch2,
                 Rtmp   = R0;

  __ lbz(Rindex, 1, R14_bcp);

  __ load_dispatch_table(Rtable, Interpreter::_wentry_point);

  __ slwi(Rindex, Rindex, LogBytesPerWord);
  __ ldx(Rtmp, Rtable, Rindex);
  __ mtctr(Rtmp);
  __ bctr();
  // Note: the bcp increment step is part of the individual wide bytecode implementations.
}
#endif // !CC_INTERP