/* * Copyright (c) 2014, 2017 Oracle and/or its affiliates. All rights reserved. * Copyright 2013, 2017 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/templateInterpreter.hpp" #include "interpreter/templateTable.hpp" #include "memory/universe.inline.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "utilities/macros.hpp" #ifndef CC_INTERP #undef __ #define __ _masm-> // ============================================================================ // Misc helpers // Do an oop store like *(base + index) = val OR *(base + offset) = val // (only one of both variants is possible at the same time). // Index can be noreg. // Kills: // Rbase, Rtmp static void do_oop_store(InterpreterMacroAssembler* _masm, Register Rbase, RegisterOrConstant offset, Register Rval, // Noreg means always null. Register Rtmp1, Register Rtmp2, Register Rtmp3, BarrierSet::Name barrier, bool precise, bool check_null) { assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase); switch (barrier) { #if INCLUDE_ALL_GCS case BarrierSet::G1SATBCT: case BarrierSet::G1SATBCTLogging: { // Load and record the previous value. __ g1_write_barrier_pre(Rbase, offset, Rtmp3, /* holder of pre_val ? */ Rtmp1, Rtmp2, false /* frame */); Label Lnull, Ldone; if (Rval != noreg) { if (check_null) { __ cmpdi(CCR0, Rval, 0); __ beq(CCR0, Lnull); } __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1); // Mark the card. if (!(offset.is_constant() && offset.as_constant() == 0) && precise) { __ add(Rbase, offset, Rbase); } __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone); if (check_null) { __ b(Ldone); } } if (Rval == noreg || check_null) { // Store null oop. Register Rnull = Rval; __ bind(Lnull); if (Rval == noreg) { Rnull = Rtmp1; __ li(Rnull, 0); } if (UseCompressedOops) { __ stw(Rnull, offset, Rbase); } else { __ std(Rnull, offset, Rbase); } } __ bind(Ldone); } break; #endif // INCLUDE_ALL_GCS case BarrierSet::CardTableModRef: case BarrierSet::CardTableExtension: { Label Lnull, Ldone; if (Rval != noreg) { if (check_null) { __ cmpdi(CCR0, Rval, 0); __ beq(CCR0, Lnull); } __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1); // Mark the card. if (!(offset.is_constant() && offset.as_constant() == 0) && precise) { __ add(Rbase, offset, Rbase); } __ card_write_barrier_post(Rbase, Rval, Rtmp1); if (check_null) { __ b(Ldone); } } if (Rval == noreg || check_null) { // Store null oop. Register Rnull = Rval; __ bind(Lnull); if (Rval == noreg) { Rnull = Rtmp1; __ li(Rnull, 0); } if (UseCompressedOops) { __ stw(Rnull, offset, Rbase); } else { __ std(Rnull, offset, Rbase); } } __ bind(Ldone); } break; case BarrierSet::ModRef: case BarrierSet::Other: ShouldNotReachHere(); break; default: ShouldNotReachHere(); } } // ============================================================================ // Platform-dependent initialization void TemplateTable::pd_initialize() { // No ppc64 specific initialization. } Address TemplateTable::at_bcp(int offset) { // Not used on ppc. ShouldNotReachHere(); return Address(); } // Patches the current bytecode (ptr to it located in bcp) // in the bytecode stream with a new one. void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) { // With sharing on, may need to test method flag. if (!RewriteBytecodes) return; Label L_patch_done; switch (new_bc) { case Bytecodes::_fast_aputfield: case Bytecodes::_fast_bputfield: case Bytecodes::_fast_zputfield: case Bytecodes::_fast_cputfield: case Bytecodes::_fast_dputfield: case Bytecodes::_fast_fputfield: case Bytecodes::_fast_iputfield: case Bytecodes::_fast_lputfield: case Bytecodes::_fast_sputfield: { // We skip bytecode quickening for putfield instructions when // the put_code written to the constant pool cache is zero. // This is required so that every execution of this instruction // calls out to InterpreterRuntime::resolve_get_put to do // additional, required work. assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); assert(load_bc_into_bc_reg, "we use bc_reg as temp"); __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1); // ((*(cache+indices))>>((1+byte_no)*8))&0xFF: #if defined(VM_LITTLE_ENDIAN) __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp); #else __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp); #endif __ cmpwi(CCR0, Rnew_bc, 0); __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc); __ beq(CCR0, L_patch_done); // __ isync(); // acquire not needed break; } default: assert(byte_no == -1, "sanity"); if (load_bc_into_bc_reg) { __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc); } } if (JvmtiExport::can_post_breakpoint()) { Label L_fast_patch; __ lbz(Rtemp, 0, R14_bcp); __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint); __ bne(CCR0, L_fast_patch); // Perform the quickening, slowly, in the bowels of the breakpoint table. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc); __ b(L_patch_done); __ bind(L_fast_patch); } // Patch bytecode. __ stb(Rnew_bc, 0, R14_bcp); __ bind(L_patch_done); } // ============================================================================ // Individual instructions void TemplateTable::nop() { transition(vtos, vtos); // Nothing to do. } void TemplateTable::shouldnotreachhere() { transition(vtos, vtos); __ stop("shouldnotreachhere bytecode"); } void TemplateTable::aconst_null() { transition(vtos, atos); __ li(R17_tos, 0); } void TemplateTable::iconst(int value) { transition(vtos, itos); assert(value >= -1 && value <= 5, ""); __ li(R17_tos, value); } void TemplateTable::lconst(int value) { transition(vtos, ltos); assert(value >= -1 && value <= 5, ""); __ li(R17_tos, value); } void TemplateTable::fconst(int value) { transition(vtos, ftos); static float zero = 0.0; static float one = 1.0; static float two = 2.0; switch (value) { default: ShouldNotReachHere(); case 0: { int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true); __ lfs(F15_ftos, simm16_offset, R11_scratch1); break; } case 1: { int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true); __ lfs(F15_ftos, simm16_offset, R11_scratch1); break; } case 2: { int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true); __ lfs(F15_ftos, simm16_offset, R11_scratch1); break; } } } void TemplateTable::dconst(int value) { transition(vtos, dtos); static double zero = 0.0; static double one = 1.0; switch (value) { case 0: { int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true); __ lfd(F15_ftos, simm16_offset, R11_scratch1); break; } case 1: { int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true); __ lfd(F15_ftos, simm16_offset, R11_scratch1); break; } default: ShouldNotReachHere(); } } void TemplateTable::bipush() { transition(vtos, itos); __ lbz(R17_tos, 1, R14_bcp); __ extsb(R17_tos, R17_tos); } void TemplateTable::sipush() { transition(vtos, itos); __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed); } void TemplateTable::ldc(bool wide) { Register Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2, Rcpool = R3_ARG1; transition(vtos, vtos); Label notInt, notClass, exit; __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags. if (wide) { // Read index. __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned); } else { __ lbz(Rscratch1, 1, R14_bcp); } const int base_offset = ConstantPool::header_size() * wordSize; const int tags_offset = Array::base_offset_in_bytes(); // Get type from tags. __ addi(Rscratch2, Rscratch2, tags_offset); __ lbzx(Rscratch2, Rscratch2, Rscratch1); __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class? __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state? __ cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Resolved class - need to call vm to get java mirror of the class. __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class); __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Neither resolved class nor unresolved case from above? __ beq(CCR0, notClass); __ li(R4, wide ? 1 : 0); call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4); __ push(atos); __ b(exit); __ align(32, 12); __ bind(notClass); __ addi(Rcpool, Rcpool, base_offset); __ sldi(Rscratch1, Rscratch1, LogBytesPerWord); __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer); __ bne(CCR0, notInt); __ lwax(R17_tos, Rcpool, Rscratch1); __ push(itos); __ b(exit); __ align(32, 12); __ bind(notInt); #ifdef ASSERT // String and Object are rewritten to fast_aldc __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float); __ asm_assert_eq("unexpected type", 0x8765); #endif __ lfsx(F15_ftos, Rcpool, Rscratch1); __ push(ftos); __ align(32, 12); __ bind(exit); } // Fast path for caching oop constants. void TemplateTable::fast_aldc(bool wide) { transition(vtos, atos); int index_size = wide ? sizeof(u2) : sizeof(u1); const Register Rscratch = R11_scratch1; Label resolved; // We are resolved if the resolved reference cache entry contains a // non-null object (CallSite, etc.) __ get_cache_index_at_bcp(Rscratch, 1, index_size); // Load index. __ load_resolved_reference_at_index(R17_tos, Rscratch); __ cmpdi(CCR0, R17_tos, 0); __ bne(CCR0, resolved); __ load_const_optimized(R3_ARG1, (int)bytecode()); address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); // First time invocation - must resolve first. __ call_VM(R17_tos, entry, R3_ARG1); __ align(32, 12); __ bind(resolved); __ verify_oop(R17_tos); } void TemplateTable::ldc2_w() { transition(vtos, vtos); Label Llong, Lexit; Register Rindex = R11_scratch1, Rcpool = R12_scratch2, Rtag = R3_ARG1; __ get_cpool_and_tags(Rcpool, Rtag); __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned); const int base_offset = ConstantPool::header_size() * wordSize; const int tags_offset = Array::base_offset_in_bytes(); // Get type from tags. __ addi(Rcpool, Rcpool, base_offset); __ addi(Rtag, Rtag, tags_offset); __ lbzx(Rtag, Rtag, Rindex); __ sldi(Rindex, Rindex, LogBytesPerWord); __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double); __ bne(CCR0, Llong); // A double can be placed at word-aligned locations in the constant pool. // Check out Conversions.java for an example. // Also ConstantPool::header_size() is 20, which makes it very difficult // to double-align double on the constant pool. SG, 11/7/97 __ lfdx(F15_ftos, Rcpool, Rindex); __ push(dtos); __ b(Lexit); __ bind(Llong); __ ldx(R17_tos, Rcpool, Rindex); __ push(ltos); __ bind(Lexit); } // Get the locals index located in the bytecode stream at bcp + offset. void TemplateTable::locals_index(Register Rdst, int offset) { __ lbz(Rdst, offset, R14_bcp); } void TemplateTable::iload() { transition(vtos, itos); // Get the local value into tos const Register Rindex = R22_tmp2; locals_index(Rindex); // Rewrite iload,iload pair into fast_iload2 // iload,caload pair into fast_icaload if (RewriteFrequentPairs) { Label Lrewrite, Ldone; Register Rnext_byte = R3_ARG1, Rrewrite_to = R6_ARG4, Rscratch = R11_scratch1; // get next byte __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp); // if _iload, wait to rewrite to iload2. We only want to rewrite the // last two iloads in a pair. Comparing against fast_iload means that // the next bytecode is neither an iload or a caload, and therefore // an iload pair. __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload); __ beq(CCR0, Ldone); __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload); __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2); __ beq(CCR1, Lrewrite); __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload); __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload); __ beq(CCR0, Lrewrite); __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload); __ bind(Lrewrite); patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false); __ bind(Ldone); } __ load_local_int(R17_tos, Rindex, Rindex); } // Load 2 integers in a row without dispatching void TemplateTable::fast_iload2() { transition(vtos, itos); __ lbz(R3_ARG1, 1, R14_bcp); __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp); __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1); __ load_local_int(R17_tos, R12_scratch2, R17_tos); __ push_i(R3_ARG1); } void TemplateTable::fast_iload() { transition(vtos, itos); // Get the local value into tos const Register Rindex = R11_scratch1; locals_index(Rindex); __ load_local_int(R17_tos, Rindex, Rindex); } // Load a local variable type long from locals area to TOS cache register. // Local index resides in bytecodestream. void TemplateTable::lload() { transition(vtos, ltos); const Register Rindex = R11_scratch1; locals_index(Rindex); __ load_local_long(R17_tos, Rindex, Rindex); } void TemplateTable::fload() { transition(vtos, ftos); const Register Rindex = R11_scratch1; locals_index(Rindex); __ load_local_float(F15_ftos, Rindex, Rindex); } void TemplateTable::dload() { transition(vtos, dtos); const Register Rindex = R11_scratch1; locals_index(Rindex); __ load_local_double(F15_ftos, Rindex, Rindex); } void TemplateTable::aload() { transition(vtos, atos); const Register Rindex = R11_scratch1; locals_index(Rindex); __ load_local_ptr(R17_tos, Rindex, Rindex); } void TemplateTable::locals_index_wide(Register Rdst) { // Offset is 2, not 1, because Lbcp points to wide prefix code. __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned); } void TemplateTable::wide_iload() { // Get the local value into tos. const Register Rindex = R11_scratch1; locals_index_wide(Rindex); __ load_local_int(R17_tos, Rindex, Rindex); } void TemplateTable::wide_lload() { transition(vtos, ltos); const Register Rindex = R11_scratch1; locals_index_wide(Rindex); __ load_local_long(R17_tos, Rindex, Rindex); } void TemplateTable::wide_fload() { transition(vtos, ftos); const Register Rindex = R11_scratch1; locals_index_wide(Rindex); __ load_local_float(F15_ftos, Rindex, Rindex); } void TemplateTable::wide_dload() { transition(vtos, dtos); const Register Rindex = R11_scratch1; locals_index_wide(Rindex); __ load_local_double(F15_ftos, Rindex, Rindex); } void TemplateTable::wide_aload() { transition(vtos, atos); const Register Rindex = R11_scratch1; locals_index_wide(Rindex); __ load_local_ptr(R17_tos, Rindex, Rindex); } void TemplateTable::iaload() { transition(itos, itos); const Register Rload_addr = R3_ARG1, Rarray = R4_ARG2, Rtemp = R5_ARG3; __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr); __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr); } void TemplateTable::laload() { transition(itos, ltos); const Register Rload_addr = R3_ARG1, Rarray = R4_ARG2, Rtemp = R5_ARG3; __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr); __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr); } void TemplateTable::faload() { transition(itos, ftos); const Register Rload_addr = R3_ARG1, Rarray = R4_ARG2, Rtemp = R5_ARG3; __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr); __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr); } void TemplateTable::daload() { transition(itos, dtos); const Register Rload_addr = R3_ARG1, Rarray = R4_ARG2, Rtemp = R5_ARG3; __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr); __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr); } void TemplateTable::aaload() { transition(itos, atos); // tos: index // result tos: array const Register Rload_addr = R3_ARG1, Rarray = R4_ARG2, Rtemp = R5_ARG3; __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr); __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr); __ verify_oop(R17_tos); //__ dcbt(R17_tos); // prefetch } void TemplateTable::baload() { transition(itos, itos); const Register Rload_addr = R3_ARG1, Rarray = R4_ARG2, Rtemp = R5_ARG3; __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr); __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr); __ extsb(R17_tos, R17_tos); } void TemplateTable::caload() { transition(itos, itos); const Register Rload_addr = R3_ARG1, Rarray = R4_ARG2, Rtemp = R5_ARG3; __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr); } // Iload followed by caload frequent pair. void TemplateTable::fast_icaload() { transition(vtos, itos); const Register Rload_addr = R3_ARG1, Rarray = R4_ARG2, Rtemp = R11_scratch1; locals_index(R17_tos); __ load_local_int(R17_tos, Rtemp, R17_tos); __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr); } void TemplateTable::saload() { transition(itos, itos); const Register Rload_addr = R11_scratch1, Rarray = R12_scratch2, Rtemp = R3_ARG1; __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr); } void TemplateTable::iload(int n) { transition(vtos, itos); __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); } void TemplateTable::lload(int n) { transition(vtos, ltos); __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); } void TemplateTable::fload(int n) { transition(vtos, ftos); __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals); } void TemplateTable::dload(int n) { transition(vtos, dtos); __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); } void TemplateTable::aload(int n) { transition(vtos, atos); __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); } void TemplateTable::aload_0() { transition(vtos, atos); // According to bytecode histograms, the pairs: // // _aload_0, _fast_igetfield // _aload_0, _fast_agetfield // _aload_0, _fast_fgetfield // // occur frequently. If RewriteFrequentPairs is set, the (slow) // _aload_0 bytecode checks if the next bytecode is either // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then // rewrites the current bytecode into a pair bytecode; otherwise it // rewrites the current bytecode into _0 that doesn't do // the pair check anymore. // // Note: If the next bytecode is _getfield, the rewrite must be // delayed, otherwise we may miss an opportunity for a pair. // // Also rewrite frequent pairs // aload_0, aload_1 // aload_0, iload_1 // These bytecodes with a small amount of code are most profitable // to rewrite. if (RewriteFrequentPairs) { Label Lrewrite, Ldont_rewrite; Register Rnext_byte = R3_ARG1, Rrewrite_to = R6_ARG4, Rscratch = R11_scratch1; // Get next byte. __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp); // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair. __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield); __ beq(CCR0, Ldont_rewrite); __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield); __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0); __ beq(CCR1, Lrewrite); __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield); __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0); __ beq(CCR0, Lrewrite); __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield); __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0); __ beq(CCR1, Lrewrite); __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0); __ bind(Lrewrite); patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false); __ bind(Ldont_rewrite); } // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). aload(0); } void TemplateTable::istore() { transition(itos, vtos); const Register Rindex = R11_scratch1; locals_index(Rindex); __ store_local_int(R17_tos, Rindex); } void TemplateTable::lstore() { transition(ltos, vtos); const Register Rindex = R11_scratch1; locals_index(Rindex); __ store_local_long(R17_tos, Rindex); } void TemplateTable::fstore() { transition(ftos, vtos); const Register Rindex = R11_scratch1; locals_index(Rindex); __ store_local_float(F15_ftos, Rindex); } void TemplateTable::dstore() { transition(dtos, vtos); const Register Rindex = R11_scratch1; locals_index(Rindex); __ store_local_double(F15_ftos, Rindex); } void TemplateTable::astore() { transition(vtos, vtos); const Register Rindex = R11_scratch1; __ pop_ptr(); __ verify_oop_or_return_address(R17_tos, Rindex); locals_index(Rindex); __ store_local_ptr(R17_tos, Rindex); } void TemplateTable::wide_istore() { transition(vtos, vtos); const Register Rindex = R11_scratch1; __ pop_i(); locals_index_wide(Rindex); __ store_local_int(R17_tos, Rindex); } void TemplateTable::wide_lstore() { transition(vtos, vtos); const Register Rindex = R11_scratch1; __ pop_l(); locals_index_wide(Rindex); __ store_local_long(R17_tos, Rindex); } void TemplateTable::wide_fstore() { transition(vtos, vtos); const Register Rindex = R11_scratch1; __ pop_f(); locals_index_wide(Rindex); __ store_local_float(F15_ftos, Rindex); } void TemplateTable::wide_dstore() { transition(vtos, vtos); const Register Rindex = R11_scratch1; __ pop_d(); locals_index_wide(Rindex); __ store_local_double(F15_ftos, Rindex); } void TemplateTable::wide_astore() { transition(vtos, vtos); const Register Rindex = R11_scratch1; __ pop_ptr(); __ verify_oop_or_return_address(R17_tos, Rindex); locals_index_wide(Rindex); __ store_local_ptr(R17_tos, Rindex); } void TemplateTable::iastore() { transition(itos, vtos); const Register Rindex = R3_ARG1, Rstore_addr = R4_ARG2, Rarray = R5_ARG3, Rtemp = R6_ARG4; __ pop_i(Rindex); __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr); __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr); } void TemplateTable::lastore() { transition(ltos, vtos); const Register Rindex = R3_ARG1, Rstore_addr = R4_ARG2, Rarray = R5_ARG3, Rtemp = R6_ARG4; __ pop_i(Rindex); __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr); __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr); } void TemplateTable::fastore() { transition(ftos, vtos); const Register Rindex = R3_ARG1, Rstore_addr = R4_ARG2, Rarray = R5_ARG3, Rtemp = R6_ARG4; __ pop_i(Rindex); __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr); __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr); } void TemplateTable::dastore() { transition(dtos, vtos); const Register Rindex = R3_ARG1, Rstore_addr = R4_ARG2, Rarray = R5_ARG3, Rtemp = R6_ARG4; __ pop_i(Rindex); __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr); __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr); } // Pop 3 values from the stack and... void TemplateTable::aastore() { transition(vtos, vtos); Label Lstore_ok, Lis_null, Ldone; const Register Rindex = R3_ARG1, Rarray = R4_ARG2, Rscratch = R11_scratch1, Rscratch2 = R12_scratch2, Rarray_klass = R5_ARG3, Rarray_element_klass = Rarray_klass, Rvalue_klass = R6_ARG4, Rstore_addr = R31; // Use register which survives VM call. __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store. __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index. __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp); // Get array. __ verify_oop(R17_tos); __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr); // Rindex is dead! Register Rscratch3 = Rindex; // Do array store check - check for NULL value first. __ cmpdi(CCR0, R17_tos, 0); __ beq(CCR0, Lis_null); __ load_klass(Rarray_klass, Rarray); __ load_klass(Rvalue_klass, R17_tos); // Do fast instanceof cache test. __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass); // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure. __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok); // Fell through: subtype check failed => throw an exception. __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry); __ mtctr(R11_scratch1); __ bctr(); __ bind(Lis_null); do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */, Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */); __ profile_null_seen(Rscratch, Rscratch2); __ b(Ldone); // Store is OK. __ bind(Lstore_ok); do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */, Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */); __ bind(Ldone); // Adjust sp (pops array, index and value). __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize); } void TemplateTable::bastore() { transition(itos, vtos); const Register Rindex = R11_scratch1, Rarray = R12_scratch2, Rscratch = R3_ARG1; __ pop_i(Rindex); __ pop_ptr(Rarray); // tos: val // Need to check whether array is boolean or byte // since both types share the bastore bytecode. __ load_klass(Rscratch, Rarray); __ lwz(Rscratch, in_bytes(Klass::layout_helper_offset()), Rscratch); int diffbit = exact_log2(Klass::layout_helper_boolean_diffbit()); __ testbitdi(CCR0, R0, Rscratch, diffbit); Label L_skip; __ bfalse(CCR0, L_skip); __ andi(R17_tos, R17_tos, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 __ bind(L_skip); __ index_check_without_pop(Rarray, Rindex, 0, Rscratch, Rarray); __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray); } void TemplateTable::castore() { transition(itos, vtos); const Register Rindex = R11_scratch1, Rarray = R12_scratch2, Rscratch = R3_ARG1; __ pop_i(Rindex); // tos: val // Rarray: array ptr (popped by index_check) __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray); __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray); } void TemplateTable::sastore() { castore(); } void TemplateTable::istore(int n) { transition(itos, vtos); __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); } void TemplateTable::lstore(int n) { transition(ltos, vtos); __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); } void TemplateTable::fstore(int n) { transition(ftos, vtos); __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals); } void TemplateTable::dstore(int n) { transition(dtos, vtos); __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); } void TemplateTable::astore(int n) { transition(vtos, vtos); __ pop_ptr(); __ verify_oop_or_return_address(R17_tos, R11_scratch1); __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); } void TemplateTable::pop() { transition(vtos, vtos); __ addi(R15_esp, R15_esp, Interpreter::stackElementSize); } void TemplateTable::pop2() { transition(vtos, vtos); __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2); } void TemplateTable::dup() { transition(vtos, vtos); __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp); __ push_ptr(R11_scratch1); } void TemplateTable::dup_x1() { transition(vtos, vtos); Register Ra = R11_scratch1, Rb = R12_scratch2; // stack: ..., a, b __ ld(Rb, Interpreter::stackElementSize, R15_esp); __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); __ std(Rb, Interpreter::stackElementSize * 2, R15_esp); __ std(Ra, Interpreter::stackElementSize, R15_esp); __ push_ptr(Rb); // stack: ..., b, a, b } void TemplateTable::dup_x2() { transition(vtos, vtos); Register Ra = R11_scratch1, Rb = R12_scratch2, Rc = R3_ARG1; // stack: ..., a, b, c __ ld(Rc, Interpreter::stackElementSize, R15_esp); // load c __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp); // load a __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp); // load b // stack: ..., c, b, c __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b // stack: ..., c, a, c __ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in c __ push_ptr(Rc); // push c // stack: ..., c, a, b, c } void TemplateTable::dup2() { transition(vtos, vtos); Register Ra = R11_scratch1, Rb = R12_scratch2; // stack: ..., a, b __ ld(Rb, Interpreter::stackElementSize, R15_esp); __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); __ push_2ptrs(Ra, Rb); // stack: ..., a, b, a, b } void TemplateTable::dup2_x1() { transition(vtos, vtos); Register Ra = R11_scratch1, Rb = R12_scratch2, Rc = R3_ARG1; // stack: ..., a, b, c __ ld(Rc, Interpreter::stackElementSize, R15_esp); __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp); __ std(Rc, Interpreter::stackElementSize * 2, R15_esp); __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp); __ std(Ra, Interpreter::stackElementSize, R15_esp); __ std(Rb, Interpreter::stackElementSize * 3, R15_esp); // stack: ..., b, c, a __ push_2ptrs(Rb, Rc); // stack: ..., b, c, a, b, c } void TemplateTable::dup2_x2() { transition(vtos, vtos); Register Ra = R11_scratch1, Rb = R12_scratch2, Rc = R3_ARG1, Rd = R4_ARG2; // stack: ..., a, b, c, d __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp); __ ld(Rd, Interpreter::stackElementSize, R15_esp); __ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in d __ std(Rd, Interpreter::stackElementSize * 3, R15_esp); // store d in b __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp); __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp); __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in c __ std(Rc, Interpreter::stackElementSize * 4, R15_esp); // store c in a // stack: ..., c, d, a, b __ push_2ptrs(Rc, Rd); // stack: ..., c, d, a, b, c, d } void TemplateTable::swap() { transition(vtos, vtos); // stack: ..., a, b Register Ra = R11_scratch1, Rb = R12_scratch2; // stack: ..., a, b __ ld(Rb, Interpreter::stackElementSize, R15_esp); __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); __ std(Rb, Interpreter::stackElementSize * 2, R15_esp); __ std(Ra, Interpreter::stackElementSize, R15_esp); // stack: ..., b, a } void TemplateTable::iop2(Operation op) { transition(itos, itos); Register Rscratch = R11_scratch1; __ pop_i(Rscratch); // tos = number of bits to shift // Rscratch = value to shift switch (op) { case add: __ add(R17_tos, Rscratch, R17_tos); break; case sub: __ sub(R17_tos, Rscratch, R17_tos); break; case mul: __ mullw(R17_tos, Rscratch, R17_tos); break; case _and: __ andr(R17_tos, Rscratch, R17_tos); break; case _or: __ orr(R17_tos, Rscratch, R17_tos); break; case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break; case shl: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break; case shr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break; case ushr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break; default: ShouldNotReachHere(); } } void TemplateTable::lop2(Operation op) { transition(ltos, ltos); Register Rscratch = R11_scratch1; __ pop_l(Rscratch); switch (op) { case add: __ add(R17_tos, Rscratch, R17_tos); break; case sub: __ sub(R17_tos, Rscratch, R17_tos); break; case _and: __ andr(R17_tos, Rscratch, R17_tos); break; case _or: __ orr(R17_tos, Rscratch, R17_tos); break; case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break; default: ShouldNotReachHere(); } } void TemplateTable::idiv() { transition(itos, itos); Label Lnormal, Lexception, Ldone; Register Rdividend = R11_scratch1; // Used by irem. __ addi(R0, R17_tos, 1); __ cmplwi(CCR0, R0, 2); __ bgt(CCR0, Lnormal); // divisor <-1 or >1 __ cmpwi(CCR1, R17_tos, 0); __ beq(CCR1, Lexception); // divisor == 0 __ pop_i(Rdividend); __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1 __ b(Ldone); __ bind(Lexception); __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry); __ mtctr(R11_scratch1); __ bctr(); __ align(32, 12); __ bind(Lnormal); __ pop_i(Rdividend); __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1. __ bind(Ldone); } void TemplateTable::irem() { transition(itos, itos); __ mr(R12_scratch2, R17_tos); idiv(); __ mullw(R17_tos, R17_tos, R12_scratch2); __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv. } void TemplateTable::lmul() { transition(ltos, ltos); __ pop_l(R11_scratch1); __ mulld(R17_tos, R11_scratch1, R17_tos); } void TemplateTable::ldiv() { transition(ltos, ltos); Label Lnormal, Lexception, Ldone; Register Rdividend = R11_scratch1; // Used by lrem. __ addi(R0, R17_tos, 1); __ cmpldi(CCR0, R0, 2); __ bgt(CCR0, Lnormal); // divisor <-1 or >1 __ cmpdi(CCR1, R17_tos, 0); __ beq(CCR1, Lexception); // divisor == 0 __ pop_l(Rdividend); __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1 __ b(Ldone); __ bind(Lexception); __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry); __ mtctr(R11_scratch1); __ bctr(); __ align(32, 12); __ bind(Lnormal); __ pop_l(Rdividend); __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1. __ bind(Ldone); } void TemplateTable::lrem() { transition(ltos, ltos); __ mr(R12_scratch2, R17_tos); ldiv(); __ mulld(R17_tos, R17_tos, R12_scratch2); __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv. } void TemplateTable::lshl() { transition(itos, ltos); __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. __ pop_l(R11_scratch1); __ sld(R17_tos, R11_scratch1, R17_tos); } void TemplateTable::lshr() { transition(itos, ltos); __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. __ pop_l(R11_scratch1); __ srad(R17_tos, R11_scratch1, R17_tos); } void TemplateTable::lushr() { transition(itos, ltos); __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. __ pop_l(R11_scratch1); __ srd(R17_tos, R11_scratch1, R17_tos); } void TemplateTable::fop2(Operation op) { transition(ftos, ftos); switch (op) { case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break; case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break; case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break; case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break; case rem: __ pop_f(F1_ARG1); __ fmr(F2_ARG2, F15_ftos); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); __ fmr(F15_ftos, F1_RET); break; default: ShouldNotReachHere(); } } void TemplateTable::dop2(Operation op) { transition(dtos, dtos); switch (op) { case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break; case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break; case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break; case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break; case rem: __ pop_d(F1_ARG1); __ fmr(F2_ARG2, F15_ftos); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); __ fmr(F15_ftos, F1_RET); break; default: ShouldNotReachHere(); } } // Negate the value in the TOS cache. void TemplateTable::ineg() { transition(itos, itos); __ neg(R17_tos, R17_tos); } // Negate the value in the TOS cache. void TemplateTable::lneg() { transition(ltos, ltos); __ neg(R17_tos, R17_tos); } void TemplateTable::fneg() { transition(ftos, ftos); __ fneg(F15_ftos, F15_ftos); } void TemplateTable::dneg() { transition(dtos, dtos); __ fneg(F15_ftos, F15_ftos); } // Increments a local variable in place. void TemplateTable::iinc() { transition(vtos, vtos); const Register Rindex = R11_scratch1, Rincrement = R0, Rvalue = R12_scratch2; locals_index(Rindex); // Load locals index from bytecode stream. __ lbz(Rincrement, 2, R14_bcp); // Load increment from the bytecode stream. __ extsb(Rincrement, Rincrement); __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex. __ add(Rvalue, Rincrement, Rvalue); __ stw(Rvalue, 0, Rindex); } void TemplateTable::wide_iinc() { transition(vtos, vtos); Register Rindex = R11_scratch1, Rlocals_addr = Rindex, Rincr = R12_scratch2; locals_index_wide(Rindex); __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed); __ load_local_int(R17_tos, Rlocals_addr, Rindex); __ add(R17_tos, Rincr, R17_tos); __ stw(R17_tos, 0, Rlocals_addr); } void TemplateTable::convert() { // %%%%% Factor this first part accross platforms #ifdef ASSERT TosState tos_in = ilgl; TosState tos_out = ilgl; switch (bytecode()) { case Bytecodes::_i2l: // fall through case Bytecodes::_i2f: // fall through case Bytecodes::_i2d: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_in = itos; break; case Bytecodes::_l2i: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_l2d: tos_in = ltos; break; case Bytecodes::_f2i: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_f2d: tos_in = ftos; break; case Bytecodes::_d2i: // fall through case Bytecodes::_d2l: // fall through case Bytecodes::_d2f: tos_in = dtos; break; default : ShouldNotReachHere(); } switch (bytecode()) { case Bytecodes::_l2i: // fall through case Bytecodes::_f2i: // fall through case Bytecodes::_d2i: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_out = itos; break; case Bytecodes::_i2l: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_d2l: tos_out = ltos; break; case Bytecodes::_i2f: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_d2f: tos_out = ftos; break; case Bytecodes::_i2d: // fall through case Bytecodes::_l2d: // fall through case Bytecodes::_f2d: tos_out = dtos; break; default : ShouldNotReachHere(); } transition(tos_in, tos_out); #endif // Conversion Label done; switch (bytecode()) { case Bytecodes::_i2l: __ extsw(R17_tos, R17_tos); break; case Bytecodes::_l2i: // Nothing to do, we'll continue to work with the lower bits. break; case Bytecodes::_i2b: __ extsb(R17_tos, R17_tos); break; case Bytecodes::_i2c: __ rldicl(R17_tos, R17_tos, 0, 64-2*8); break; case Bytecodes::_i2s: __ extsh(R17_tos, R17_tos); break; case Bytecodes::_i2d: __ extsw(R17_tos, R17_tos); case Bytecodes::_l2d: __ push_l_pop_d(); __ fcfid(F15_ftos, F15_ftos); break; case Bytecodes::_i2f: __ extsw(R17_tos, R17_tos); __ push_l_pop_d(); if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only // Comment: alternatively, load with sign extend could be done by lfiwax. __ fcfids(F15_ftos, F15_ftos); } else { __ fcfid(F15_ftos, F15_ftos); __ frsp(F15_ftos, F15_ftos); } break; case Bytecodes::_l2f: if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only __ push_l_pop_d(); __ fcfids(F15_ftos, F15_ftos); } else { // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp. __ mr(R3_ARG1, R17_tos); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f)); __ fmr(F15_ftos, F1_RET); } break; case Bytecodes::_f2d: // empty break; case Bytecodes::_d2f: __ frsp(F15_ftos, F15_ftos); break; case Bytecodes::_d2i: case Bytecodes::_f2i: __ fcmpu(CCR0, F15_ftos, F15_ftos); __ li(R17_tos, 0); // 0 in case of NAN __ bso(CCR0, done); __ fctiwz(F15_ftos, F15_ftos); __ push_d_pop_l(); break; case Bytecodes::_d2l: case Bytecodes::_f2l: __ fcmpu(CCR0, F15_ftos, F15_ftos); __ li(R17_tos, 0); // 0 in case of NAN __ bso(CCR0, done); __ fctidz(F15_ftos, F15_ftos); __ push_d_pop_l(); break; default: ShouldNotReachHere(); } __ bind(done); } // Long compare void TemplateTable::lcmp() { transition(ltos, itos); const Register Rscratch = R11_scratch1; __ pop_l(Rscratch); // first operand, deeper in stack __ cmpd(CCR0, Rscratch, R17_tos); // compare __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01 __ srwi(Rscratch, R17_tos, 30); __ srawi(R17_tos, R17_tos, 31); __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1 } // fcmpl/fcmpg and dcmpl/dcmpg bytecodes // unordered_result == -1 => fcmpl or dcmpl // unordered_result == 1 => fcmpg or dcmpg void TemplateTable::float_cmp(bool is_float, int unordered_result) { const FloatRegister Rfirst = F0_SCRATCH, Rsecond = F15_ftos; const Register Rscratch = R11_scratch1; if (is_float) { __ pop_f(Rfirst); } else { __ pop_d(Rfirst); } Label Lunordered, Ldone; __ fcmpu(CCR0, Rfirst, Rsecond); // compare if (unordered_result) { __ bso(CCR0, Lunordered); } __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01 __ srwi(Rscratch, R17_tos, 30); __ srawi(R17_tos, R17_tos, 31); __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1 if (unordered_result) { __ b(Ldone); __ bind(Lunordered); __ load_const_optimized(R17_tos, unordered_result); } __ bind(Ldone); } // Branch_conditional which takes TemplateTable::Condition. void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) { bool positive = false; Assembler::Condition cond = Assembler::equal; switch (cc) { case TemplateTable::equal: positive = true ; cond = Assembler::equal ; break; case TemplateTable::not_equal: positive = false; cond = Assembler::equal ; break; case TemplateTable::less: positive = true ; cond = Assembler::less ; break; case TemplateTable::less_equal: positive = false; cond = Assembler::greater; break; case TemplateTable::greater: positive = true ; cond = Assembler::greater; break; case TemplateTable::greater_equal: positive = false; cond = Assembler::less ; break; default: ShouldNotReachHere(); } int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; int bi = Assembler::bi0(crx, cond); __ bc(bo, bi, L); } void TemplateTable::branch(bool is_jsr, bool is_wide) { // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also. __ verify_thread(); const Register Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2, Rscratch3 = R3_ARG1, R4_counters = R4_ARG2, bumped_count = R31, Rdisp = R22_tmp2; __ profile_taken_branch(Rscratch1, bumped_count); // Get (wide) offset. if (is_wide) { __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed); } else { __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed); } // -------------------------------------------------------------------------- // Handle all the JSR stuff here, then exit. // It's much shorter and cleaner than intermingling with the // non-JSR normal-branch stuff occurring below. if (is_jsr) { // Compute return address as bci in Otos_i. __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method); __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3)); __ subf(R17_tos, Rscratch1, Rscratch2); // Bump bcp to target of JSR. __ add(R14_bcp, Rdisp, R14_bcp); // Push returnAddress for "ret" on stack. __ push_ptr(R17_tos); // And away we go! __ dispatch_next(vtos); return; } // -------------------------------------------------------------------------- // Normal (non-jsr) branch handling const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter; if (increment_invocation_counter_for_backward_branches) { //__ unimplemented("branch invocation counter"); Label Lforward; __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr. // Check branch direction. __ cmpdi(CCR0, Rdisp, 0); __ bgt(CCR0, Lforward); __ get_method_counters(R19_method, R4_counters, Lforward); if (TieredCompilation) { Label Lno_mdo, Loverflow; const int increment = InvocationCounter::count_increment; const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; if (ProfileInterpreter) { Register Rmdo = Rscratch1; // If no method data exists, go to profile_continue. __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method); __ cmpdi(CCR0, Rmdo, 0); __ beq(CCR0, Lno_mdo); // Increment backedge counter in the MDO. const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); __ lwz(Rscratch2, mdo_bc_offs, Rmdo); __ load_const_optimized(Rscratch3, mask, R0); __ addi(Rscratch2, Rscratch2, increment); __ stw(Rscratch2, mdo_bc_offs, Rmdo); __ and_(Rscratch3, Rscratch2, Rscratch3); __ bne(CCR0, Lforward); __ b(Loverflow); } // If there's no MDO, increment counter in method. const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); __ bind(Lno_mdo); __ lwz(Rscratch2, mo_bc_offs, R4_counters); __ load_const_optimized(Rscratch3, mask, R0); __ addi(Rscratch2, Rscratch2, increment); __ stw(Rscratch2, mo_bc_offs, R19_method); __ and_(Rscratch3, Rscratch2, Rscratch3); __ bne(CCR0, Lforward); __ bind(Loverflow); // Notify point for loop, pass branch bytecode. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true); // Was an OSR adapter generated? // O0 = osr nmethod __ cmpdi(CCR0, R3_RET, 0); __ beq(CCR0, Lforward); // Has the nmethod been invalidated already? __ lwz(R0, nmethod::entry_bci_offset(), R3_RET); __ cmpwi(CCR0, R0, InvalidOSREntryBci); __ beq(CCR0, Lforward); // Migrate the interpreter frame off of the stack. // We can use all registers because we will not return to interpreter from this point. // Save nmethod. const Register osr_nmethod = R31; __ mr(osr_nmethod, R3_RET); __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread); __ reset_last_Java_frame(); // OSR buffer is in ARG1. // Remove the interpreter frame. __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); // Jump to the osr code. __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod); __ mtlr(R0); __ mtctr(R11_scratch1); __ bctr(); } else { const Register invoke_ctr = Rscratch1; // Update Backedge branch separately from invocations. __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3); if (ProfileInterpreter) { __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward); if (UseOnStackReplacement) { __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2); } } else { if (UseOnStackReplacement) { __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2); } } } __ bind(Lforward); } else { // Bump bytecode pointer by displacement (take the branch). __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr. } // Continue with bytecode @ target. // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above, // %%%%% and changing dispatch_next to dispatch_only. __ dispatch_next(vtos); } // Helper function for if_cmp* methods below. // Factored out common compare and branch code. void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) { Label Lnot_taken; // Note: The condition code we get is the condition under which we // *fall through*! So we have to inverse the CC here. if (is_jint) { if (cmp0) { __ cmpwi(CCR0, Rfirst, 0); } else { __ cmpw(CCR0, Rfirst, Rsecond); } } else { if (cmp0) { __ cmpdi(CCR0, Rfirst, 0); } else { __ cmpd(CCR0, Rfirst, Rsecond); } } branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true); // Conition is false => Jump! branch(false, false); // Condition is not true => Continue. __ align(32, 12); __ bind(Lnot_taken); __ profile_not_taken_branch(Rscratch1, Rscratch2); } // Compare integer values with zero and fall through if CC holds, branch away otherwise. void TemplateTable::if_0cmp(Condition cc) { transition(itos, vtos); if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true); } // Compare integer values and fall through if CC holds, branch away otherwise. // // Interface: // - Rfirst: First operand (older stack value) // - tos: Second operand (younger stack value) void TemplateTable::if_icmp(Condition cc) { transition(itos, vtos); const Register Rfirst = R0, Rsecond = R17_tos; __ pop_i(Rfirst); if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false); } void TemplateTable::if_nullcmp(Condition cc) { transition(atos, vtos); if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true); } void TemplateTable::if_acmp(Condition cc) { transition(atos, vtos); const Register Rfirst = R0, Rsecond = R17_tos; __ pop_ptr(Rfirst); if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false); } void TemplateTable::ret() { locals_index(R11_scratch1); __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1); __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2); __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); __ add(R11_scratch1, R17_tos, R11_scratch1); __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset())); __ dispatch_next(vtos); } void TemplateTable::wide_ret() { transition(vtos, vtos); const Register Rindex = R3_ARG1, Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2; locals_index_wide(Rindex); __ load_local_ptr(R17_tos, R17_tos, Rindex); __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2); // Tos now contains the bci, compute the bcp from that. __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method); __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset())); __ add(R14_bcp, Rscratch1, Rscratch2); __ dispatch_next(vtos); } void TemplateTable::tableswitch() { transition(itos, vtos); Label Ldispatch, Ldefault_case; Register Rlow_byte = R3_ARG1, Rindex = Rlow_byte, Rhigh_byte = R4_ARG2, Rdef_offset_addr = R5_ARG3, // is going to contain address of default offset Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2, Roffset = R6_ARG4; // Align bcp. __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt); __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt)); // Load lo & hi. __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned); __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned); // Check for default case (=index outside [low,high]). __ cmpw(CCR0, R17_tos, Rlow_byte); __ cmpw(CCR1, R17_tos, Rhigh_byte); __ blt(CCR0, Ldefault_case); __ bgt(CCR1, Ldefault_case); // Lookup dispatch offset. __ sub(Rindex, R17_tos, Rlow_byte); __ extsw(Rindex, Rindex); __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2); __ sldi(Rindex, Rindex, LogBytesPerInt); __ addi(Rindex, Rindex, 3 * BytesPerInt); #if defined(VM_LITTLE_ENDIAN) __ lwbrx(Roffset, Rdef_offset_addr, Rindex); __ extsw(Roffset, Roffset); #else __ lwax(Roffset, Rdef_offset_addr, Rindex); #endif __ b(Ldispatch); __ bind(Ldefault_case); __ profile_switch_default(Rhigh_byte, Rscratch1); __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed); __ bind(Ldispatch); __ add(R14_bcp, Roffset, R14_bcp); __ dispatch_next(vtos); } void TemplateTable::lookupswitch() { transition(itos, itos); __ stop("lookupswitch bytecode should have been rewritten"); } // Table switch using linear search through cases. // Bytecode stream format: // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ... // Note: Everything is big-endian format here. void TemplateTable::fast_linearswitch() { transition(itos, vtos); Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case; Register Rcount = R3_ARG1, Rcurrent_pair = R4_ARG2, Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset. Roffset = R31, // Might need to survive C call. Rvalue = R12_scratch2, Rscratch = R11_scratch1, Rcmp_value = R17_tos; // Align bcp. __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt); __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt)); // Setup loop counter and limit. __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned); __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair. __ mtctr(Rcount); __ cmpwi(CCR0, Rcount, 0); __ bne(CCR0, Lloop_entry); // Default case __ bind(Ldefault_case); __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed); if (ProfileInterpreter) { __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */); } __ b(Lcontinue_execution); // Next iteration __ bind(Lsearch_loop); __ bdz(Ldefault_case); __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt); __ bind(Lloop_entry); __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned); __ cmpw(CCR0, Rvalue, Rcmp_value); __ bne(CCR0, Lsearch_loop); // Found, load offset. __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed); // Calculate case index and profile __ mfctr(Rcurrent_pair); if (ProfileInterpreter) { __ sub(Rcurrent_pair, Rcount, Rcurrent_pair); __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch); } __ bind(Lcontinue_execution); __ add(R14_bcp, Roffset, R14_bcp); __ dispatch_next(vtos); } // Table switch using binary search (value/offset pairs are ordered). // Bytecode stream format: // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ... // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value. void TemplateTable::fast_binaryswitch() { transition(itos, vtos); // Implementation using the following core algorithm: (copied from Intel) // // int binary_search(int key, LookupswitchPair* array, int n) { // // Binary search according to "Methodik des Programmierens" by // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. // int i = 0; // int j = n; // while (i+1 < j) { // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) // // with Q: for all i: 0 <= i < n: key < a[i] // // where a stands for the array and assuming that the (inexisting) // // element a[n] is infinitely big. // int h = (i + j) >> 1; // // i < h < j // if (key < array[h].fast_match()) { // j = h; // } else { // i = h; // } // } // // R: a[i] <= key < a[i+1] or Q // // (i.e., if key is within array, i is the correct index) // return i; // } // register allocation const Register Rkey = R17_tos; // already set (tosca) const Register Rarray = R3_ARG1; const Register Ri = R4_ARG2; const Register Rj = R5_ARG3; const Register Rh = R6_ARG4; const Register Rscratch = R11_scratch1; const int log_entry_size = 3; const int entry_size = 1 << log_entry_size; Label found; // Find Array start, __ addi(Rarray, R14_bcp, 3 * BytesPerInt); __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt)); // initialize i & j __ li(Ri,0); __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned); // and start. Label entry; __ b(entry); // binary search loop { Label loop; __ bind(loop); // int h = (i + j) >> 1; __ srdi(Rh, Rh, 1); // if (key < array[h].fast_match()) { // j = h; // } else { // i = h; // } __ sldi(Rscratch, Rh, log_entry_size); #if defined(VM_LITTLE_ENDIAN) __ lwbrx(Rscratch, Rscratch, Rarray); #else __ lwzx(Rscratch, Rscratch, Rarray); #endif // if (key < current value) // Rh = Rj // else // Rh = Ri Label Lgreater; __ cmpw(CCR0, Rkey, Rscratch); __ bge(CCR0, Lgreater); __ mr(Rj, Rh); __ b(entry); __ bind(Lgreater); __ mr(Ri, Rh); // while (i+1 < j) __ bind(entry); __ addi(Rscratch, Ri, 1); __ cmpw(CCR0, Rscratch, Rj); __ add(Rh, Ri, Rj); // start h = i + j >> 1; __ blt(CCR0, loop); } // End of binary search, result index is i (must check again!). Label default_case; Label continue_execution; if (ProfileInterpreter) { __ mr(Rh, Ri); // Save index in i for profiling. } // Ri = value offset __ sldi(Ri, Ri, log_entry_size); __ add(Ri, Ri, Rarray); __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned); Label not_found; // Ri = offset offset __ cmpw(CCR0, Rkey, Rscratch); __ beq(CCR0, not_found); // entry not found -> j = default offset __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned); __ b(default_case); __ bind(not_found); // entry found -> j = offset __ profile_switch_case(Rh, Rj, Rscratch, Rkey); __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned); if (ProfileInterpreter) { __ b(continue_execution); } __ bind(default_case); // fall through (if not profiling) __ profile_switch_default(Ri, Rscratch); __ bind(continue_execution); __ extsw(Rj, Rj); __ add(R14_bcp, Rj, R14_bcp); __ dispatch_next(vtos); } void TemplateTable::_return(TosState state) { transition(state, state); assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { Register Rscratch = R11_scratch1, Rklass = R12_scratch2, Rklass_flags = Rklass; Label Lskip_register_finalizer; // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case. assert(state == vtos, "only valid state"); __ ld(R17_tos, 0, R18_locals); // Load klass of this obj. __ load_klass(Rklass, R17_tos); __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass); __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER)); __ bfalse(CCR0, Lskip_register_finalizer); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */); __ align(32, 12); __ bind(Lskip_register_finalizer); } // Move the result value into the correct register and remove memory stack frame. __ remove_activation(state, /* throw_monitor_exception */ true); // Restoration of lr done by remove_activation. switch (state) { // Narrow result if state is itos but result type is smaller. // Need to narrow in the return bytecode rather than in generate_return_entry // since compiled code callers expect the result to already be narrowed. case itos: __ narrow(R17_tos); /* fall through */ case ltos: case btos: case ztos: case ctos: case stos: case atos: __ mr(R3_RET, R17_tos); break; case ftos: case dtos: __ fmr(F1_RET, F15_ftos); break; case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need // to get visible before the reference to the object gets stored anywhere. __ membar(Assembler::StoreStore); break; default : ShouldNotReachHere(); } __ blr(); } // ============================================================================ // Constant pool cache access // // Memory ordering: // // Like done in C++ interpreter, we load the fields // - _indices // - _f12_oop // acquired, because these are asked if the cache is already resolved. We don't // want to float loads above this check. // See also comments in ConstantPoolCacheEntry::bytecode_1(), // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1(); // Call into the VM if call site is not yet resolved // // Input regs: // - None, all passed regs are outputs. // // Returns: // - Rcache: The const pool cache entry that contains the resolved result. // - Rresult: Either noreg or output for f1/f2. // // Kills: // - Rscratch void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) { __ get_cache_and_index_at_bcp(Rcache, 1, index_size); Label Lresolved, Ldone; assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); // We are resolved if the indices offset contains the current bytecode. #if defined(VM_LITTLE_ENDIAN) __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache); #else __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache); #endif // Acquire by cmp-br-isync (see below). __ cmpdi(CCR0, Rscratch, (int)bytecode()); __ beq(CCR0, Lresolved); address entry = NULL; switch (bytecode()) { case Bytecodes::_getstatic : // fall through case Bytecodes::_putstatic : // fall through case Bytecodes::_getfield : // fall through case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; case Bytecodes::_invokevirtual : // fall through case Bytecodes::_invokespecial : // fall through case Bytecodes::_invokestatic : // fall through case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break; case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; default : ShouldNotReachHere(); break; } __ li(R4_ARG2, (int)bytecode()); __ call_VM(noreg, entry, R4_ARG2, true); // Update registers with resolved info. __ get_cache_and_index_at_bcp(Rcache, 1, index_size); __ b(Ldone); __ bind(Lresolved); __ isync(); // Order load wrt. succeeding loads. __ bind(Ldone); } // Load the constant pool cache entry at field accesses into registers. // The Rcache and Rindex registers must be set before call. // Input: // - Rcache, Rindex // Output: // - Robj, Roffset, Rflags void TemplateTable::load_field_cp_cache_entry(Register Robj, Register Rcache, Register Rindex /* unused on PPC64 */, Register Roffset, Register Rflags, bool is_static = false) { assert_different_registers(Rcache, Rflags, Roffset); // assert(Rindex == noreg, "parameter not used on PPC64"); ByteSize cp_base_offset = ConstantPoolCache::base_offset(); __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache); if (is_static) { __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache); __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj); // Acquire not needed here. Following access has an address dependency on this value. } } // Load the constant pool cache entry at invokes into registers. // Resolve if necessary. // Input Registers: // - None, bcp is used, though // // Return registers: // - Rmethod (f1 field or f2 if invokevirtual) // - Ritable_index (f2 field) // - Rflags (flags field) // // Kills: // - R21 // void TemplateTable::load_invoke_cp_cache_entry(int byte_no, Register Rmethod, Register Ritable_index, Register Rflags, bool is_invokevirtual, bool is_invokevfinal, bool is_invokedynamic) { ByteSize cp_base_offset = ConstantPoolCache::base_offset(); // Determine constant pool cache field offsets. assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset())); const int flags_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()); // Access constant pool cache fields. const int index_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()); Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP. if (is_invokevfinal) { assert(Ritable_index == noreg, "register not used"); // Already resolved. __ get_cache_and_index_at_bcp(Rcache, 1); } else { resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2)); } __ ld(Rmethod, method_offset, Rcache); __ ld(Rflags, flags_offset, Rcache); if (Ritable_index != noreg) { __ ld(Ritable_index, index_offset, Rcache); } } // ============================================================================ // Field access // Volatile variables demand their effects be made known to all CPU's // in order. Store buffers on most chips allow reads & writes to // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode // without some kind of memory barrier (i.e., it's not sufficient that // the interpreter does not reorder volatile references, the hardware // also must not reorder them). // // According to the new Java Memory Model (JMM): // (1) All volatiles are serialized wrt to each other. ALSO reads & // writes act as aquire & release, so: // (2) A read cannot let unrelated NON-volatile memory refs that // happen after the read float up to before the read. It's OK for // non-volatile memory refs that happen before the volatile read to // float down below it. // (3) Similar a volatile write cannot let unrelated NON-volatile // memory refs that happen BEFORE the write float down to after the // write. It's OK for non-volatile memory refs that happen after the // volatile write to float up before it. // // We only put in barriers around volatile refs (they are expensive), // not _between_ memory refs (that would require us to track the // flavor of the previous memory refs). Requirements (2) and (3) // require some barriers before volatile stores and after volatile // loads. These nearly cover requirement (1) but miss the // volatile-store-volatile-load case. This final case is placed after // volatile-stores although it could just as well go before // volatile-loads. // The registers cache and index expected to be set before call. // Correct values of the cache and index registers are preserved. // Kills: // Rcache (if has_tos) // Rscratch void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) { assert_different_registers(Rcache, Rscratch); if (JvmtiExport::can_post_field_access()) { ByteSize cp_base_offset = ConstantPoolCache::base_offset(); Label Lno_field_access_post; // Check if post field access in enabled. int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true); __ lwz(Rscratch, offs, Rscratch); __ cmpwi(CCR0, Rscratch, 0); __ beq(CCR0, Lno_field_access_post); // Post access enabled - do it! __ addi(Rcache, Rcache, in_bytes(cp_base_offset)); if (is_static) { __ li(R17_tos, 0); } else { if (has_tos) { // The fast bytecode versions have obj ptr in register. // Thus, save object pointer before call_VM() clobbers it // put object on tos where GC wants it. __ push_ptr(R17_tos); } else { // Load top of stack (do not pop the value off the stack). __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); } __ verify_oop(R17_tos); } // tos: object pointer or NULL if static // cache: cache entry pointer __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache); if (!is_static && has_tos) { // Restore object pointer. __ pop_ptr(R17_tos); __ verify_oop(R17_tos); } else { // Cache is still needed to get class or obj. __ get_cache_and_index_at_bcp(Rcache, 1); } __ align(32, 12); __ bind(Lno_field_access_post); } } // kills R11_scratch1 void TemplateTable::pop_and_check_object(Register Roop) { Register Rtmp = R11_scratch1; assert_different_registers(Rtmp, Roop); __ pop_ptr(Roop); // For field access must check obj. __ null_check_throw(Roop, -1, Rtmp); __ verify_oop(Roop); } // PPC64: implement volatile loads as fence-store-acquire. void TemplateTable::getfield_or_static(int byte_no, bool is_static) { transition(vtos, vtos); Label Lacquire, Lisync; const Register Rcache = R3_ARG1, Rclass_or_obj = R22_tmp2, Roffset = R23_tmp3, Rflags = R31, Rbtable = R5_ARG3, Rbc = R6_ARG4, Rscratch = R12_scratch2; static address field_branch_table[number_of_states], static_branch_table[number_of_states]; address* branch_table = is_static ? static_branch_table : field_branch_table; // Get field offset. resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2)); // JVMTI support jvmti_post_field_access(Rcache, Rscratch, is_static, false); // Load after possible GC. load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static); // Load pointer to branch table. __ load_const_optimized(Rbtable, (address)branch_table, Rscratch); // Get volatile flag. __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. // Note: sync is needed before volatile load on PPC64. // Check field type. __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); #ifdef ASSERT Label LFlagInvalid; __ cmpldi(CCR0, Rflags, number_of_states); __ bge(CCR0, LFlagInvalid); #endif // Load from branch table and dispatch (volatile case: one instruction ahead). __ sldi(Rflags, Rflags, LogBytesPerWord); __ cmpwi(CCR6, Rscratch, 1); // Volatile? if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0. } __ ldx(Rbtable, Rbtable, Rflags); // Get the obj from stack. if (!is_static) { pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1. } else { __ verify_oop(Rclass_or_obj); } if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point. } __ mtctr(Rbtable); __ bctr(); #ifdef ASSERT __ bind(LFlagInvalid); __ stop("got invalid flag", 0x654); // __ bind(Lvtos); address pc_before_fence = __ pc(); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction"); assert(branch_table[vtos] == 0, "can't compute twice"); branch_table[vtos] = __ pc(); // non-volatile_entry point __ stop("vtos unexpected", 0x655); #endif __ align(32, 28, 28); // Align load. // __ bind(Ldtos); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[dtos] == 0, "can't compute twice"); branch_table[dtos] = __ pc(); // non-volatile_entry point __ lfdx(F15_ftos, Rclass_or_obj, Roffset); __ push(dtos); if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch); { Label acquire_double; __ beq(CCR6, acquire_double); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ bind(acquire_double); __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. __ beq_predict_taken(CCR0, Lisync); __ b(Lisync); // In case of NAN. } __ align(32, 28, 28); // Align load. // __ bind(Lftos); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[ftos] == 0, "can't compute twice"); branch_table[ftos] = __ pc(); // non-volatile_entry point __ lfsx(F15_ftos, Rclass_or_obj, Roffset); __ push(ftos); if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); } { Label acquire_float; __ beq(CCR6, acquire_float); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ bind(acquire_float); __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. __ beq_predict_taken(CCR0, Lisync); __ b(Lisync); // In case of NAN. } __ align(32, 28, 28); // Align load. // __ bind(Litos); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[itos] == 0, "can't compute twice"); branch_table[itos] = __ pc(); // non-volatile_entry point __ lwax(R17_tos, Rclass_or_obj, Roffset); __ push(itos); if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch); __ beq(CCR6, Lacquire); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align load. // __ bind(Lltos); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[ltos] == 0, "can't compute twice"); branch_table[ltos] = __ pc(); // non-volatile_entry point __ ldx(R17_tos, Rclass_or_obj, Roffset); __ push(ltos); if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch); __ beq(CCR6, Lacquire); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align load. // __ bind(Lbtos); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[btos] == 0, "can't compute twice"); branch_table[btos] = __ pc(); // non-volatile_entry point __ lbzx(R17_tos, Rclass_or_obj, Roffset); __ extsb(R17_tos, R17_tos); __ push(btos); if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch); __ beq(CCR6, Lacquire); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align load. // __ bind(Lztos); (same code as btos) __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[ztos] == 0, "can't compute twice"); branch_table[ztos] = __ pc(); // non-volatile_entry point __ lbzx(R17_tos, Rclass_or_obj, Roffset); __ extsb(R17_tos, R17_tos); __ push(ztos); if (!is_static) { // use btos rewriting, no truncating to t/f bit is needed for getfield. patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch); } __ beq(CCR6, Lacquire); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align load. // __ bind(Lctos); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[ctos] == 0, "can't compute twice"); branch_table[ctos] = __ pc(); // non-volatile_entry point __ lhzx(R17_tos, Rclass_or_obj, Roffset); __ push(ctos); if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch); __ beq(CCR6, Lacquire); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align load. // __ bind(Lstos); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[stos] == 0, "can't compute twice"); branch_table[stos] = __ pc(); // non-volatile_entry point __ lhax(R17_tos, Rclass_or_obj, Roffset); __ push(stos); if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch); __ beq(CCR6, Lacquire); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align load. // __ bind(Latos); __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[atos] == 0, "can't compute twice"); branch_table[atos] = __ pc(); // non-volatile_entry point __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); __ verify_oop(R17_tos); __ push(atos); //__ dcbt(R17_tos); // prefetch if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch); __ beq(CCR6, Lacquire); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 12); __ bind(Lacquire); __ twi_0(R17_tos); __ bind(Lisync); __ isync(); // acquire #ifdef ASSERT for (int i = 0; iprint_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)", // is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i])); } #endif } void TemplateTable::getfield(int byte_no) { getfield_or_static(byte_no, false); } void TemplateTable::getstatic(int byte_no) { getfield_or_static(byte_no, true); } // The registers cache and index expected to be set before call. // The function may destroy various registers, just not the cache and index registers. void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) { assert_different_registers(Rcache, Rscratch, R6_ARG4); if (JvmtiExport::can_post_field_modification()) { Label Lno_field_mod_post; // Check if post field access in enabled. int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true); __ lwz(Rscratch, offs, Rscratch); __ cmpwi(CCR0, Rscratch, 0); __ beq(CCR0, Lno_field_mod_post); // Do the post ByteSize cp_base_offset = ConstantPoolCache::base_offset(); const Register Robj = Rscratch; __ addi(Rcache, Rcache, in_bytes(cp_base_offset)); if (is_static) { // Life is simple. Null out the object pointer. __ li(Robj, 0); } else { // In case of the fast versions, value lives in registers => put it back on tos. int offs = Interpreter::expr_offset_in_bytes(0); Register base = R15_esp; switch(bytecode()) { case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break; case Bytecodes::_fast_iputfield: // Fall through case Bytecodes::_fast_bputfield: // Fall through case Bytecodes::_fast_zputfield: // Fall through case Bytecodes::_fast_cputfield: // Fall through case Bytecodes::_fast_sputfield: __ push_i(); offs+= Interpreter::stackElementSize; break; case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break; case Bytecodes::_fast_fputfield: __ push_f(); offs+= Interpreter::stackElementSize; break; case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break; default: { offs = 0; base = Robj; const Register Rflags = Robj; Label is_one_slot; // Life is harder. The stack holds the value on top, followed by the // object. We don't know the size of the value, though; it could be // one or two words depending on its type. As a result, we must find // the type to determine where the object is. __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); __ cmpwi(CCR0, Rflags, ltos); __ cmpwi(CCR1, Rflags, dtos); __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1)); __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); __ beq(CCR0, is_one_slot); __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2)); __ bind(is_one_slot); break; } } __ ld(Robj, offs, base); __ verify_oop(Robj); } __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0)); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4); __ get_cache_and_index_at_bcp(Rcache, 1); // In case of the fast versions, value lives in registers => put it back on tos. switch(bytecode()) { case Bytecodes::_fast_aputfield: __ pop_ptr(); break; case Bytecodes::_fast_iputfield: // Fall through case Bytecodes::_fast_bputfield: // Fall through case Bytecodes::_fast_zputfield: // Fall through case Bytecodes::_fast_cputfield: // Fall through case Bytecodes::_fast_sputfield: __ pop_i(); break; case Bytecodes::_fast_lputfield: __ pop_l(); break; case Bytecodes::_fast_fputfield: __ pop_f(); break; case Bytecodes::_fast_dputfield: __ pop_d(); break; default: break; // Nothin' to do. } __ align(32, 12); __ bind(Lno_field_mod_post); } } // PPC64: implement volatile stores as release-store (return bytecode contains an additional release). void TemplateTable::putfield_or_static(int byte_no, bool is_static) { Label Lvolatile; const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod). Rclass_or_obj = R31, // Needs to survive C call. Roffset = R22_tmp2, // Needs to survive C call. Rflags = R3_ARG1, Rbtable = R4_ARG2, Rscratch = R11_scratch1, Rscratch2 = R12_scratch2, Rscratch3 = R6_ARG4, Rbc = Rscratch3; const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store). static address field_branch_table[number_of_states], static_branch_table[number_of_states]; address* branch_table = is_static ? static_branch_table : field_branch_table; // Stack (grows up): // value // obj // Load the field offset. resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2)); jvmti_post_field_mod(Rcache, Rscratch, is_static); load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static); // Load pointer to branch table. __ load_const_optimized(Rbtable, (address)branch_table, Rscratch); // Get volatile flag. __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. // Check the field type. __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); #ifdef ASSERT Label LFlagInvalid; __ cmpldi(CCR0, Rflags, number_of_states); __ bge(CCR0, LFlagInvalid); #endif // Load from branch table and dispatch (volatile case: one instruction ahead). __ sldi(Rflags, Rflags, LogBytesPerWord); if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile? __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0. __ ldx(Rbtable, Rbtable, Rflags); __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point. __ mtctr(Rbtable); __ bctr(); #ifdef ASSERT __ bind(LFlagInvalid); __ stop("got invalid flag", 0x656); // __ bind(Lvtos); address pc_before_release = __ pc(); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction"); assert(branch_table[vtos] == 0, "can't compute twice"); branch_table[vtos] = __ pc(); // non-volatile_entry point __ stop("vtos unexpected", 0x657); #endif __ align(32, 28, 28); // Align pop. // __ bind(Ldtos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[dtos] == 0, "can't compute twice"); branch_table[dtos] = __ pc(); // non-volatile_entry point __ pop(dtos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. __ stfdx(F15_ftos, Rclass_or_obj, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? } __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align pop. // __ bind(Lftos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[ftos] == 0, "can't compute twice"); branch_table[ftos] = __ pc(); // non-volatile_entry point __ pop(ftos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. __ stfsx(F15_ftos, Rclass_or_obj, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? } __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align pop. // __ bind(Litos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[itos] == 0, "can't compute twice"); branch_table[itos] = __ pc(); // non-volatile_entry point __ pop(itos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. __ stwx(R17_tos, Rclass_or_obj, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? } __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align pop. // __ bind(Lltos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[ltos] == 0, "can't compute twice"); branch_table[ltos] = __ pc(); // non-volatile_entry point __ pop(ltos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. __ stdx(R17_tos, Rclass_or_obj, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? } __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align pop. // __ bind(Lbtos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[btos] == 0, "can't compute twice"); branch_table[btos] = __ pc(); // non-volatile_entry point __ pop(btos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. __ stbx(R17_tos, Rclass_or_obj, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? } __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align pop. // __ bind(Lztos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[ztos] == 0, "can't compute twice"); branch_table[ztos] = __ pc(); // non-volatile_entry point __ pop(ztos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. __ andi(R17_tos, R17_tos, 0x1); __ stbx(R17_tos, Rclass_or_obj, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_zputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? } __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align pop. // __ bind(Lctos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[ctos] == 0, "can't compute twice"); branch_table[ctos] = __ pc(); // non-volatile_entry point __ pop(ctos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.. __ sthx(R17_tos, Rclass_or_obj, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? } __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align pop. // __ bind(Lstos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[stos] == 0, "can't compute twice"); branch_table[stos] = __ pc(); // non-volatile_entry point __ pop(stos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. __ sthx(R17_tos, Rclass_or_obj, Roffset); if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? } __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 28, 28); // Align pop. // __ bind(Latos); __ release(); // Volatile entry point (one instruction before non-volatile_entry point). assert(branch_table[atos] == 0, "can't compute twice"); branch_table[atos] = __ pc(); // non-volatile_entry point __ pop(atos); if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1 do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */); if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ beq(CR_is_vol, Lvolatile); // Volatile? __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 12); __ bind(Lvolatile); __ fence(); } // fallthru: __ b(Lexit); #ifdef ASSERT for (int i = 0; iprint_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)", // is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i])); } #endif } void TemplateTable::putfield(int byte_no) { putfield_or_static(byte_no, false); } void TemplateTable::putstatic(int byte_no) { putfield_or_static(byte_no, true); } // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job. void TemplateTable::jvmti_post_fast_field_mod() { __ should_not_reach_here(); } void TemplateTable::fast_storefield(TosState state) { transition(state, vtos); const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod). Rclass_or_obj = R31, // Needs to survive C call. Roffset = R22_tmp2, // Needs to survive C call. Rflags = R3_ARG1, Rscratch = R11_scratch1, Rscratch2 = R12_scratch2, Rscratch3 = R4_ARG2; const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store). // Constant pool already resolved => Load flags and offset of field. __ get_cache_and_index_at_bcp(Rcache, 1); jvmti_post_field_mod(Rcache, Rscratch, false /* not static */); load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); // Get the obj and the final store addr. pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1. // Get volatile flag. __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); } { Label LnotVolatile; __ beq(CCR0, LnotVolatile); __ release(); __ align(32, 12); __ bind(LnotVolatile); } // Do the store and fencing. switch(bytecode()) { case Bytecodes::_fast_aputfield: // Store into the field. do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */); break; case Bytecodes::_fast_iputfield: __ stwx(R17_tos, Rclass_or_obj, Roffset); break; case Bytecodes::_fast_lputfield: __ stdx(R17_tos, Rclass_or_obj, Roffset); break; case Bytecodes::_fast_zputfield: __ andi(R17_tos, R17_tos, 0x1); // boolean is true if LSB is 1 // fall through to bputfield case Bytecodes::_fast_bputfield: __ stbx(R17_tos, Rclass_or_obj, Roffset); break; case Bytecodes::_fast_cputfield: case Bytecodes::_fast_sputfield: __ sthx(R17_tos, Rclass_or_obj, Roffset); break; case Bytecodes::_fast_fputfield: __ stfsx(F15_ftos, Rclass_or_obj, Roffset); break; case Bytecodes::_fast_dputfield: __ stfdx(F15_ftos, Rclass_or_obj, Roffset); break; default: ShouldNotReachHere(); } if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { Label LVolatile; __ beq(CR_is_vol, LVolatile); __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); __ align(32, 12); __ bind(LVolatile); __ fence(); } } void TemplateTable::fast_accessfield(TosState state) { transition(atos, state); Label LisVolatile; ByteSize cp_base_offset = ConstantPoolCache::base_offset(); const Register Rcache = R3_ARG1, Rclass_or_obj = R17_tos, Roffset = R22_tmp2, Rflags = R23_tmp3, Rscratch = R12_scratch2; // Constant pool already resolved. Get the field offset. __ get_cache_and_index_at_bcp(Rcache, 1); load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); // JVMTI support jvmti_post_field_access(Rcache, Rscratch, false, true); // Get the load address. __ null_check_throw(Rclass_or_obj, -1, Rscratch); // Get volatile flag. __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. __ bne(CCR0, LisVolatile); switch(bytecode()) { case Bytecodes::_fast_agetfield: { __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); __ verify_oop(R17_tos); __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); __ bind(LisVolatile); if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); __ verify_oop(R17_tos); __ twi_0(R17_tos); __ isync(); break; } case Bytecodes::_fast_igetfield: { __ lwax(R17_tos, Rclass_or_obj, Roffset); __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); __ bind(LisVolatile); if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ lwax(R17_tos, Rclass_or_obj, Roffset); __ twi_0(R17_tos); __ isync(); break; } case Bytecodes::_fast_lgetfield: { __ ldx(R17_tos, Rclass_or_obj, Roffset); __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); __ bind(LisVolatile); if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ ldx(R17_tos, Rclass_or_obj, Roffset); __ twi_0(R17_tos); __ isync(); break; } case Bytecodes::_fast_bgetfield: { __ lbzx(R17_tos, Rclass_or_obj, Roffset); __ extsb(R17_tos, R17_tos); __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); __ bind(LisVolatile); if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ lbzx(R17_tos, Rclass_or_obj, Roffset); __ twi_0(R17_tos); __ extsb(R17_tos, R17_tos); __ isync(); break; } case Bytecodes::_fast_cgetfield: { __ lhzx(R17_tos, Rclass_or_obj, Roffset); __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); __ bind(LisVolatile); if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ lhzx(R17_tos, Rclass_or_obj, Roffset); __ twi_0(R17_tos); __ isync(); break; } case Bytecodes::_fast_sgetfield: { __ lhax(R17_tos, Rclass_or_obj, Roffset); __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); __ bind(LisVolatile); if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ lhax(R17_tos, Rclass_or_obj, Roffset); __ twi_0(R17_tos); __ isync(); break; } case Bytecodes::_fast_fgetfield: { __ lfsx(F15_ftos, Rclass_or_obj, Roffset); __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); __ bind(LisVolatile); Label Ldummy; if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ lfsx(F15_ftos, Rclass_or_obj, Roffset); __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. __ bne_predict_not_taken(CCR0, Ldummy); __ bind(Ldummy); __ isync(); break; } case Bytecodes::_fast_dgetfield: { __ lfdx(F15_ftos, Rclass_or_obj, Roffset); __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); __ bind(LisVolatile); Label Ldummy; if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ lfdx(F15_ftos, Rclass_or_obj, Roffset); __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. __ bne_predict_not_taken(CCR0, Ldummy); __ bind(Ldummy); __ isync(); break; } default: ShouldNotReachHere(); } } void TemplateTable::fast_xaccess(TosState state) { transition(vtos, state); Label LisVolatile; ByteSize cp_base_offset = ConstantPoolCache::base_offset(); const Register Rcache = R3_ARG1, Rclass_or_obj = R17_tos, Roffset = R22_tmp2, Rflags = R23_tmp3, Rscratch = R12_scratch2; __ ld(Rclass_or_obj, 0, R18_locals); // Constant pool already resolved. Get the field offset. __ get_cache_and_index_at_bcp(Rcache, 2); load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches. // Needed to report exception at the correct bcp. __ addi(R14_bcp, R14_bcp, 1); // Get the load address. __ null_check_throw(Rclass_or_obj, -1, Rscratch); // Get volatile flag. __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. __ bne(CCR0, LisVolatile); switch(state) { case atos: { __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); __ verify_oop(R17_tos); __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. __ bind(LisVolatile); if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); __ verify_oop(R17_tos); __ twi_0(R17_tos); __ isync(); break; } case itos: { __ lwax(R17_tos, Rclass_or_obj, Roffset); __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. __ bind(LisVolatile); if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ lwax(R17_tos, Rclass_or_obj, Roffset); __ twi_0(R17_tos); __ isync(); break; } case ftos: { __ lfsx(F15_ftos, Rclass_or_obj, Roffset); __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. __ bind(LisVolatile); Label Ldummy; if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } __ lfsx(F15_ftos, Rclass_or_obj, Roffset); __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. __ bne_predict_not_taken(CCR0, Ldummy); __ bind(Ldummy); __ isync(); break; } default: ShouldNotReachHere(); } __ addi(R14_bcp, R14_bcp, -1); } // ============================================================================ // Calls // Common code for invoke // // Input: // - byte_no // // Output: // - Rmethod: The method to invoke next. // - Rret_addr: The return address to return to. // - Rindex: MethodType (invokehandle) or CallSite obj (invokedynamic) // - Rrecv: Cache for "this" pointer, might be noreg if static call. // - Rflags: Method flags from const pool cache. // // Kills: // - Rscratch1 // void TemplateTable::prepare_invoke(int byte_no, Register Rmethod, // linked method (or i-klass) Register Rret_addr,// return address Register Rindex, // itable index, MethodType, etc. Register Rrecv, // If caller wants to see it. Register Rflags, // If caller wants to test it. Register Rscratch ) { // Determine flags. const Bytecodes::Code code = bytecode(); const bool is_invokeinterface = code == Bytecodes::_invokeinterface; const bool is_invokedynamic = code == Bytecodes::_invokedynamic; const bool is_invokehandle = code == Bytecodes::_invokehandle; const bool is_invokevirtual = code == Bytecodes::_invokevirtual; const bool is_invokespecial = code == Bytecodes::_invokespecial; const bool load_receiver = (Rrecv != noreg); assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); assert_different_registers(Rmethod, Rindex, Rflags, Rscratch); assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch); assert_different_registers(Rret_addr, Rscratch); load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic); // Saving of SP done in call_from_interpreter. // Maybe push "appendix" to arguments. if (is_invokedynamic || is_invokehandle) { Label Ldone; __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63); __ beq(CCR0, Ldone); // Push "appendix" (MethodType, CallSite, etc.). // This must be done before we get the receiver, // since the parameter_size includes it. __ load_resolved_reference_at_index(Rscratch, Rindex); __ verify_oop(Rscratch); __ push_ptr(Rscratch); __ bind(Ldone); } // Load receiver if needed (after appendix is pushed so parameter size is correct). if (load_receiver) { const Register Rparam_count = Rscratch; __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask); __ load_receiver(Rparam_count, Rrecv); __ verify_oop(Rrecv); } // Get return address. { Register Rtable_addr = Rscratch; Register Rret_type = Rret_addr; address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); __ load_dispatch_table(Rtable_addr, (address*)table_addr); __ sldi(Rret_type, Rret_type, LogBytesPerWord); // Get return address. __ ldx(Rret_addr, Rtable_addr, Rret_type); } } // Helper for virtual calls. Load target out of vtable and jump off! // Kills all passed registers. void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) { assert_different_registers(Rrecv_klass, Rtemp, Rret); const Register Rtarget_method = Rindex; // Get target method & entry point. const int base = InstanceKlass::vtable_start_offset() * wordSize; // Calc vtable addr scale the vtable index by 8. __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize)); // Load target. __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes()); __ ldx(Rtarget_method, Rindex, Rrecv_klass); // Argument and return type profiling. __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true); __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */); } // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time. void TemplateTable::invokevirtual(int byte_no) { transition(vtos, vtos); Register Rtable_addr = R11_scratch1, Rret_type = R12_scratch2, Rret_addr = R5_ARG3, Rflags = R22_tmp2, // Should survive C call. Rrecv = R3_ARG1, Rrecv_klass = Rrecv, Rvtableindex_or_method = R31, // Should survive C call. Rnum_params = R4_ARG2, Rnew_bc = R6_ARG4; Label LnotFinal; load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false); __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift); __ bfalse(CCR0, LnotFinal); patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2); invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2); __ align(32, 12); __ bind(LnotFinal); // Load "this" pointer (receiver). __ rldicl(Rnum_params, Rflags, 64, 48); __ load_receiver(Rnum_params, Rrecv); __ verify_oop(Rrecv); // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table()); __ sldi(Rret_type, Rret_type, LogBytesPerWord); __ ldx(Rret_addr, Rret_type, Rtable_addr); __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1); __ load_klass(Rrecv_klass, Rrecv); __ verify_klass_ptr(Rrecv_klass); __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false); generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1); } void TemplateTable::fast_invokevfinal(int byte_no) { transition(vtos, vtos); assert(byte_no == f2_byte, "use this argument"); Register Rflags = R22_tmp2, Rmethod = R31; load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false); invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2); } void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) { assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2); // Load receiver from stack slot. Register Rrecv = Rscratch2; Register Rnum_params = Rrecv; __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod); __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params); // Get return address. Register Rtable_addr = Rscratch1, Rret_addr = Rflags, Rret_type = Rret_addr; // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table()); __ sldi(Rret_type, Rret_type, LogBytesPerWord); __ ldx(Rret_addr, Rret_type, Rtable_addr); // Load receiver and receiver NULL check. __ load_receiver(Rnum_params, Rrecv); __ null_check_throw(Rrecv, -1, Rscratch1); __ profile_final_call(Rrecv, Rscratch1); // Argument and return type profiling. __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true); // Do the call. __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2); } void TemplateTable::invokespecial(int byte_no) { assert(byte_no == f1_byte, "use this argument"); transition(vtos, vtos); Register Rtable_addr = R3_ARG1, Rret_addr = R4_ARG2, Rflags = R5_ARG3, Rreceiver = R6_ARG4, Rmethod = R31; prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1); // Receiver NULL check. __ null_check_throw(Rreceiver, -1, R11_scratch1); __ profile_call(R11_scratch1, R12_scratch2); // Argument and return type profiling. __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false); __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2); } void TemplateTable::invokestatic(int byte_no) { assert(byte_no == f1_byte, "use this argument"); transition(vtos, vtos); Register Rtable_addr = R3_ARG1, Rret_addr = R4_ARG2, Rflags = R5_ARG3; prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1); __ profile_call(R11_scratch1, R12_scratch2); // Argument and return type profiling. __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false); __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2); } void TemplateTable::invokeinterface_object_method(Register Rrecv_klass, Register Rret, Register Rflags, Register Rmethod, Register Rtemp1, Register Rtemp2) { assert_different_registers(Rmethod, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2); Label LnotFinal; // Check for vfinal. __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift); __ bfalse(CCR0, LnotFinal); Register Rscratch = Rflags; // Rflags is dead now. // Final call case. __ profile_final_call(Rtemp1, Rscratch); // Argument and return type profiling. __ profile_arguments_type(Rmethod, Rscratch, Rrecv_klass /* scratch */, true); // Do the final call - the index (f2) contains the method. __ call_from_interpreter(Rmethod, Rret, Rscratch, Rrecv_klass /* scratch */); // Non-final callc case. __ bind(LnotFinal); __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false); generate_vtable_call(Rrecv_klass, Rmethod, Rret, Rscratch); } void TemplateTable::invokeinterface(int byte_no) { assert(byte_no == f1_byte, "use this argument"); transition(vtos, vtos); const Register Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2, Rmethod = R6_ARG4, Rmethod2 = R9_ARG7, Rinterface_klass = R5_ARG3, Rret_addr = R8_ARG6, Rindex = R10_ARG8, Rreceiver = R3_ARG1, Rrecv_klass = R4_ARG2, Rflags = R7_ARG5; prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rmethod, Rreceiver, Rflags, Rscratch1); // Get receiver klass. __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch2); __ load_klass(Rrecv_klass, Rreceiver); // Check corner case object method. Label LobjectMethod, L_no_such_interface, Lthrow_ame; __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift); __ btrue(CCR0, LobjectMethod); __ lookup_interface_method(Rrecv_klass, Rinterface_klass, noreg, noreg, Rscratch1, Rscratch2, L_no_such_interface, /*return_method=*/false); __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false); // Find entry point to call. // Get declaring interface class from method __ ld(Rinterface_klass, in_bytes(Method::const_offset()), Rmethod); __ ld(Rinterface_klass, in_bytes(ConstMethod::constants_offset()), Rinterface_klass); __ ld(Rinterface_klass, ConstantPool::pool_holder_offset_in_bytes(), Rinterface_klass); // Get itable index from method __ lwa(Rindex, in_bytes(Method::itable_index_offset()), Rmethod); __ subfic(Rindex, Rindex, Method::itable_index_max); __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rmethod2, Rscratch1, Rscratch2, L_no_such_interface); __ cmpdi(CCR0, Rmethod2, 0); __ beq(CCR0, Lthrow_ame); // Found entry. Jump off! // Argument and return type profiling. __ profile_arguments_type(Rmethod2, Rscratch1, Rscratch2, true); //__ profile_called_method(Rindex, Rscratch1); __ call_from_interpreter(Rmethod2, Rret_addr, Rscratch1, Rscratch2); // Vtable entry was NULL => Throw abstract method error. __ bind(Lthrow_ame); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); // Interface was not found => Throw incompatible class change error. __ bind(L_no_such_interface); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError)); DEBUG_ONLY( __ should_not_reach_here(); ) // Special case of invokeinterface called for virtual method of // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details: // The invokeinterface was rewritten to a invokevirtual, hence we have // to handle this corner case. This code isn't produced by javac, but could // be produced by another compliant java compiler. __ bind(LobjectMethod); invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rmethod, Rscratch1, Rscratch2); } void TemplateTable::invokedynamic(int byte_no) { transition(vtos, vtos); const Register Rret_addr = R3_ARG1, Rflags = R4_ARG2, Rmethod = R22_tmp2, Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2; if (!EnableInvokeDynamic) { // We should not encounter this bytecode if !EnableInvokeDynamic. // The verifier will stop it. However, if we get past the verifier, // this will stop the thread in a reasonable way, without crashing the JVM. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError)); // The call_VM checks for exception, so we should never return here. __ should_not_reach_here(); return; } prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2); // Profile this call. __ profile_call(Rscratch1, Rscratch2); // Off we go. With the new method handles, we don't jump to a method handle // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens // to be the callsite object the bootstrap method returned. This is passed to a // "link" method which does the dispatch (Most likely just grabs the MH stored // inside the callsite and does an invokehandle). // Argument and return type profiling. __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false); __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */); } void TemplateTable::invokehandle(int byte_no) { transition(vtos, vtos); const Register Rret_addr = R3_ARG1, Rflags = R4_ARG2, Rrecv = R5_ARG3, Rmethod = R22_tmp2, Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2; if (!EnableInvokeDynamic) { // Rewriter does not generate this bytecode. __ should_not_reach_here(); return; } prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2); __ verify_method_ptr(Rmethod); __ null_check_throw(Rrecv, -1, Rscratch2); __ profile_final_call(Rrecv, Rscratch1); // Still no call from handle => We call the method handle interpreter here. // Argument and return type profiling. __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true); __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */); } // ============================================================================= // Allocation // Puts allocated obj ref onto the expression stack. void TemplateTable::_new() { transition(vtos, atos); Label Lslow_case, Ldone, Linitialize_header, Lallocate_shared, Linitialize_object; // Including clearing the fields. const Register RallocatedObject = R17_tos, RinstanceKlass = R9_ARG7, Rscratch = R11_scratch1, Roffset = R8_ARG6, Rinstance_size = Roffset, Rcpool = R4_ARG2, Rtags = R3_ARG1, Rindex = R5_ARG3; const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; // -------------------------------------------------------------------------- // Check if fast case is possible. // Load pointers to const pool and const pool's tags array. __ get_cpool_and_tags(Rcpool, Rtags); // Load index of constant pool entry. __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned); if (UseTLAB) { // Make sure the class we're about to instantiate has been resolved // This is done before loading instanceKlass to be consistent with the order // how Constant Pool is updated (see ConstantPoolCache::klass_at_put). __ addi(Rtags, Rtags, Array::base_offset_in_bytes()); __ lbzx(Rtags, Rindex, Rtags); __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); __ bne(CCR0, Lslow_case); // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord). __ sldi(Roffset, Rindex, LogBytesPerWord); __ addi(Rscratch, Rcpool, sizeof(ConstantPool)); __ isync(); // Order load of instance Klass wrt. tags. __ ldx(RinstanceKlass, Roffset, Rscratch); // Make sure klass is fully initialized and get instance_size. __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass); __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass); __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized); // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class. __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0? __ crnand(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // slow path bit set or not fully initialized? __ beq(CCR0, Lslow_case); // -------------------------------------------------------------------------- // Fast case: // Allocate the instance. // 1) Try to allocate in the TLAB. // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden. // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.). Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits. Register RnewTopValue = R6_ARG4; Register RendValue = R7_ARG5; // Check if we can allocate in the TLAB. __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread); __ ld(RendValue, in_bytes(JavaThread::tlab_end_offset()), R16_thread); __ add(RnewTopValue, Rinstance_size, RoldTopValue); // If there is enough space, we do not CAS and do not clear. __ cmpld(CCR0, RnewTopValue, RendValue); __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case); __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread); if (ZeroTLAB) { // The fields have already been cleared. __ b(Linitialize_header); } else { // Initialize both the header and fields. __ b(Linitialize_object); } // Fall through: TLAB was too small. if (allow_shared_alloc) { Register RtlabWasteLimitValue = R10_ARG8; Register RfreeValue = RnewTopValue; __ bind(Lallocate_shared); // Check if tlab should be discarded (refill_waste_limit >= free). __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread); __ subf(RfreeValue, RoldTopValue, RendValue); __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue); __ bge(CCR0, Lslow_case); // Increment waste limit to prevent getting stuck on this slow path. __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment()); __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread); } // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case); } // else: Always go the slow path. // -------------------------------------------------------------------------- // slow case __ bind(Lslow_case); call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex); if (UseTLAB) { __ b(Ldone); // -------------------------------------------------------------------------- // Init1: Zero out newly allocated memory. if (!ZeroTLAB || allow_shared_alloc) { // Clear object fields. __ bind(Linitialize_object); // Initialize remaining object fields. Register Rbase = Rtags; __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc)); __ addi(Rbase, RallocatedObject, sizeof(oopDesc)); __ srdi(Rinstance_size, Rinstance_size, 3); // Clear out object skipping header. Takes also care of the zero length case. __ clear_memory_doubleword(Rbase, Rinstance_size); // fallthru: __ b(Linitialize_header); } // -------------------------------------------------------------------------- // Init2: Initialize the header: mark, klass __ bind(Linitialize_header); // Init mark. if (UseBiasedLocking) { __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass); } else { __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0); } __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject); // Init klass. __ store_klass_gap(RallocatedObject); __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms) // Check and trigger dtrace event. { SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes); __ push(atos); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)); __ pop(atos); } } // continue __ bind(Ldone); // Must prevent reordering of stores for object initialization with stores that publish the new object. __ membar(Assembler::StoreStore); } void TemplateTable::newarray() { transition(itos, atos); __ lbz(R4, 1, R14_bcp); __ extsw(R5, R17_tos); call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */); // Must prevent reordering of stores for object initialization with stores that publish the new object. __ membar(Assembler::StoreStore); } void TemplateTable::anewarray() { transition(itos, atos); __ get_constant_pool(R4); __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned); __ extsw(R6, R17_tos); // size call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */); // Must prevent reordering of stores for object initialization with stores that publish the new object. __ membar(Assembler::StoreStore); } // Allocate a multi dimensional array void TemplateTable::multianewarray() { transition(vtos, atos); Register Rptr = R31; // Needs to survive C call. // Put ndims * wordSize into frame temp slot __ lbz(Rptr, 3, R14_bcp); __ sldi(Rptr, Rptr, Interpreter::logStackElementSize); // Esp points past last_dim, so set to R4 to first_dim address. __ add(R4, Rptr, R15_esp); call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */); // Pop all dimensions off the stack. __ add(R15_esp, Rptr, R15_esp); // Must prevent reordering of stores for object initialization with stores that publish the new object. __ membar(Assembler::StoreStore); } void TemplateTable::arraylength() { transition(atos, itos); Label LnoException; __ verify_oop(R17_tos); __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1); __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos); } // ============================================================================ // Typechecks void TemplateTable::checkcast() { transition(atos, atos); Label Ldone, Lis_null, Lquicked, Lresolved; Register Roffset = R6_ARG4, RobjKlass = R4_ARG2, RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register. Rcpool = R11_scratch1, Rtags = R12_scratch2; // Null does not pass. __ cmpdi(CCR0, R17_tos, 0); __ beq(CCR0, Lis_null); // Get constant pool tag to find out if the bytecode has already been "quickened". __ get_cpool_and_tags(Rcpool, Rtags); __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned); __ addi(Rtags, Rtags, Array::base_offset_in_bytes()); __ lbzx(Rtags, Rtags, Roffset); __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); __ beq(CCR0, Lquicked); // Call into the VM to "quicken" instanceof. __ push_ptr(); // for GC call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); __ get_vm_result_2(RspecifiedKlass); __ pop_ptr(); // Restore receiver. __ b(Lresolved); // Extract target class from constant pool. __ bind(Lquicked); __ sldi(Roffset, Roffset, LogBytesPerWord); __ addi(Rcpool, Rcpool, sizeof(ConstantPool)); __ isync(); // Order load of specified Klass wrt. tags. __ ldx(RspecifiedKlass, Rcpool, Roffset); // Do the checkcast. __ bind(Lresolved); // Get value klass in RobjKlass. __ load_klass(RobjKlass, R17_tos); // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure. __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone); // Not a subtype; so must throw exception // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention. __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry); __ mtctr(R11_scratch1); __ bctr(); // Profile the null case. __ align(32, 12); __ bind(Lis_null); __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch. __ align(32, 12); __ bind(Ldone); } // Output: // - tos == 0: Obj was null or not an instance of class. // - tos == 1: Obj was an instance of class. void TemplateTable::instanceof() { transition(atos, itos); Label Ldone, Lis_null, Lquicked, Lresolved; Register Roffset = R5_ARG3, RobjKlass = R4_ARG2, RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register. Rcpool = R11_scratch1, Rtags = R12_scratch2; // Null does not pass. __ cmpdi(CCR0, R17_tos, 0); __ beq(CCR0, Lis_null); // Get constant pool tag to find out if the bytecode has already been "quickened". __ get_cpool_and_tags(Rcpool, Rtags); __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned); __ addi(Rtags, Rtags, Array::base_offset_in_bytes()); __ lbzx(Rtags, Rtags, Roffset); __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); __ beq(CCR0, Lquicked); // Call into the VM to "quicken" instanceof. __ push_ptr(); // for GC call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); __ get_vm_result_2(RspecifiedKlass); __ pop_ptr(); // Restore receiver. __ b(Lresolved); // Extract target class from constant pool. __ bind(Lquicked); __ sldi(Roffset, Roffset, LogBytesPerWord); __ addi(Rcpool, Rcpool, sizeof(ConstantPool)); __ isync(); // Order load of specified Klass wrt. tags. __ ldx(RspecifiedKlass, Rcpool, Roffset); // Do the checkcast. __ bind(Lresolved); // Get value klass in RobjKlass. __ load_klass(RobjKlass, R17_tos); // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure. __ li(R17_tos, 1); __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone); __ li(R17_tos, 0); if (ProfileInterpreter) { __ b(Ldone); } // Profile the null case. __ align(32, 12); __ bind(Lis_null); __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch. __ align(32, 12); __ bind(Ldone); } // ============================================================================= // Breakpoints void TemplateTable::_breakpoint() { transition(vtos, vtos); // Get the unpatched byte code. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp); __ mr(R31, R3_RET); // Post the breakpoint event. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp); // Complete the execution of original bytecode. __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos)); } // ============================================================================= // Exceptions void TemplateTable::athrow() { transition(atos, vtos); // Exception oop is in tos __ verify_oop(R17_tos); __ null_check_throw(R17_tos, -1, R11_scratch1); // Throw exception interpreter entry expects exception oop to be in R3. __ mr(R3_RET, R17_tos); __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry()); __ mtctr(R11_scratch1); __ bctr(); } // ============================================================================= // Synchronization // Searches the basic object lock list on the stack for a free slot // and uses it to lock the obect in tos. // // Recursive locking is enabled by exiting the search if the same // object is already found in the list. Thus, a new basic lock obj lock // is allocated "higher up" in the stack and thus is found first // at next monitor exit. void TemplateTable::monitorenter() { transition(atos, vtos); __ verify_oop(R17_tos); Register Rcurrent_monitor = R11_scratch1, Rcurrent_obj = R12_scratch2, Robj_to_lock = R17_tos, Rscratch1 = R3_ARG1, Rscratch2 = R4_ARG2, Rscratch3 = R5_ARG3, Rcurrent_obj_addr = R6_ARG4; // ------------------------------------------------------------------------------ // Null pointer exception. __ null_check_throw(Robj_to_lock, -1, R11_scratch1); // Try to acquire a lock on the object. // Repeat until succeeded (i.e., until monitorenter returns true). // ------------------------------------------------------------------------------ // Find a free slot in the monitor block. Label Lfound, Lexit, Lallocate_new; ConditionRegister found_free_slot = CCR0, found_same_obj = CCR1, reached_limit = CCR6; { Label Lloop, Lentry; Register Rlimit = Rcurrent_monitor; // Set up search loop - start with topmost monitor. __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor); __ ld(Rlimit, 0, R1_SP); __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base // Check if any slot is present => short cut to allocation if not. __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit); __ bgt(reached_limit, Lallocate_new); // Pre-load topmost slot. __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); // The search loop. __ bind(Lloop); // Found free slot? __ cmpdi(found_free_slot, Rcurrent_obj, 0); // Is this entry for same obj? If so, stop the search and take the found // free slot or allocate a new one to enable recursive locking. __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock); __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit); __ beq(found_free_slot, Lexit); __ beq(found_same_obj, Lallocate_new); __ bgt(reached_limit, Lallocate_new); // Check if last allocated BasicLockObj reached. __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); // Next iteration if unchecked BasicObjectLocks exist on the stack. __ b(Lloop); } // ------------------------------------------------------------------------------ // Check if we found a free slot. __ bind(Lexit); __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes()); __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize); __ b(Lfound); // We didn't find a free BasicObjLock => allocate one. __ align(32, 12); __ bind(Lallocate_new); __ add_monitor_to_stack(false, Rscratch1, Rscratch2); __ mr(Rcurrent_monitor, R26_monitor); __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes()); // ------------------------------------------------------------------------------ // We now have a slot to lock. __ bind(Lfound); // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly. // The object has already been poped from the stack, so the expression stack looks correct. __ addi(R14_bcp, R14_bcp, 1); __ std(Robj_to_lock, 0, Rcurrent_obj_addr); __ lock_object(Rcurrent_monitor, Robj_to_lock); // Check if there's enough space on the stack for the monitors after locking. Label Lskip_stack_check; // Optimization: If the monitors stack section is less then a std page size (4K) don't run // the stack check. There should be enough shadow pages to fit that in. __ ld(Rscratch3, 0, R1_SP); __ sub(Rscratch3, Rscratch3, R26_monitor); __ cmpdi(CCR0, Rscratch3, 4*K); __ blt(CCR0, Lskip_stack_check); DEBUG_ONLY(__ untested("stack overflow check during monitor enter");) __ li(Rscratch1, 0); __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2); __ align(32, 12); __ bind(Lskip_stack_check); // The bcp has already been incremented. Just need to dispatch to next instruction. __ dispatch_next(vtos); } void TemplateTable::monitorexit() { transition(atos, vtos); __ verify_oop(R17_tos); Register Rcurrent_monitor = R11_scratch1, Rcurrent_obj = R12_scratch2, Robj_to_lock = R17_tos, Rcurrent_obj_addr = R3_ARG1, Rlimit = R4_ARG2; Label Lfound, Lillegal_monitor_state; // Check corner case: unbalanced monitorEnter / Exit. __ ld(Rlimit, 0, R1_SP); __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base // Null pointer check. __ null_check_throw(Robj_to_lock, -1, R11_scratch1); __ cmpld(CCR0, R26_monitor, Rlimit); __ bgt(CCR0, Lillegal_monitor_state); // Find the corresponding slot in the monitors stack section. { Label Lloop; // Start with topmost monitor. __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes()); __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes()); __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); __ bind(Lloop); // Is this entry for same obj? __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock); __ beq(CCR0, Lfound); // Check if last allocated BasicLockObj reached. __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit); __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); // Next iteration if unchecked BasicObjectLocks exist on the stack. __ ble(CCR0, Lloop); } // Fell through without finding the basic obj lock => throw up! __ bind(Lillegal_monitor_state); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); __ should_not_reach_here(); __ align(32, 12); __ bind(Lfound); __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes()); __ unlock_object(Rcurrent_monitor); } // ============================================================================ // Wide bytecodes // Wide instructions. Simply redirects to the wide entry point for that instruction. void TemplateTable::wide() { transition(vtos, vtos); const Register Rtable = R11_scratch1, Rindex = R12_scratch2, Rtmp = R0; __ lbz(Rindex, 1, R14_bcp); __ load_dispatch_table(Rtable, Interpreter::_wentry_point); __ slwi(Rindex, Rindex, LogBytesPerWord); __ ldx(Rtmp, Rtable, Rindex); __ mtctr(Rtmp); __ bctr(); // Note: the bcp increment step is part of the individual wide bytecode implementations. } #endif // !CC_INTERP