concurrentMark.cpp 162.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1Log.hpp"
33
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
34
#include "gc_implementation/g1/g1RemSet.hpp"
35
#include "gc_implementation/g1/heapRegion.inline.hpp"
36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
38
#include "gc_implementation/shared/vmGCOperations.hpp"
39 40 41 42 43 44
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
Z
zgu 已提交
45
#include "services/memTracker.hpp"
46

47
// Concurrent marking bit map wrapper
48

49 50
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
51
  _shifter(shifter) {
52 53
  _bmStartWord = 0;
  _bmWordSize = 0;
54 55 56 57 58 59 60 61
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
62 63 64
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
65 66 67 68 69 70 71 72 73 74 75 76
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
77 78 79
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
95
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
96
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
97
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
98
         "size inconsistency");
99 100
  return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
         _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
101 102 103
}
#endif

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
bool CMBitMap::allocate(ReservedSpace heap_rs) {
  _bmStartWord = (HeapWord*)(heap_rs.base());
  _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  if (!brs.is_reserved()) {
    warning("ConcurrentMark marking bit map allocation failure");
    return false;
  }
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  // For now we'll just commit all of the bit map up front.
  // Later on we'll try to be more parsimonious with swap.
  if (!_virtual_space.initialize(brs, brs.size())) {
    warning("ConcurrentMark marking bit map backing store failure");
    return false;
  }
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of concurrent marking bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
  return true;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

175 176 177 178 179 180
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
181
  }
182 183 184 185 186 187 188 189 190 191 192 193
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
194
  _saved_index = -1;
195
  NOT_PRODUCT(_max_depth = 0);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
242 243 244
}

CMMarkStack::~CMMarkStack() {
245
  if (_base != NULL) {
246 247
    _base = NULL;
    _virtual_space.release();
248
  }
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
288
        int  ind = index + i;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
311
    assert(ind < _capacity, "By overflow test above.");
312 313
    _base[ind] = ptr_arr[i];
  }
314
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
315 316 317 318 319 320 321 322 323 324
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
325
    jint  new_ind = index - k;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
351 352
      res = false;
      break;
353 354 355 356 357 358
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

376
void CMMarkStack::oops_do(OopClosure* f) {
377 378 379
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
380 381 382 383 384
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
385
  return _g1h->is_obj_ill(obj);
386 387
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

466 467 468 469
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

470 471
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
472 473
}

474 475 476 477
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
  _g1h(g1h),
  _markBitMap1(MinObjAlignment - 1),
  _markBitMap2(MinObjAlignment - 1),
478 479

  _parallel_marking_threads(0),
480
  _max_parallel_marking_threads(0),
481 482 483 484
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
485
  _cleanup_list("Cleanup List"),
486 487 488 489
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
  _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
490

491 492 493 494 495 496
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

497
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
498 499
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
500 501
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
502 503 504

  _has_overflown(false),
  _concurrent(false),
505 506 507
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
508 509 510 511 512 513 514 515

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
516 517 518 519

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
520 521
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
522 523
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
524
    verbose_level = no_verbose;
525 526
  }
  if (verbose_level > high_verbose) {
527
    verbose_level = high_verbose;
528
  }
529 530
  _verbose_level = verbose_level;

531
  if (verbose_low()) {
532 533
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
534
  }
535

536 537 538 539 540 541 542 543
  if (!_markBitMap1.allocate(heap_rs)) {
    warning("Failed to allocate first CM bit map");
    return;
  }
  if (!_markBitMap2.allocate(heap_rs)) {
    warning("Failed to allocate second CM bit map");
    return;
  }
544 545

  // Create & start a ConcurrentMark thread.
546 547 548 549
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

550
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
551 552
  assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
553 554

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
555
  satb_qs.set_buffer_size(G1SATBBufferSize);
556

557 558
  _root_regions.init(_g1h, this);

559
  if (ConcGCThreads > ParallelGCThreads) {
560 561 562 563
    warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
            "than ParallelGCThreads (" UINT32_FORMAT ").",
            ConcGCThreads, ParallelGCThreads);
    return;
564 565 566 567
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
568 569 570 571
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
572
  } else {
573 574
    if (ConcGCThreads > 0) {
      // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
575 576
      // if both are set

577
      _parallel_marking_threads = (uint) ConcGCThreads;
578
      _max_parallel_marking_threads = _parallel_marking_threads;
579 580
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
581
    } else if (G1MarkingOverheadPercent > 0) {
582 583 584 585
      // we will calculate the number of parallel marking threads
      // based on a target overhead with respect to the soft real-time
      // goal

J
johnc 已提交
586
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
587
      double overall_cm_overhead =
J
johnc 已提交
588 589
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
590 591 592 593 594 595 596 597
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

598
      _parallel_marking_threads = (uint) marking_thread_num;
599
      _max_parallel_marking_threads = _parallel_marking_threads;
600 601 602
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
603
      _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
604
      _max_parallel_marking_threads = _parallel_marking_threads;
605 606 607 608
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

609
    if (parallel_marking_threads() > 1) {
610
      _cleanup_task_overhead = 1.0;
611
    } else {
612
      _cleanup_task_overhead = marking_task_overhead();
613
    }
614 615 616 617 618 619 620 621 622 623 624
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

625
    guarantee(parallel_marking_threads() > 0, "peace of mind");
626
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
627
         _max_parallel_marking_threads, false, true);
628
    if (_parallel_workers == NULL) {
629
      vm_exit_during_initialization("Failed necessary allocation.");
630 631 632
    } else {
      _parallel_workers->initialize_workers();
    }
633 634
  }

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
              mark_stack_size, 1, MarkStackSizeMax);
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
                  MarkStackSize, 1, MarkStackSizeMax);
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

711
  // so that the call below can read a sensible value
712
  _heap_start = (HeapWord*) heap_rs.base();
713
  set_non_marking_state();
714
  _completed_initialization = true;
715 716 717 718
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
719
  // update _heap_end.
720
  if (!concurrent_marking_in_progress() && !force) return;
721 722

  MemRegion committed = _g1h->g1_committed();
723
  assert(committed.start() == _heap_start, "start shouldn't change");
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

745 746 747 748
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
749 750 751 752

  // reset all the marking data structures and any necessary flags
  clear_marking_state();

753
  if (verbose_low()) {
754
    gclog_or_tty->print_cr("[global] resetting");
755
  }
756 757 758 759

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
760
  for (uint i = 0; i < _max_worker_id; ++i) {
761
    _tasks[i]->reset(_nextMarkBitMap);
762
  }
763 764 765 766 767 768

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

769
void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
770
  assert(active_tasks <= _max_worker_id, "we should not have more");
771 772 773 774 775 776 777 778 779 780

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
781
  for (uint i = 0; i < _max_worker_id; ++i)
782 783 784 785 786 787 788 789
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
790 791
    assert(!concurrent_marking_in_progress(), "invariant");
    assert(_finger == _heap_end, "only way to get here");
792 793 794 795 796 797 798 799 800 801 802 803 804
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
  clear_marking_state();
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
805 806
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
807 808 809
}

void ConcurrentMark::clearNextBitmap() {
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
832
    if (next > end) {
833
      next = end;
834
    }
835 836 837 838 839 840 841 842 843 844 845 846 847
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

848 849 850
  // Clear the liveness counting data
  clear_all_count_data();

851 852 853
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
854 855 856 857 858 859
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
860
      r->note_start_of_marking();
861 862 863 864 865 866 867 868 869 870 871
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

872
#ifndef PRODUCT
873
  if (G1PrintReachableAtInitialMark) {
874
    print_reachable("at-cycle-start",
875
                    VerifyOption_G1UsePrevMarking, true /* all */);
876
  }
877
#endif
878 879 880

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
881 882 883 884

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
885 886 887 888 889 890
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

891 892 893 894 895 896 897 898
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

899 900 901 902
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
903
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
904 905

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
906 907 908 909
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
910

911 912
  _root_regions.prepare_for_scan();

913 914 915 916 917 918 919
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
939

940
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
941
  if (verbose_low()) {
942
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
943
  }
944

945 946 947
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
948
  _first_overflow_barrier_sync.enter();
949 950 951
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
952 953 954
  // at this point everyone should have synced up and not be doing any
  // more work

955
  if (verbose_low()) {
956
    gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
957
  }
958

959 960
  // let the task associated with with worker 0 do this
  if (worker_id == 0) {
961
    // task 0 is responsible for clearing the global data structures
962 963 964 965 966 967
    // We should be here because of an overflow. During STW we should
    // not clear the overflow flag since we rely on it being true when
    // we exit this method to abort the pause and restart concurent
    // marking.
    clear_marking_state(concurrent() /* clear_overflow */);
    force_overflow()->update();
968

969
    if (G1Log::fine()) {
970 971 972 973 974 975 976 977 978 979
      gclog_or_tty->date_stamp(PrintGCDateStamps);
      gclog_or_tty->stamp(PrintGCTimeStamps);
      gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

980
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
981
  if (verbose_low()) {
982
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
983
  }
984

985 986 987
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
988
  _second_overflow_barrier_sync.enter();
989 990 991
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
992 993
  // at this point everything should be re-initialised and ready to go

994
  if (verbose_low()) {
995
    gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
996
  }
997 998
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1025 1026 1027 1028 1029 1030
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1031
  void work(uint worker_id) {
1032 1033
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1034
    ResourceMark rm;
1035 1036 1037 1038 1039

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

1040 1041
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1042 1043 1044 1045 1046
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1047 1048 1049 1050 1051 1052
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
                                  true /* do_stealing    */,
                                  true /* do_termination */);

1053 1054 1055 1056 1057 1058
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1059
        bool ret = _cm->do_yield_check(worker_id);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1083
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1084 1085 1086 1087

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
1088
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1089 1090 1091 1092 1093 1094 1095 1096 1097
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1098 1099
// Calculates the number of active workers for a concurrent
// phase.
1100
uint ConcurrentMark::calc_parallel_marking_threads() {
1101
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1102
    uint n_conc_workers = 0;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1117 1118
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1119
  }
1120 1121 1122 1123
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
    if (parallel_marking_threads() > 0) {
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1189 1190 1191 1192 1193 1194 1195 1196 1197
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1198
  force_overflow_conc()->init();
1199 1200 1201 1202 1203 1204

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1205
  uint active_workers = MAX2(1U, parallel_marking_threads());
1206 1207 1208

  // Parallel task terminator is set in "set_phase()"
  set_phase(active_workers, true /* concurrent */);
1209 1210

  CMConcurrentMarkingTask markingTask(this, cmThread());
1211
  if (parallel_marking_threads() > 0) {
1212 1213 1214 1215
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1216
    _parallel_workers->run_task(&markingTask);
1217
  } else {
1218
    markingTask.work(0);
1219
  }
1220 1221 1222 1223 1224 1225 1226
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1227

1228 1229 1230 1231 1232 1233 1234 1235
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1236 1237
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1238 1239 1240 1241
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1242 1243
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
1244 1245
  }

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
    // Clear the flag. We do not need it any more.
    clear_has_overflown();
1262
    if (G1TraceMarkStackOverflow) {
1263
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1264
    }
1265
  } else {
1266 1267 1268 1269
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1270
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1271
    // We're done with marking.
1272 1273
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1274 1275
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1276 1277

    if (VerifyDuringGC) {
1278 1279 1280
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
1281 1282
      Universe::verify(/* silent */ false,
                       /* option */ VerifyOption_G1UseNextMarking);
1283
    }
1284 1285 1286
    assert(!restart_for_overflow(), "sanity");
  }

1287 1288 1289 1290 1291
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1292 1293 1294
  // Reset the marking state if marking completed
  if (!restart_for_overflow()) {
    set_non_marking_state();
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
  }

#if VERIFY_OBJS_PROCESSED
  _scan_obj_cl.objs_processed = 0;
  ThreadLocalObjQueue::objs_enqueued = 0;
#endif

  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}

1311 1312 1313 1314
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1315
  G1CollectedHeap* _g1h;
1316
  ConcurrentMark* _cm;
1317 1318
  CardTableModRefBS* _ct_bs;

1319 1320 1321
  BitMap* _region_bm;
  BitMap* _card_bm;

1322
  // Takes a region that's not empty (i.e., it has at least one
1323 1324 1325 1326 1327 1328 1329
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1330
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1331 1332
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1333
      _region_bm->par_at_put(index, true);
1334 1335
    } else {
      // Starts humongous case: calculate how many regions are part of
1336
      // this humongous region and then set the bit range.
1337
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1338
      _region_bm->par_at_put_range(index, end_index, true);
1339 1340 1341
    }
  }

1342
public:
1343
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1344
                         BitMap* region_bm, BitMap* card_bm):
1345 1346 1347
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1348 1349 1350 1351 1352 1353 1354 1355 1356
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1357
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1358
                         BitMap* region_bm, BitMap* card_bm) :
1359
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1360 1361
    _bm(bm), _region_marked_bytes(0) { }

1362 1363
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1364
    if (hr->continuesHumongous()) {
1365 1366 1367 1368 1369 1370 1371
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1372 1373
      return false;
    }
1374

1375 1376
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1377

1378
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1379
           err_msg("Preconditions not met - "
1380 1381
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, ntams, hr->end()));
1382

1383
    // Find the first marked object at or after "start".
1384
    start = _bm->getNextMarkedWordAddress(start, ntams);
1385

1386 1387
    size_t marked_bytes = 0;

1388
    while (start < ntams) {
1389 1390
      oop obj = oop(start);
      int obj_sz = obj->size();
1391
      HeapWord* obj_end = start + obj_sz;
1392

1393
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1405

1406 1407
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1408 1409

      // Add the size of this object to the number of marked bytes.
1410
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1411

1412
      // Find the next marked object after this one.
1413
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1414
    }
1415 1416 1417

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1432 1433 1434

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1435 1436 1437 1438
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1439
      set_bit_for_region(hr);
1440
    }
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1458
  G1CollectedHeap* _g1h;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1471
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1472 1473 1474 1475 1476
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1477 1478
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1516
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1527
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1528 1529 1530 1531 1532

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1533 1534 1535 1536
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1554 1555 1556 1557
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1558
        }
1559
        failures += 1;
1560 1561 1562
      }
    }

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
                             HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1573
    // find the first violating region by returning true.
1574 1575
    return false;
  }
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
};


class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1625
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1642

1643
  int failures() const { return _failures; }
1644 1645
};

1646 1647 1648 1649 1650 1651
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1652

1653
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1654
 public:
1655
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1656 1657
                              BitMap* region_bm,
                              BitMap* card_bm) :
1658
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1676
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1677 1678 1679 1680 1681 1682

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1705
    }
1706 1707 1708 1709 1710 1711 1712 1713 1714

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1715 1716 1717 1718

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1719 1720 1721 1722
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1723
  uint    _n_workers;
1724

1725
public:
1726 1727 1728 1729 1730
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1731
    // Use the value already set as the number of active threads
1732
    // in the call to run_task().
1733 1734 1735 1736
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1737
    } else {
1738
      _n_workers = 1;
1739
    }
1740 1741
  }

1742
  void work(uint worker_id) {
1743 1744
    assert(worker_id < _n_workers, "invariant");

1745
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1746 1747 1748
                                                _actual_region_bm,
                                                _actual_card_bm);

1749
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1750 1751 1752
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1753
                                            HeapRegion::FinalCountClaimValue);
1754
    } else {
1755
      _g1h->heap_region_iterate(&final_update_cl);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
1766
  uint _regions_claimed;
1767
  size_t _freed_bytes;
T
tonyp 已提交
1768
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1769
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1770 1771
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1772 1773 1774 1775 1776
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1777 1778
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1779
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1780
                             HumongousRegionSet* humongous_proxy_set,
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1791 1792
  size_t freed_bytes() { return _freed_bytes; }

1793
  bool doHeapRegion(HeapRegion *hr) {
1794 1795 1796
    if (hr->continuesHumongous()) {
      return false;
    }
1797 1798
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
    _g1->free_region_if_empty(hr,
                              &_freed_bytes,
                              _local_cleanup_list,
                              _old_proxy_set,
                              _humongous_proxy_set,
                              _hrrs_cleanup_task,
                              true /* par */);
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1815 1816 1817
    }
    return false;
  }
1818 1819

  size_t max_live_bytes() { return _max_live_bytes; }
1820
  uint regions_claimed() { return _regions_claimed; }
1821 1822 1823 1824 1825 1826
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1827

1828 1829 1830 1831
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1832 1833
  FreeRegionList* _cleanup_list;

1834 1835
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1836
                   FreeRegionList* cleanup_list) :
1837
    AbstractGangTask("G1 note end"), _g1h(g1h),
1838
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1839

1840
  void work(uint worker_id) {
1841
    double start = os::elapsedTime();
T
tonyp 已提交
1842
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1843
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1844 1845
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1846
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1847
                                           &old_proxy_set,
T
tonyp 已提交
1848 1849
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1850
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1851
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1852
                                            _g1h->workers()->active_workers(),
1853
                                            HeapRegion::NoteEndClaimValue);
1854 1855 1856 1857 1858
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1859 1860 1861
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1862
                                            &old_proxy_set,
T
tonyp 已提交
1863
                                            &humongous_proxy_set,
1864
                                            true /* par */);
1865 1866 1867 1868
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1887 1888 1889 1890
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1906
    _region_bm(region_bm), _card_bm(card_bm) { }
1907

1908
  void work(uint worker_id) {
1909
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1910
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1911
                       HeapRegion::ScrubRemSetClaimValue);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1931
  HRSPhaseSetter x(HRSPhaseCleanup);
1932 1933
  g1h->verify_region_sets_optional();

1934 1935 1936 1937
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1938 1939
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
1940 1941
  }

1942 1943 1944 1945 1946
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1947 1948
  HeapRegionRemSet::reset_for_cleanup_tasks();

1949
  uint n_workers;
1950

1951
  // Do counting once more with the world stopped for good measure.
1952 1953
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

1954
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1955
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1956 1957
           "sanity check");

1958 1959
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
1960
    assert(g1h->n_par_threads() == n_workers,
1961
           "Should not have been reset");
1962
    g1h->workers()->run_task(&g1_par_count_task);
1963
    // Done with the parallel phase so reset to 0.
1964
    g1h->set_par_threads(0);
1965

1966
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
1967
           "sanity check");
1968
  } else {
1969
    n_workers = 1;
1970 1971 1972
    g1_par_count_task.work(0);
  }

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2002 2003 2004 2005 2006 2007 2008
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2009 2010 2011 2012 2013
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2014 2015 2016 2017 2018 2019
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2020
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2021
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2022
    g1h->set_par_threads((int)n_workers);
2023 2024
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2025 2026 2027

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2028 2029 2030
  } else {
    g1_par_note_end_task.work(0);
  }
2031
  g1h->check_gc_time_stamps();
2032 2033 2034 2035 2036 2037 2038

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2039 2040 2041 2042 2043 2044

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2045
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2046
      g1h->set_par_threads((int)n_workers);
2047 2048
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2049 2050 2051 2052

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2064
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2065 2066 2067 2068 2069

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2070
  if (G1Log::fine()) {
2071 2072 2073 2074 2075 2076
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2077 2078 2079 2080
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

2081 2082 2083 2084
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

2085 2086 2087 2088
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
2089
  if (VerifyDuringGC) {
2090 2091 2092
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
2093 2094
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
2095
  }
2096 2097

  g1h->verify_region_sets_optional();
2098 2099 2100 2101 2102
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2103 2104 2105
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
2106
  FreeRegionList tmp_free_list("Tmp Free List");
2107 2108 2109

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2110
                           "cleanup list has %u entries",
2111 2112 2113 2114 2115 2116 2117 2118
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
2119
    hr->par_clear();
T
tonyp 已提交
2120
    tmp_free_list.add_as_tail(hr);
2121 2122 2123 2124 2125 2126 2127

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2128
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2129 2130 2131
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2132 2133
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2134
                               tmp_free_list.length(),
2135 2136 2137 2138 2139
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
2140
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2141 2142 2143 2144 2145 2146 2147
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2148 2149 2150
      }
    }
  }
T
tonyp 已提交
2151
  assert(tmp_free_list.is_empty(), "post-condition");
2152 2153
}

2154 2155
// Support closures for reference procssing in G1

2156 2157 2158 2159 2160
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2161

2162
class G1CMKeepAliveClosure: public ExtendedOopClosure {
2163 2164 2165
  G1CollectedHeap* _g1;
  ConcurrentMark*  _cm;
 public:
2166 2167 2168 2169
  G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
    _g1(g1), _cm(cm) {
    assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
  }
2170

2171 2172
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
2173

2174
  template <class T> void do_oop_work(T* p) {
2175 2176 2177
    oop obj = oopDesc::load_decode_heap_oop(p);
    HeapWord* addr = (HeapWord*)obj;

2178
    if (_cm->verbose_high()) {
2179
      gclog_or_tty->print_cr("\t[0] we're looking at location "
2180 2181 2182
                             "*"PTR_FORMAT" = "PTR_FORMAT,
                             p, (void*) obj);
    }
2183 2184

    if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
2185
      _cm->mark_and_count(obj);
2186
      _cm->mark_stack_push(obj);
2187 2188 2189 2190 2191
    }
  }
};

class G1CMDrainMarkingStackClosure: public VoidClosure {
2192
  ConcurrentMark*               _cm;
2193 2194 2195
  CMMarkStack*                  _markStack;
  G1CMKeepAliveClosure*         _oopClosure;
 public:
2196
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
2197
                               G1CMKeepAliveClosure* oopClosure) :
2198
    _cm(cm),
2199
    _markStack(markStack),
2200
    _oopClosure(oopClosure) { }
2201 2202

  void do_void() {
2203
    _markStack->drain(_oopClosure, _cm->nextMarkBitMap(), false);
2204 2205 2206
  }
};

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
// 'Keep Alive' closure used by parallel reference processing.
// An instance of this closure is used in the parallel reference processing
// code rather than an instance of G1CMKeepAliveClosure. We could have used
// the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
// placed on to discovered ref lists once so we can mark and push with no
// need to check whether the object has already been marked. Using the
// G1CMKeepAliveClosure would mean, however, having all the worker threads
// operating on the global mark stack. This means that an individual
// worker would be doing lock-free pushes while it processes its own
// discovered ref list followed by drain call. If the discovered ref lists
// are unbalanced then this could cause interference with the other
// workers. Using a CMTask (and its embedded local data structures)
// avoids that potential interference.
class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  ConcurrentMark*  _cm;
  CMTask*          _task;
  int              _ref_counter_limit;
  int              _ref_counter;
 public:
2226 2227 2228
  G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task),
    _ref_counter_limit(G1RefProcDrainInterval) {
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
    assert(_ref_counter_limit > 0, "sanity");
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2239
      if (_cm->verbose_high()) {
2240
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2241
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2242
                               _task->worker_id(), p, (void*) obj);
2243
      }
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
        // We have dealt with _ref_counter_limit references, pushing them and objects
        // reachable from them on to the local stack (and possibly the global stack).
        // Call do_marking_step() to process these entries. We call the routine in a
        // loop, which we'll exit if there's nothing more to do (i.e. we're done
        // with the entries that we've pushed as a result of the deal_with_reference
        // calls above) or we overflow.
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
        // while there may still be some work to do. (See the comment at the
        // beginning of CMTask::do_marking_step() for those conditions - one of which
        // is reaching the specified time target.) It is only when
        // CMTask::do_marking_step() returns without setting the has_aborted() flag
        // that the marking has completed.
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
                                 false /* do_stealing    */,
                                 false /* do_termination */);
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2270
      if (_cm->verbose_high()) {
2271
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2272
      }
2273 2274 2275 2276 2277 2278 2279 2280 2281
    }
  }
};

class G1CMParDrainMarkingStackClosure: public VoidClosure {
  ConcurrentMark* _cm;
  CMTask* _task;
 public:
  G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
2282
    _cm(cm), _task(task) { }
2283 2284 2285

  void do_void() {
    do {
2286
      if (_cm->verbose_high()) {
2287 2288
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do marking_step",
                               _task->worker_id());
2289
      }
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

      // We call CMTask::do_marking_step() to completely drain the local and
      // global marking stacks. The routine is called in a loop, which we'll
      // exit if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a result of applying the
      // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
      // lists above) or we overflow the global marking stack.
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
      // while there may still be some work to do. (See the comment at the
      // beginning of CMTask::do_marking_step() for those conditions - one of which
      // is reaching the specified time target.) It is only when
      // CMTask::do_marking_step() returns without setting the has_aborted() flag
      // that the marking has completed.

      _task->do_marking_step(1000000000.0 /* something very large */,
                             true /* do_stealing    */,
                             true /* do_termination */);
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2311 2312 2313 2314
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2315 2316 2317 2318 2319 2320 2321
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2322
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2323 2324 2325
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2326 2327
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2328 2329 2330 2331 2332 2333

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2334
class G1CMRefProcTaskProxy: public AbstractGangTask {
2335 2336 2337 2338 2339 2340
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2341
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2342
                     G1CollectedHeap* g1h,
2343
                     ConcurrentMark* cm) :
2344
    AbstractGangTask("Process reference objects in parallel"),
2345
    _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
2346

2347 2348
  virtual void work(uint worker_id) {
    CMTask* marking_task = _cm->task(worker_id);
2349
    G1CMIsAliveClosure g1_is_alive(_g1h);
2350
    G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
2351 2352
    G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);

2353
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2354 2355 2356
  }
};

2357
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2358 2359
  assert(_workers != NULL, "Need parallel worker threads.");

2360
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2361 2362 2363 2364 2365 2366 2367 2368 2369

  // We need to reset the phase for each task execution so that
  // the termination protocol of CMTask::do_marking_step works.
  _cm->set_phase(_active_workers, false /* concurrent */);
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2370
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2371 2372 2373 2374
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2375
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2376
    AbstractGangTask("Enqueue reference objects in parallel"),
2377
    _enq_task(enq_task) { }
2378

2379 2380
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2381 2382 2383
  }
};

2384
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2385 2386
  assert(_workers != NULL, "Need parallel worker threads.");

2387
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2388 2389 2390 2391 2392 2393

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2394 2395 2396 2397
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  ResourceMark rm;
  HandleMark   hm;

2398 2399 2400 2401 2402 2403 2404 2405
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2406
    if (G1Log::finer()) {
2407 2408
      gclog_or_tty->put(' ');
    }
2409
    TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
2410

2411
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2412

2413 2414
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2415

2416 2417 2418
    // Process weak references.
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2419

2420
    G1CMKeepAliveClosure g1_keep_alive(g1h, this);
2421
    G1CMDrainMarkingStackClosure
2422
      g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
2423

2424 2425
    // We use the work gang from the G1CollectedHeap and we utilize all
    // the worker threads.
2426
    uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
2427
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2428

2429
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2430
                                              g1h->workers(), active_workers);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

    if (rp->processing_is_mt()) {
      // Set the degree of MT here.  If the discovery is done MT, there
      // may have been a different number of threads doing the discovery
      // and a different number of discovered lists may have Ref objects.
      // That is OK as long as the Reference lists are balanced (see
      // balance_all_queues() and balance_queues()).
      rp->set_active_mt_degree(active_workers);

      rp->process_discovered_references(&g1_is_alive,
2441 2442 2443 2444
                                      &g1_keep_alive,
                                      &g1_drain_mark_stack,
                                      &par_task_executor);

2445 2446 2447 2448 2449 2450 2451 2452 2453
      // The work routines of the parallel keep_alive and drain_marking_stack
      // will set the has_overflown flag if we overflow the global marking
      // stack.
    } else {
      rp->process_discovered_references(&g1_is_alive,
                                        &g1_keep_alive,
                                        &g1_drain_mark_stack,
                                        NULL);
    }
2454

2455 2456 2457 2458 2459 2460 2461
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
    if (_markStack.overflow()) {
      // Should have been done already when we tried to push an
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2462

2463 2464 2465 2466 2467 2468
    if (rp->processing_is_mt()) {
      assert(rp->num_q() == active_workers, "why not");
      rp->enqueue_discovered_references(&par_task_executor);
    } else {
      rp->enqueue_discovered_references();
    }
2469

2470
    rp->verify_no_references_recorded();
2471
    assert(!rp->discovery_enabled(), "Post condition");
2472 2473
  }

2474
  // Now clean up stale oops in StringTable
2475
  StringTable::unlink(&g1_is_alive);
2476 2477
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
  ConcurrentMark *_cm;

public:
2491
  void work(uint worker_id) {
2492 2493
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2494 2495
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2496 2497
      task->record_start_time();
      do {
2498 2499 2500
        task->do_marking_step(1000000000.0 /* something very large */,
                              true /* do_stealing    */,
                              true /* do_termination */);
2501 2502 2503 2504 2505 2506 2507
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2508
  CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2509
    AbstractGangTask("Par Remark"), _cm(cm) {
2510
    _cm->terminator()->reset_for_reuse(active_workers);
2511
  }
2512 2513 2514 2515 2516 2517 2518 2519 2520
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2521
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2522
    G1CollectedHeap::StrongRootsScope srs(g1h);
2523
    // this is remark, so we'll use up all active threads
2524
    uint active_workers = g1h->workers()->active_workers();
2525 2526
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2527
      active_workers = (uint) ParallelGCThreads;
2528 2529
      g1h->workers()->set_active_workers(active_workers);
    }
2530
    set_phase(active_workers, false /* concurrent */);
2531 2532 2533 2534
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2535

2536
    CMRemarkTask remarkTask(this, active_workers);
2537
    g1h->set_par_threads(active_workers);
2538 2539 2540
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2541
    G1CollectedHeap::StrongRootsScope srs(g1h);
2542
    // this is remark, so we'll use up all available threads
2543
    uint active_workers = 1;
2544
    set_phase(active_workers, false /* concurrent */);
2545

2546
    CMRemarkTask remarkTask(this, active_workers);
2547 2548 2549 2550 2551
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    remarkTask.work(0);
  }
2552 2553
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

  print_stats();

#if VERIFY_OBJS_PROCESSED
  if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
    gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
                           _scan_obj_cl.objs_processed,
                           ThreadLocalObjQueue::objs_enqueued);
    guarantee(_scan_obj_cl.objs_processed ==
              ThreadLocalObjQueue::objs_enqueued,
              "Different number of objs processed and enqueued.");
  }
#endif
}

2569 2570
#ifndef PRODUCT

2571
class PrintReachableOopClosure: public OopClosure {
2572 2573 2574
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2575
  VerifyOption     _vo;
2576
  bool             _all;
2577 2578

public:
2579 2580
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2581
                           bool          all) :
2582
    _g1h(G1CollectedHeap::heap()),
2583
    _out(out), _vo(vo), _all(all) { }
2584

2585 2586
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2587

2588 2589
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2590 2591 2592
    const char* str = NULL;
    const char* str2 = "";

2593 2594 2595 2596 2597
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2598
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2599
      guarantee(hr != NULL, "invariant");
2600 2601
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2602 2603

      if (over_tams) {
2604 2605
        str = " >";
        if (marked) {
2606
          str2 = " AND MARKED";
2607
        }
2608 2609
      } else if (marked) {
        str = " M";
2610
      } else {
2611
        str = " NOT";
2612
      }
2613 2614
    }

2615
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2616 2617 2618 2619
                   p, (void*) obj, str, str2);
  }
};

2620
class PrintReachableObjectClosure : public ObjectClosure {
2621
private:
2622 2623 2624 2625 2626
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2627 2628

public:
2629 2630
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2631 2632
                              bool          all,
                              HeapRegion*   hr) :
2633 2634
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2635

2636
  void do_object(oop o) {
2637 2638
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2639 2640 2641 2642 2643
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2644
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2645
      o->oop_iterate_no_header(&oopCl);
2646
    }
2647 2648 2649
  }
};

2650
class PrintReachableRegionClosure : public HeapRegionClosure {
2651
private:
2652 2653 2654 2655
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2656 2657 2658 2659 2660 2661

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2662
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2663
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2664
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2665 2666 2667 2668 2669 2670 2671 2672
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2673
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2674 2675 2676
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2677 2678 2679 2680

    return false;
  }

2681 2682
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2683
                              bool          all) :
2684
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2685 2686
};

2687
void ConcurrentMark::print_reachable(const char* str,
2688
                                     VerifyOption vo,
2689 2690 2691
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2715
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2716 2717
  out->cr();

2718
  out->print_cr("--- ITERATING OVER REGIONS");
2719
  out->cr();
2720
  PrintReachableRegionClosure rcl(out, vo, all);
2721
  _g1h->heap_region_iterate(&rcl);
2722
  out->cr();
2723

2724
  gclog_or_tty->print_cr("  done");
2725
  gclog_or_tty->flush();
2726 2727
}

2728 2729
#endif // PRODUCT

2730
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2731 2732 2733
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2734 2735 2736
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2737 2738 2739
  _nextMarkBitMap->clearRange(mr);
}

2740 2741 2742 2743 2744
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2745
HeapRegion*
2746
ConcurrentMark::claim_region(uint worker_id) {
2747 2748 2749 2750 2751 2752
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2753
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2754

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2779 2780 2781 2782
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2783
    if (verbose_low()) {
2784
      gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2785 2786
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
2787
                             worker_id, curr_region, bottom, end, limit);
2788
    }
2789

2790 2791
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2792 2793 2794 2795 2796
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2797
      assert(_finger >= end, "the finger should have moved forward");
2798

2799
      if (verbose_low()) {
2800 2801
        gclog_or_tty->print_cr("[%u] we were successful with region = "
                               PTR_FORMAT, worker_id, curr_region);
2802
      }
2803 2804

      if (limit > bottom) {
2805
        if (verbose_low()) {
2806 2807
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
                                 "returning it ", worker_id, curr_region);
2808
        }
2809 2810
        return curr_region;
      } else {
2811 2812
        assert(limit == bottom,
               "the region limit should be at bottom");
2813
        if (verbose_low()) {
2814 2815
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
                                 "returning NULL", worker_id, curr_region);
2816
        }
2817 2818 2819 2820 2821
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2822
      assert(_finger > finger, "the finger should have moved forward");
2823
      if (verbose_low()) {
2824
        gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2825 2826
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
2827
                               worker_id, _finger, finger);
2828
      }
2829 2830 2831 2832 2833 2834 2835 2836 2837

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2887

2888 2889
  virtual void do_object(oop obj) {
    do_object_work(obj);
2890
  }
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2903

2904 2905 2906 2907 2908 2909
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
2910
    for (uint i = 0; i < _max_worker_id; i += 1) {
2911
      cl.set_phase(VerifyNoCSetOopsQueues, i);
2912
      CMTaskQueue* queue = _task_queues->queue(i);
2913 2914
      queue->oops_do(&cl);
    }
2915 2916
  }

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
2949
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
2963
}
2964
#endif // PRODUCT
2965

2966
void ConcurrentMark::clear_marking_state(bool clear_overflow) {
2967 2968
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
2969 2970 2971 2972 2973
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
2974 2975
  _finger = _heap_start;

2976
  for (uint i = 0; i < _max_worker_id; ++i) {
2977
    CMTaskQueue* queue = _task_queues->queue(i);
2978 2979 2980 2981
    queue->set_empty();
  }
}

2982 2983 2984
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
2985
  G1CollectedHeap* _g1h;
2986
  ConcurrentMark* _cm;
2987
  CardTableModRefBS* _ct_bs;
2988
  BitMap* _cm_card_bm;
2989
  uint _max_worker_id;
2990 2991

 public:
2992
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2993
                              BitMap* cm_card_bm,
2994
                              uint max_worker_id) :
2995 2996
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
2997
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, limit, hr->top(), hr->end()));

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

3028 3029 3030 3031
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3032 3033 3034 3035 3036

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3037 3038 3039 3040 3041 3042 3043 3044
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3045 3046 3047 3048 3049 3050
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3051
    uint hrs_index = hr->hrs_index();
3052 3053
    size_t marked_bytes = 0;

3054
    for (uint i = 0; i < _max_worker_id; i += 1) {
3055 3056 3057 3058 3059 3060 3061
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

3062
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3073
        // parameter. It does, however, have an early exit if
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3094
  uint _max_worker_id;
3095 3096 3097 3098 3099 3100
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3101
                           uint max_worker_id,
3102 3103 3104
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3105
    _max_worker_id(max_worker_id),
3106 3107 3108
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3109
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3128
                                           _max_worker_id, n_workers);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3156
  uint max_regions = _g1h->max_regions();
3157
  assert(_max_worker_id > 0, "uninitialized");
3158

3159
  for (uint i = 0; i < _max_worker_id; i += 1) {
3160 3161 3162 3163 3164 3165
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3166
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3167 3168 3169 3170
    task_card_bm->clear();
  }
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3185 3186
  // Clear the liveness counting data
  clear_all_count_data();
3187 3188
  // Empty mark stack
  clear_marking_state();
3189
  for (uint i = 0; i < _max_worker_id; ++i) {
3190
    _tasks[i]->clear_region_fields();
3191
  }
3192 3193 3194 3195
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3196 3197 3198 3199 3200
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3239
                "(%8.2f s marking).",
3240
                cmThread()->vtime_accum(),
3241
                cmThread()->vtime_mark_accum());
3242 3243
}

T
tonyp 已提交
3244 3245 3246 3247
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  _parallel_workers->print_worker_threads_on(st);
}

3248
// We take a break if someone is trying to stop the world.
3249
bool ConcurrentMark::do_yield_check(uint worker_id) {
3250
  if (should_yield()) {
3251
    if (worker_id == 0) {
3252
      _g1h->g1_policy()->record_concurrent_pause();
3253
    }
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
    cmThread()->yield();
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3272 3273
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3274 3275 3276 3277 3278 3279 3280
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
3281 3282
  for (uint i = 0; i < _max_worker_id; ++i) {
    gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3283 3284 3285 3286 3287
  }
  gclog_or_tty->print_cr("");
}
#endif

3288 3289 3290 3291
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3292 3293
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
                           _worker_id, (void*) obj);
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3304 3305 3306 3307 3308 3309 3310 3311 3312
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3313 3314
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3315 3316 3317

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3318 3319
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3320

3321 3322 3323 3324 3325
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3352 3353 3354 3355 3356
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3357

3358
  if (G1UseConcMarkReferenceProcessing) {
3359
    _ref_processor = g1h->ref_processor_cm();
3360
    assert(_ref_processor != NULL, "should not be NULL");
3361
  }
3362
}
3363 3364

void CMTask::setup_for_region(HeapRegion* hr) {
3365 3366 3367 3368 3369
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3370

3371
  if (_cm->verbose_low()) {
3372 3373
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
                           _worker_id, hr);
3374
  }
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3387
    if (_cm->verbose_low()) {
3388
      gclog_or_tty->print_cr("[%u] found an empty region "
3389
                             "["PTR_FORMAT", "PTR_FORMAT")",
3390
                             _worker_id, bottom, limit);
3391
    }
3392 3393 3394 3395 3396 3397 3398
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3399
    assert(limit >= _finger, "peace of mind");
3400
  } else {
3401
    assert(limit < _region_limit, "only way to get here");
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3419
  assert(_curr_region != NULL, "invariant");
3420
  if (_cm->verbose_low()) {
3421 3422
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
                           _worker_id, _curr_region);
3423
  }
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3435 3436 3437 3438 3439 3440 3441 3442 3443
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3444
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3445
  guarantee(nextMarkBitMap != NULL, "invariant");
3446

3447
  if (_cm->verbose_low()) {
3448
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3449
  }
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3493 3494 3495
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3496 3497 3498 3499
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3500
  if (has_aborted()) return;
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3517
  if (!concurrent()) return;
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3530
  if (_words_scanned >= _words_scanned_limit) {
3531
    ++_clock_due_to_scanning;
3532 3533
  }
  if (_refs_reached >= _refs_reached_limit) {
3534
    ++_clock_due_to_marking;
3535
  }
3536 3537 3538 3539 3540 3541

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3542
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3543
                        "scanned = %d%s, refs reached = %d%s",
3544
                        _worker_id, last_interval_ms,
3545 3546 3547 3548
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3566
    _has_timed_out = true;
3567 3568 3569 3570 3571 3572 3573 3574
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3575
    if (_cm->verbose_low()) {
3576 3577
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3578
    }
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3601
  if (_cm->verbose_medium()) {
3602
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3603
  }
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3629
      if (_cm->verbose_low()) {
3630 3631
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3632
      }
3633 3634 3635 3636
      set_has_aborted();
    } else {
      // the transfer was successful

3637
      if (_cm->verbose_medium()) {
3638 3639
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3640
      }
3641
      statsOnly( int tmp_size = _cm->mark_stack_size();
3642
                 if (tmp_size > _global_max_size) {
3643
                   _global_max_size = tmp_size;
3644
                 }
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3659 3660
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3661 3662 3663 3664
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3665
    if (_cm->verbose_medium()) {
3666 3667
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3668
    }
3669 3670 3671 3672
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3673
      assert(success, "invariant");
3674 3675 3676
    }

    statsOnly( int tmp_size = _task_queue->size();
3677
               if (tmp_size > _local_max_size) {
3678
                 _local_max_size = tmp_size;
3679
               }
3680 3681 3682 3683 3684 3685 3686 3687
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3688
  if (has_aborted()) return;
3689 3690 3691 3692 3693

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3694
  if (partially) {
3695
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3696
  } else {
3697
    target_size = 0;
3698
  }
3699 3700

  if (_task_queue->size() > target_size) {
3701
    if (_cm->verbose_high()) {
3702 3703
      gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
                             _worker_id, target_size);
3704
    }
3705 3706 3707 3708 3709 3710

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3711
      if (_cm->verbose_high()) {
3712
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3713
                               (void*) obj);
3714
      }
3715

3716
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3717
      assert(!_g1h->is_on_master_free_list(
3718
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3719 3720 3721

      scan_object(obj);

3722
      if (_task_queue->size() <= target_size || has_aborted()) {
3723
        ret = false;
3724
      } else {
3725
        ret = _task_queue->pop_local(obj);
3726
      }
3727 3728
    }

3729
    if (_cm->verbose_high()) {
3730 3731
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3732
    }
3733 3734 3735 3736
  }
}

void CMTask::drain_global_stack(bool partially) {
3737
  if (has_aborted()) return;
3738 3739 3740

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3741
  assert(partially || _task_queue->size() == 0, "invariant");
3742 3743 3744 3745 3746 3747 3748 3749

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3750
  if (partially) {
3751
    target_size = _cm->partial_mark_stack_size_target();
3752
  } else {
3753
    target_size = 0;
3754
  }
3755 3756

  if (_cm->mark_stack_size() > target_size) {
3757
    if (_cm->verbose_low()) {
3758 3759
      gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
                             _worker_id, target_size);
3760
    }
3761 3762 3763 3764 3765 3766

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3767
    if (_cm->verbose_low()) {
3768 3769
      gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
                             _worker_id, _cm->mark_stack_size());
3770
    }
3771 3772 3773 3774 3775 3776 3777 3778
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3779
  if (has_aborted()) return;
3780 3781 3782 3783 3784 3785 3786 3787 3788

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3789
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3790
    satb_mq_set.set_par_closure(_worker_id, &oc);
3791
  } else {
3792
    satb_mq_set.set_closure(&oc);
3793
  }
3794 3795 3796

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3797
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3798
    while (!has_aborted() &&
3799
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3800
      if (_cm->verbose_medium()) {
3801
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3802
      }
3803 3804 3805 3806 3807 3808
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3809
      if (_cm->verbose_medium()) {
3810
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3811
      }
3812 3813 3814 3815 3816 3817 3818
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3819
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3820
      satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3821
    } else {
3822
      satb_mq_set.iterate_closure_all_threads();
3823
    }
3824 3825 3826 3827
  }

  _draining_satb_buffers = false;

3828 3829 3830
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3831

3832
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3833
    satb_mq_set.set_par_closure(_worker_id, NULL);
3834
  } else {
3835
    satb_mq_set.set_closure(NULL);
3836
  }
3837 3838 3839 3840 3841 3842 3843

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
3844 3845
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3871
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

    The do_marking_step(time_target_ms) method is the building block
    of the parallel marking framework. It can be called in parallel
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

    The data structures that is uses to do marking work are the
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

3930
      (4) SATB Buffer Queue. This is where completed SATB buffers are
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

3942 3943 3944 3945 3946 3947
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
      (local queues, stacks, fingers etc.)  are re-initialised so that
      when do_marking_step() completes, the marking phase can
      immediately restart.
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

 *****************************************************************************/

3984 3985 3986
void CMTask::do_marking_step(double time_target_ms,
                             bool do_stealing,
                             bool do_termination) {
3987 3988
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
3989 3990

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3991 3992
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
3993
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3994

3995 3996
  assert(!_claimed,
         "only one thread should claim this task at any one time");
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4019
  _has_timed_out = false;
4020 4021 4022 4023
  _draining_satb_buffers = false;

  ++_calls;

4024
  if (_cm->verbose_low()) {
4025
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4026
                           "target = %1.2lfms >>>>>>>>>>",
4027
                           _worker_id, _calls, _time_target_ms);
4028
  }
4029 4030 4031 4032 4033

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4034 4035
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4036 4037

  if (_cm->has_overflown()) {
4038 4039 4040 4041
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4057 4058
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4074
      if (_cm->verbose_low()) {
4075
        gclog_or_tty->print_cr("[%u] we're scanning part "
4076 4077
                               "["PTR_FORMAT", "PTR_FORMAT") "
                               "of region "PTR_FORMAT,
4078
                               _worker_id, _finger, _region_limit, _curr_region);
4079
      }
4080 4081 4082

      // Let's iterate over the bitmap of the part of the
      // region that is left.
4083
      if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4084 4085 4086 4087 4088
        // We successfully completed iterating over the region. Now,
        // let's give up the region.
        giveup_current_region();
        regular_clock_call();
      } else {
4089
        assert(has_aborted(), "currently the only way to do so");
4090 4091 4092 4093 4094
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4095
        assert(_finger != NULL, "invariant");
4096 4097 4098 4099 4100 4101 4102 4103

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4104 4105 4106 4107
        assert(_finger < _region_limit, "invariant");
        HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4108
          giveup_current_region();
4109
        } else {
4110
          move_finger_to(new_finger);
4111
        }
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4129 4130 4131 4132
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4133
      if (_cm->verbose_low()) {
4134
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4135
      }
4136
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4137 4138 4139 4140
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4141
        if (_cm->verbose_low()) {
4142
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4143
                                 "region "PTR_FORMAT,
4144
                                 _worker_id, claimed_region);
4145
        }
4146 4147

        setup_for_region(claimed_region);
4148
        assert(_curr_region == claimed_region, "invariant");
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4159 4160
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4161 4162 4163 4164 4165
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4166
    // tasks might be pushing objects to it concurrently.
4167 4168
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4169

4170
    if (_cm->verbose_low()) {
4171
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4172
    }
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4185
  if (do_stealing && !has_aborted()) {
4186 4187 4188 4189
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4190
    // tasks might be pushing objects to it concurrently.
4191 4192
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4193

4194
    if (_cm->verbose_low()) {
4195
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4196
    }
4197 4198 4199 4200 4201

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4202
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4203
        if (_cm->verbose_medium()) {
4204 4205
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
                                 _worker_id, (void*) obj);
4206
        }
4207 4208 4209

        statsOnly( ++_steals );

4210 4211
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4224 4225 4226 4227 4228 4229 4230 4231 4232
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4233 4234
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4235
  if (do_termination && !has_aborted()) {
4236
    // We cannot check whether the global stack is empty, since other
4237
    // tasks might be concurrently pushing objects on it.
4238 4239 4240
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4241

4242
    if (_cm->verbose_low()) {
4243
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4244
    }
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
    bool finished = _cm->terminator()->offer_termination(this);
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4258
      if (_worker_id == 0) {
4259 4260
        // let's allow task 0 to do this
        if (concurrent()) {
4261
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4262 4263 4264 4265 4266 4267 4268 4269
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4270 4271 4272 4273 4274 4275 4276 4277
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4278

4279
      if (_cm->verbose_low()) {
4280
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4281
      }
4282 4283 4284 4285
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4286
      if (_cm->verbose_low()) {
4287 4288
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4289
      }
4290 4291 4292 4293 4294 4295 4296 4297 4298

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4299
  set_cm_oop_closure(NULL);
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4310
    if (_has_timed_out) {
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4326
      if (_cm->verbose_low()) {
4327
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4328
      }
4329

4330
      _cm->enter_first_sync_barrier(_worker_id);
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
      // When we exit this sync barrier we know that all tasks have
      // stopped doing marking work. So, it's now safe to
      // re-initialise our data structures. At the end of this method,
      // task 0 will clear the global data structures.

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

      // ...and enter the second barrier.
4342
      _cm->enter_second_sync_barrier(_worker_id);
4343 4344 4345 4346 4347
      // At this point everything has bee re-initialised and we're
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4348
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4349
                             "elapsed = %1.2lfms <<<<<<<<<<",
4350
                             _worker_id, _time_target_ms, elapsed_time_ms);
4351
      if (_cm->has_aborted()) {
4352 4353
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4354
      }
4355 4356
    }
  } else {
4357
    if (_cm->verbose_low()) {
4358
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4359
                             "elapsed = %1.2lfms <<<<<<<<<<",
4360
                             _worker_id, _time_target_ms, elapsed_time_ms);
4361
    }
4362 4363 4364 4365 4366
  }

  _claimed = false;
}

4367
CMTask::CMTask(uint worker_id,
4368
               ConcurrentMark* cm,
4369 4370
               size_t* marked_bytes,
               BitMap* card_bm,
4371 4372 4373
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4374
    _worker_id(worker_id), _cm(cm),
4375 4376 4377 4378
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4379
    _cm_oop_closure(NULL),
4380 4381
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4382 4383
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4384 4385 4386 4387 4388 4389

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4444
                 HeapRegion::GrainBytes);
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "type", "address-range",
                 "used", "prev-live", "next-live", "gc-eff");
4455 4456 4457 4458 4459 4460 4461 4462 4463
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "", "",
                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4475
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_DOUBLE_FORMAT,
                 type, bottom, end,
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
                 perc(_total_next_live_bytes, _total_capacity_bytes));
  _out->cr();
}