metaspace.cpp 106.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
#include "precompiled.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "memory/binaryTreeDictionary.hpp"
27
#include "memory/freeList.hpp"
28 29 30
#include "memory/collectorPolicy.hpp"
#include "memory/filemap.hpp"
#include "memory/freeList.hpp"
31 32
#include "memory/metablock.hpp"
#include "memory/metachunk.hpp"
33 34 35 36 37 38
#include "memory/metaspace.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "runtime/globals.hpp"
#include "runtime/mutex.hpp"
39
#include "runtime/orderAccess.hpp"
40 41 42 43
#include "services/memTracker.hpp"
#include "utilities/copy.hpp"
#include "utilities/debug.hpp"

44 45
typedef BinaryTreeDictionary<Metablock, FreeList> BlockTreeDictionary;
typedef BinaryTreeDictionary<Metachunk, FreeList> ChunkTreeDictionary;
46 47 48 49
// Define this macro to enable slow integrity checking of
// the free chunk lists
const bool metaspace_slow_verify = false;

50 51 52 53 54 55 56 57 58
// Parameters for stress mode testing
const uint metadata_deallocate_a_lot_block = 10;
const uint metadata_deallocate_a_lock_chunk = 3;
size_t const allocation_from_dictionary_limit = 64 * K;

MetaWord* last_allocated = 0;

// Used in declarations in SpaceManager and ChunkManager
enum ChunkIndex {
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  ZeroIndex = 0,
  SpecializedIndex = ZeroIndex,
  SmallIndex = SpecializedIndex + 1,
  MediumIndex = SmallIndex + 1,
  HumongousIndex = MediumIndex + 1,
  NumberOfFreeLists = 3,
  NumberOfInUseLists = 4
};

enum ChunkSizes {    // in words.
  ClassSpecializedChunk = 128,
  SpecializedChunk = 128,
  ClassSmallChunk = 256,
  SmallChunk = 512,
  ClassMediumChunk = 1 * K,
  MediumChunk = 8 * K,
  HumongousChunkGranularity = 8
76 77 78
};

static ChunkIndex next_chunk_index(ChunkIndex i) {
79
  assert(i < NumberOfInUseLists, "Out of bound");
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  return (ChunkIndex) (i+1);
}

// Originally _capacity_until_GC was set to MetaspaceSize here but
// the default MetaspaceSize before argument processing was being
// used which was not the desired value.  See the code
// in should_expand() to see how the initialization is handled
// now.
size_t MetaspaceGC::_capacity_until_GC = 0;
bool MetaspaceGC::_expand_after_GC = false;
uint MetaspaceGC::_shrink_factor = 0;
bool MetaspaceGC::_should_concurrent_collect = false;

// Blocks of space for metadata are allocated out of Metachunks.
//
// Metachunk are allocated out of MetadataVirtualspaces and once
// allocated there is no explicit link between a Metachunk and
// the MetadataVirtualspaces from which it was allocated.
//
// Each SpaceManager maintains a
// list of the chunks it is using and the current chunk.  The current
// chunk is the chunk from which allocations are done.  Space freed in
// a chunk is placed on the free list of blocks (BlockFreelist) and
// reused from there.

105
typedef class FreeList<Metachunk> ChunkList;
106 107 108 109 110 111 112 113

// Manages the global free lists of chunks.
// Has three lists of free chunks, and a total size and
// count that includes all three

class ChunkManager VALUE_OBJ_CLASS_SPEC {

  // Free list of chunks of different sizes.
114
  //   SpecializedChunk
115 116 117
  //   SmallChunk
  //   MediumChunk
  //   HumongousChunk
118 119
  ChunkList _free_chunks[NumberOfFreeLists];

120

121 122
  //   HumongousChunk
  ChunkTreeDictionary _humongous_dictionary;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

  // ChunkManager in all lists of this type
  size_t _free_chunks_total;
  size_t _free_chunks_count;

  void dec_free_chunks_total(size_t v) {
    assert(_free_chunks_count > 0 &&
             _free_chunks_total > 0,
             "About to go negative");
    Atomic::add_ptr(-1, &_free_chunks_count);
    jlong minus_v = (jlong) - (jlong) v;
    Atomic::add_ptr(minus_v, &_free_chunks_total);
  }

  // Debug support

  size_t sum_free_chunks();
  size_t sum_free_chunks_count();

  void locked_verify_free_chunks_total();
143 144 145 146 147
  void slow_locked_verify_free_chunks_total() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_total();
    }
  }
148
  void locked_verify_free_chunks_count();
149 150 151 152 153
  void slow_locked_verify_free_chunks_count() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_count();
    }
  }
154 155 156 157 158 159 160 161 162 163
  void verify_free_chunks_count();

 public:

  ChunkManager() : _free_chunks_total(0), _free_chunks_count(0) {}

  // add or delete (return) a chunk to the global freelist.
  Metachunk* chunk_freelist_allocate(size_t word_size);
  void chunk_freelist_deallocate(Metachunk* chunk);

164 165 166 167
  // Map a size to a list index assuming that there are lists
  // for special, small, medium, and humongous chunks.
  static ChunkIndex list_index(size_t size);

168 169 170 171
  // Remove the chunk from its freelist.  It is
  // expected to be on one of the _free_chunks[] lists.
  void remove_chunk(Metachunk* chunk);

172 173 174 175
  // Add the simple linked list of chunks to the freelist of chunks
  // of type index.
  void return_chunks(ChunkIndex index, Metachunk* chunks);

176 177 178 179 180 181 182 183 184 185 186
  // Total of the space in the free chunks list
  size_t free_chunks_total();
  size_t free_chunks_total_in_bytes();

  // Number of chunks in the free chunks list
  size_t free_chunks_count();

  void inc_free_chunks_total(size_t v, size_t count = 1) {
    Atomic::add_ptr(count, &_free_chunks_count);
    Atomic::add_ptr(v, &_free_chunks_total);
  }
187 188 189
  ChunkTreeDictionary* humongous_dictionary() {
    return &_humongous_dictionary;
  }
190 191 192 193 194 195 196 197 198 199 200 201 202

  ChunkList* free_chunks(ChunkIndex index);

  // Returns the list for the given chunk word size.
  ChunkList* find_free_chunks_list(size_t word_size);

  // Add and remove from a list by size.  Selects
  // list based on size of chunk.
  void free_chunks_put(Metachunk* chuck);
  Metachunk* free_chunks_get(size_t chunk_word_size);

  // Debug support
  void verify();
203 204 205 206 207
  void slow_verify() {
    if (metaspace_slow_verify) {
      verify();
    }
  }
208
  void locked_verify();
209 210 211 212 213
  void slow_locked_verify() {
    if (metaspace_slow_verify) {
      locked_verify();
    }
  }
214 215 216 217
  void verify_free_chunks_total();

  void locked_print_free_chunks(outputStream* st);
  void locked_print_sum_free_chunks(outputStream* st);
218 219

  void print_on(outputStream* st);
220 221 222 223 224
};

// Used to manage the free list of Metablocks (a block corresponds
// to the allocation of a quantum of metadata).
class BlockFreelist VALUE_OBJ_CLASS_SPEC {
225 226
  BlockTreeDictionary* _dictionary;
  static Metablock* initialize_free_chunk(MetaWord* p, size_t word_size);
227 228

  // Accessors
229
  BlockTreeDictionary* dictionary() const { return _dictionary; }
230 231 232 233 234 235

 public:
  BlockFreelist();
  ~BlockFreelist();

  // Get and return a block to the free list
236 237
  MetaWord* get_block(size_t word_size);
  void return_block(MetaWord* p, size_t word_size);
238

239 240
  size_t total_size() {
  if (dictionary() == NULL) {
241
    return 0;
242 243
  } else {
    return dictionary()->total_size();
244
  }
245
}
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

  void print_on(outputStream* st) const;
};

class VirtualSpaceNode : public CHeapObj<mtClass> {
  friend class VirtualSpaceList;

  // Link to next VirtualSpaceNode
  VirtualSpaceNode* _next;

  // total in the VirtualSpace
  MemRegion _reserved;
  ReservedSpace _rs;
  VirtualSpace _virtual_space;
  MetaWord* _top;
261 262
  // count of chunks contained in this VirtualSpace
  uintx _container_count;
263 264 265 266 267 268 269 270 271

  // Convenience functions for logical bottom and end
  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }

  // Convenience functions to access the _virtual_space
  char* low()  const { return virtual_space()->low(); }
  char* high() const { return virtual_space()->high(); }

272 273 274 275 276 277 278 279 280
  // The first Metachunk will be allocated at the bottom of the
  // VirtualSpace
  Metachunk* first_chunk() { return (Metachunk*) bottom(); }

  void inc_container_count();
#ifdef ASSERT
  uint container_count_slow();
#endif

281 282 283
 public:

  VirtualSpaceNode(size_t byte_size);
284
  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
285 286 287 288 289 290 291 292 293 294 295 296 297 298
  ~VirtualSpaceNode();

  // address of next available space in _virtual_space;
  // Accessors
  VirtualSpaceNode* next() { return _next; }
  void set_next(VirtualSpaceNode* v) { _next = v; }

  void set_reserved(MemRegion const v) { _reserved = v; }
  void set_top(MetaWord* v) { _top = v; }

  // Accessors
  MemRegion* reserved() { return &_reserved; }
  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }

299
  // Returns true if "word_size" is available in the VirtualSpace
300 301 302 303 304
  bool is_available(size_t word_size) { return _top + word_size <= end(); }

  MetaWord* top() const { return _top; }
  void inc_top(size_t word_size) { _top += word_size; }

305 306 307 308 309 310
  uintx container_count() { return _container_count; }
  void dec_container_count();
#ifdef ASSERT
  void verify_container_count();
#endif

311 312 313
  // used and capacity in this single entry in the list
  size_t used_words_in_vs() const;
  size_t capacity_words_in_vs() const;
314
  size_t free_words_in_vs() const;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

  bool initialize();

  // get space from the virtual space
  Metachunk* take_from_committed(size_t chunk_word_size);

  // Allocate a chunk from the virtual space and return it.
  Metachunk* get_chunk_vs(size_t chunk_word_size);
  Metachunk* get_chunk_vs_with_expand(size_t chunk_word_size);

  // Expands/shrinks the committed space in a virtual space.  Delegates
  // to Virtualspace
  bool expand_by(size_t words, bool pre_touch = false);
  bool shrink_by(size_t words);

330 331 332 333
  // In preparation for deleting this node, remove all the chunks
  // in the node from any freelist.
  void purge(ChunkManager* chunk_manager);

334
#ifdef ASSERT
335 336 337 338
  // Debug support
  static void verify_virtual_space_total();
  static void verify_virtual_space_count();
  void mangle();
339
#endif
340 341 342 343 344

  void print_on(outputStream* st) const;
};

  // byte_size is the size of the associated virtualspace.
345
VirtualSpaceNode::VirtualSpaceNode(size_t byte_size) : _top(NULL), _next(NULL), _rs(0), _container_count(0) {
346 347 348
  // align up to vm allocation granularity
  byte_size = align_size_up(byte_size, os::vm_allocation_granularity());

349 350 351
  // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
  // configurable address, generally at the top of the Java heap so other
  // memory addresses don't conflict.
352
  if (DumpSharedSpaces) {
353
    char* shared_base = (char*)SharedBaseAddress;
354 355
    _rs = ReservedSpace(byte_size, 0, false, shared_base, 0);
    if (_rs.is_reserved()) {
356
      assert(shared_base == 0 || _rs.base() == shared_base, "should match");
357
    } else {
358
      // Get a mmap region anywhere if the SharedBaseAddress fails.
359 360 361 362 363 364 365 366 367 368
      _rs = ReservedSpace(byte_size);
    }
    MetaspaceShared::set_shared_rs(&_rs);
  } else {
    _rs = ReservedSpace(byte_size);
  }

  MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
    assert(chunk->is_free(), "Should be marked free");
      MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
      chunk_manager->remove_chunk(chunk);
      assert(chunk->next() == NULL &&
             chunk->prev() == NULL,
             "Was not removed from its list");
      chunk = (Metachunk*) next;
  }
}

#ifdef ASSERT
uint VirtualSpaceNode::container_count_slow() {
  uint count = 0;
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    // Don't count the chunks on the free lists.  Those are
    // still part of the VirtualSpaceNode but not currently
    // counted.
    if (!chunk->is_free()) {
      count++;
    }
    chunk = (Metachunk*) next;
  }
  return count;
}
#endif

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
// List of VirtualSpaces for metadata allocation.
// It has a  _next link for singly linked list and a MemRegion
// for total space in the VirtualSpace.
class VirtualSpaceList : public CHeapObj<mtClass> {
  friend class VirtualSpaceNode;

  enum VirtualSpaceSizes {
    VirtualSpaceSize = 256 * K
  };

  // Global list of virtual spaces
  // Head of the list
  VirtualSpaceNode* _virtual_space_list;
  // virtual space currently being used for allocations
  VirtualSpaceNode* _current_virtual_space;
  // Free chunk list for all other metadata
  ChunkManager      _chunk_manager;

  // Can this virtual list allocate >1 spaces?  Also, used to determine
  // whether to allocate unlimited small chunks in this virtual space
  bool _is_class;
  bool can_grow() const { return !is_class() || !UseCompressedKlassPointers; }

  // Sum of space in all virtual spaces and number of virtual spaces
  size_t _virtual_space_total;
  size_t _virtual_space_count;

  ~VirtualSpaceList();

  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }

  void set_virtual_space_list(VirtualSpaceNode* v) {
    _virtual_space_list = v;
  }
  void set_current_virtual_space(VirtualSpaceNode* v) {
    _current_virtual_space = v;
  }

  void link_vs(VirtualSpaceNode* new_entry, size_t vs_word_size);

  // Get another virtual space and add it to the list.  This
  // is typically prompted by a failed attempt to allocate a chunk
  // and is typically followed by the allocation of a chunk.
  bool grow_vs(size_t vs_word_size);

 public:
  VirtualSpaceList(size_t word_size);
  VirtualSpaceList(ReservedSpace rs);

451 452
  size_t free_bytes();

453 454 455 456 457 458 459 460
  Metachunk* get_new_chunk(size_t word_size,
                           size_t grow_chunks_by_words,
                           size_t medium_chunk_bunch);

  // Get the first chunk for a Metaspace.  Used for
  // special cases such as the boot class loader, reflection
  // class loader and anonymous class loader.
  Metachunk* get_initialization_chunk(size_t word_size, size_t chunk_bunch);
461 462 463 464 465 466 467 468 469 470 471 472 473

  VirtualSpaceNode* current_virtual_space() {
    return _current_virtual_space;
  }

  ChunkManager* chunk_manager() { return &_chunk_manager; }
  bool is_class() const { return _is_class; }

  // Allocate the first virtualspace.
  void initialize(size_t word_size);

  size_t virtual_space_total() { return _virtual_space_total; }

474 475 476 477 478 479 480
  void inc_virtual_space_total(size_t v);
  void dec_virtual_space_total(size_t v);
  void inc_virtual_space_count();
  void dec_virtual_space_count();

  // Unlink empty VirtualSpaceNodes and free it.
  void purge();
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

  // Used and capacity in the entire list of virtual spaces.
  // These are global values shared by all Metaspaces
  size_t capacity_words_sum();
  size_t capacity_bytes_sum() { return capacity_words_sum() * BytesPerWord; }
  size_t used_words_sum();
  size_t used_bytes_sum() { return used_words_sum() * BytesPerWord; }

  bool contains(const void *ptr);

  void print_on(outputStream* st) const;

  class VirtualSpaceListIterator : public StackObj {
    VirtualSpaceNode* _virtual_spaces;
   public:
    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
      _virtual_spaces(virtual_spaces) {}

    bool repeat() {
      return _virtual_spaces != NULL;
    }

    VirtualSpaceNode* get_next() {
      VirtualSpaceNode* result = _virtual_spaces;
      if (_virtual_spaces != NULL) {
        _virtual_spaces = _virtual_spaces->next();
      }
      return result;
    }
  };
};

class Metadebug : AllStatic {
  // Debugging support for Metaspaces
  static int _deallocate_block_a_lot_count;
  static int _deallocate_chunk_a_lot_count;
  static int _allocation_fail_alot_count;

 public:
  static int deallocate_block_a_lot_count() {
    return _deallocate_block_a_lot_count;
  }
  static void set_deallocate_block_a_lot_count(int v) {
    _deallocate_block_a_lot_count = v;
  }
  static void inc_deallocate_block_a_lot_count() {
    _deallocate_block_a_lot_count++;
  }
  static int deallocate_chunk_a_lot_count() {
    return _deallocate_chunk_a_lot_count;
  }
  static void reset_deallocate_chunk_a_lot_count() {
    _deallocate_chunk_a_lot_count = 1;
  }
  static void inc_deallocate_chunk_a_lot_count() {
    _deallocate_chunk_a_lot_count++;
  }

  static void init_allocation_fail_alot_count();
#ifdef ASSERT
  static bool test_metadata_failure();
#endif

  static void deallocate_chunk_a_lot(SpaceManager* sm,
                                     size_t chunk_word_size);
  static void deallocate_block_a_lot(SpaceManager* sm,
                                     size_t chunk_word_size);

};

int Metadebug::_deallocate_block_a_lot_count = 0;
int Metadebug::_deallocate_chunk_a_lot_count = 0;
int Metadebug::_allocation_fail_alot_count = 0;

//  SpaceManager - used by Metaspace to handle allocations
class SpaceManager : public CHeapObj<mtClass> {
  friend class Metaspace;
  friend class Metadebug;

 private:
561

562 563 564
  // protects allocations and contains.
  Mutex* const _lock;

565 566 567
  // Chunk related size
  size_t _medium_chunk_bunch;

568 569 570
  // List of chunks in use by this SpaceManager.  Allocations
  // are done from the current chunk.  The list is used for deallocating
  // chunks when the SpaceManager is freed.
571
  Metachunk* _chunks_in_use[NumberOfInUseLists];
572 573 574 575 576 577 578 579 580 581 582
  Metachunk* _current_chunk;

  // Virtual space where allocation comes from.
  VirtualSpaceList* _vs_list;

  // Number of small chunks to allocate to a manager
  // If class space manager, small chunks are unlimited
  static uint const _small_chunk_limit;
  bool has_small_chunk_limit() { return !vs_list()->is_class(); }

  // Sum of all space in allocated chunks
583 584 585 586 587
  size_t _allocated_blocks_words;

  // Sum of all allocated chunks
  size_t _allocated_chunks_words;
  size_t _allocated_chunks_count;
588 589 590 591 592 593 594 595 596 597 598 599

  // Free lists of blocks are per SpaceManager since they
  // are assumed to be in chunks in use by the SpaceManager
  // and all chunks in use by a SpaceManager are freed when
  // the class loader using the SpaceManager is collected.
  BlockFreelist _block_freelists;

  // protects virtualspace and chunk expansions
  static const char*  _expand_lock_name;
  static const int    _expand_lock_rank;
  static Mutex* const _expand_lock;

600
 private:
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
  // Accessors
  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
  void set_chunks_in_use(ChunkIndex index, Metachunk* v) { _chunks_in_use[index] = v; }

  BlockFreelist* block_freelists() const {
    return (BlockFreelist*) &_block_freelists;
  }

  VirtualSpaceList* vs_list() const    { return _vs_list; }

  Metachunk* current_chunk() const { return _current_chunk; }
  void set_current_chunk(Metachunk* v) {
    _current_chunk = v;
  }

  Metachunk* find_current_chunk(size_t word_size);

  // Add chunk to the list of chunks in use
  void add_chunk(Metachunk* v, bool make_current);

  Mutex* lock() const { return _lock; }

623 624 625 626 627
  const char* chunk_size_name(ChunkIndex index) const;

 protected:
  void initialize();

628
 public:
629 630
  SpaceManager(Mutex* lock,
               VirtualSpaceList* vs_list);
631 632
  ~SpaceManager();

633 634
  enum ChunkMultiples {
    MediumChunkMultiple = 4
635 636 637
  };

  // Accessors
638 639 640 641 642
  size_t specialized_chunk_size() { return SpecializedChunk; }
  size_t small_chunk_size() { return (size_t) vs_list()->is_class() ? ClassSmallChunk : SmallChunk; }
  size_t medium_chunk_size() { return (size_t) vs_list()->is_class() ? ClassMediumChunk : MediumChunk; }
  size_t medium_chunk_bunch() { return medium_chunk_size() * MediumChunkMultiple; }

643 644 645 646 647
  size_t allocated_blocks_words() const { return _allocated_blocks_words; }
  size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
  size_t allocated_chunks_words() const { return _allocated_chunks_words; }
  size_t allocated_chunks_count() const { return _allocated_chunks_count; }

648
  bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
649 650 651

  static Mutex* expand_lock() { return _expand_lock; }

652 653 654 655 656 657 658 659 660 661 662 663
  // Increment the per Metaspace and global running sums for Metachunks
  // by the given size.  This is used when a Metachunk to added to
  // the in-use list.
  void inc_size_metrics(size_t words);
  // Increment the per Metaspace and global running sums Metablocks by the given
  // size.  This is used when a Metablock is allocated.
  void inc_used_metrics(size_t words);
  // Delete the portion of the running sums for this SpaceManager. That is,
  // the globals running sums for the Metachunks and Metablocks are
  // decremented for all the Metachunks in-use by this SpaceManager.
  void dec_total_from_size_metrics();

664 665 666 667 668
  // Set the sizes for the initial chunks.
  void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                               size_t* chunk_word_size,
                               size_t* class_chunk_word_size);

669 670 671 672 673 674 675 676 677
  size_t sum_capacity_in_chunks_in_use() const;
  size_t sum_used_in_chunks_in_use() const;
  size_t sum_free_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;

  size_t sum_count_in_chunks_in_use();
  size_t sum_count_in_chunks_in_use(ChunkIndex i);

678 679
  Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);

680 681 682 683 684
  // Block allocation and deallocation.
  // Allocates a block from the current chunk
  MetaWord* allocate(size_t word_size);

  // Helper for allocations
685
  MetaWord* allocate_work(size_t word_size);
686 687

  // Returns a block to the per manager freelist
688
  void deallocate(MetaWord* p, size_t word_size);
689 690 691 692 693 694 695 696

  // Based on the allocation size and a minimum chunk size,
  // returned chunk size (for expanding space for chunk allocation).
  size_t calc_chunk_size(size_t allocation_word_size);

  // Called when an allocation from the current chunk fails.
  // Gets a new chunk (may require getting a new virtual space),
  // and allocates from that chunk.
697
  MetaWord* grow_and_allocate(size_t word_size);
698 699 700 701 702 703 704 705

  // debugging support.

  void dump(outputStream* const out) const;
  void print_on(outputStream* st) const;
  void locked_print_chunks_in_use_on(outputStream* st) const;

  void verify();
706
  void verify_chunk_size(Metachunk* chunk);
707
  NOT_PRODUCT(void mangle_freed_chunks();)
708
#ifdef ASSERT
709
  void verify_allocated_blocks_words();
710 711 712 713 714 715 716 717 718 719 720 721 722
#endif
};

uint const SpaceManager::_small_chunk_limit = 4;

const char* SpaceManager::_expand_lock_name =
  "SpaceManager chunk allocation lock";
const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
Mutex* const SpaceManager::_expand_lock =
  new Mutex(SpaceManager::_expand_lock_rank,
            SpaceManager::_expand_lock_name,
            Mutex::_allow_vm_block_flag);

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
void VirtualSpaceNode::inc_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count++;
  assert(_container_count == container_count_slow(),
         err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
                 "container_count_slow() " SIZE_FORMAT,
                 _container_count, container_count_slow()));
}

void VirtualSpaceNode::dec_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count--;
}

#ifdef ASSERT
void VirtualSpaceNode::verify_container_count() {
  assert(_container_count == container_count_slow(),
    err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
            "container_count_slow() " SIZE_FORMAT, _container_count, container_count_slow()));
}
#endif

745 746 747 748 749 750 751 752 753 754 755 756 757
// BlockFreelist methods

BlockFreelist::BlockFreelist() : _dictionary(NULL) {}

BlockFreelist::~BlockFreelist() {
  if (_dictionary != NULL) {
    if (Verbose && TraceMetadataChunkAllocation) {
      _dictionary->print_free_lists(gclog_or_tty);
    }
    delete _dictionary;
  }
}

758 759 760 761 762
Metablock* BlockFreelist::initialize_free_chunk(MetaWord* p, size_t word_size) {
  Metablock* block = (Metablock*) p;
  block->set_word_size(word_size);
  block->set_prev(NULL);
  block->set_next(NULL);
763 764 765 766

  return block;
}

767 768
void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
  Metablock* free_chunk = initialize_free_chunk(p, word_size);
769
  if (dictionary() == NULL) {
770
   _dictionary = new BlockTreeDictionary();
771
  }
772
  dictionary()->return_chunk(free_chunk);
773 774
}

775
MetaWord* BlockFreelist::get_block(size_t word_size) {
776 777 778 779
  if (dictionary() == NULL) {
    return NULL;
  }

780 781
  if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
    // Dark matter.  Too small for dictionary.
782 783 784
    return NULL;
  }

785 786 787 788 789 790 791
  Metablock* free_block =
    dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::exactly);
  if (free_block == NULL) {
    return NULL;
  }

  return (MetaWord*) free_block;
792 793 794 795 796 797 798 799 800 801 802 803 804
}

void BlockFreelist::print_on(outputStream* st) const {
  if (dictionary() == NULL) {
    return;
  }
  dictionary()->print_free_lists(st);
}

// VirtualSpaceNode methods

VirtualSpaceNode::~VirtualSpaceNode() {
  _rs.release();
805 806 807 808
#ifdef ASSERT
  size_t word_size = sizeof(*this) / BytesPerWord;
  Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
#endif
809 810 811 812 813 814 815 816 817 818 819
}

size_t VirtualSpaceNode::used_words_in_vs() const {
  return pointer_delta(top(), bottom(), sizeof(MetaWord));
}

// Space committed in the VirtualSpace
size_t VirtualSpaceNode::capacity_words_in_vs() const {
  return pointer_delta(end(), bottom(), sizeof(MetaWord));
}

820 821 822
size_t VirtualSpaceNode::free_words_in_vs() const {
  return pointer_delta(end(), top(), sizeof(MetaWord));
}
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

// Allocates the chunk from the virtual space only.
// This interface is also used internally for debugging.  Not all
// chunks removed here are necessarily used for allocation.
Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
  // Bottom of the new chunk
  MetaWord* chunk_limit = top();
  assert(chunk_limit != NULL, "Not safe to call this method");

  if (!is_available(chunk_word_size)) {
    if (TraceMetadataChunkAllocation) {
      tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
      // Dump some information about the virtual space that is nearly full
      print_on(tty);
    }
    return NULL;
  }

  // Take the space  (bump top on the current virtual space).
  inc_top(chunk_word_size);

844 845
  // Initialize the chunk
  Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
  return result;
}


// Expand the virtual space (commit more of the reserved space)
bool VirtualSpaceNode::expand_by(size_t words, bool pre_touch) {
  size_t bytes = words * BytesPerWord;
  bool result =  virtual_space()->expand_by(bytes, pre_touch);
  if (TraceMetavirtualspaceAllocation && !result) {
    gclog_or_tty->print_cr("VirtualSpaceNode::expand_by() failed "
                           "for byte size " SIZE_FORMAT, bytes);
    virtual_space()->print();
  }
  return result;
}

// Shrink the virtual space (commit more of the reserved space)
bool VirtualSpaceNode::shrink_by(size_t words) {
  size_t bytes = words * BytesPerWord;
  virtual_space()->shrink_by(bytes);
  return true;
}

// Add another chunk to the chunk list.

Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
873 874 875 876 877
  Metachunk* result = take_from_committed(chunk_word_size);
  if (result != NULL) {
    inc_container_count();
  }
  return result;
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
}

Metachunk* VirtualSpaceNode::get_chunk_vs_with_expand(size_t chunk_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());

  Metachunk* new_chunk = get_chunk_vs(chunk_word_size);

  if (new_chunk == NULL) {
    // Only a small part of the virtualspace is committed when first
    // allocated so committing more here can be expected.
    size_t page_size_words = os::vm_page_size() / BytesPerWord;
    size_t aligned_expand_vs_by_words = align_size_up(chunk_word_size,
                                                    page_size_words);
    expand_by(aligned_expand_vs_by_words, false);
    new_chunk = get_chunk_vs(chunk_word_size);
  }
  return new_chunk;
}

bool VirtualSpaceNode::initialize() {

  if (!_rs.is_reserved()) {
    return false;
  }

903 904 905 906
  // An allocation out of this Virtualspace that is larger
  // than an initial commit size can waste that initial committed
  // space.
  size_t committed_byte_size = 0;
907 908 909 910 911 912
  bool result = virtual_space()->initialize(_rs, committed_byte_size);
  if (result) {
    set_top((MetaWord*)virtual_space()->low());
    set_reserved(MemRegion((HeapWord*)_rs.base(),
                 (HeapWord*)(_rs.base() + _rs.size())));

913 914 915 916 917 918 919 920
    assert(reserved()->start() == (HeapWord*) _rs.base(),
      err_msg("Reserved start was not set properly " PTR_FORMAT
        " != " PTR_FORMAT, reserved()->start(), _rs.base()));
    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
      err_msg("Reserved size was not set properly " SIZE_FORMAT
        " != " SIZE_FORMAT, reserved()->word_size(),
        _rs.size() / BytesPerWord));
  }
921 922 923 924 925 926 927 928 929 930 931

  return result;
}

void VirtualSpaceNode::print_on(outputStream* st) const {
  size_t used = used_words_in_vs();
  size_t capacity = capacity_words_in_vs();
  VirtualSpace* vs = virtual_space();
  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
           "[" PTR_FORMAT ", " PTR_FORMAT ", "
           PTR_FORMAT ", " PTR_FORMAT ")",
932 933
           vs, capacity / K,
           capacity == 0 ? 0 : used * 100 / capacity,
934 935 936 937
           bottom(), top(), end(),
           vs->high_boundary());
}

938
#ifdef ASSERT
939 940 941 942
void VirtualSpaceNode::mangle() {
  size_t word_size = capacity_words_in_vs();
  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
}
943
#endif // ASSERT
944 945 946 947 948 949 950 951 952 953 954 955

// VirtualSpaceList methods
// Space allocated from the VirtualSpace

VirtualSpaceList::~VirtualSpaceList() {
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    delete vsl;
  }
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
void VirtualSpaceList::inc_virtual_space_total(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_total = _virtual_space_total + v;
}
void VirtualSpaceList::dec_virtual_space_total(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_total = _virtual_space_total - v;
}

void VirtualSpaceList::inc_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count++;
}
void VirtualSpaceList::dec_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count--;
}

void ChunkManager::remove_chunk(Metachunk* chunk) {
  size_t word_size = chunk->word_size();
  ChunkIndex index = list_index(word_size);
  if (index != HumongousIndex) {
    free_chunks(index)->remove_chunk(chunk);
  } else {
    humongous_dictionary()->remove_chunk(chunk);
  }

  // Chunk is being removed from the chunks free list.
  dec_free_chunks_total(chunk->capacity_word_size());
}

// Walk the list of VirtualSpaceNodes and delete
// nodes with a 0 container_count.  Remove Metachunks in
// the node from their respective freelists.
void VirtualSpaceList::purge() {
  assert_lock_strong(SpaceManager::expand_lock());
  // Don't use a VirtualSpaceListIterator because this
  // list is being changed and a straightforward use of an iterator is not safe.
  VirtualSpaceNode* purged_vsl = NULL;
  VirtualSpaceNode* prev_vsl = virtual_space_list();
  VirtualSpaceNode* next_vsl = prev_vsl;
  while (next_vsl != NULL) {
    VirtualSpaceNode* vsl = next_vsl;
    next_vsl = vsl->next();
    // Don't free the current virtual space since it will likely
    // be needed soon.
    if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
      // Unlink it from the list
      if (prev_vsl == vsl) {
        // This is the case of the current note being the first note.
        assert(vsl == virtual_space_list(), "Expected to be the first note");
        set_virtual_space_list(vsl->next());
      } else {
        prev_vsl->set_next(vsl->next());
      }

      vsl->purge(chunk_manager());
      dec_virtual_space_total(vsl->reserved()->word_size());
      dec_virtual_space_count();
      purged_vsl = vsl;
      delete vsl;
    } else {
      prev_vsl = vsl;
    }
  }
#ifdef ASSERT
  if (purged_vsl != NULL) {
  // List should be stable enough to use an iterator here.
  VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* vsl = iter.get_next();
      assert(vsl != purged_vsl, "Purge of vsl failed");
    }
  }
#endif
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
size_t VirtualSpaceList::used_words_sum() {
  size_t allocated_by_vs = 0;
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    // Sum used region [bottom, top) in each virtualspace
    allocated_by_vs += vsl->used_words_in_vs();
  }
  assert(allocated_by_vs >= chunk_manager()->free_chunks_total(),
    err_msg("Total in free chunks " SIZE_FORMAT
            " greater than total from virtual_spaces " SIZE_FORMAT,
            allocated_by_vs, chunk_manager()->free_chunks_total()));
  size_t used =
    allocated_by_vs - chunk_manager()->free_chunks_total();
  return used;
}

// Space available in all MetadataVirtualspaces allocated
// for metadata.  This is the upper limit on the capacity
// of chunks allocated out of all the MetadataVirtualspaces.
size_t VirtualSpaceList::capacity_words_sum() {
  size_t capacity = 0;
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    capacity += vsl->capacity_words_in_vs();
  }
  return capacity;
}

VirtualSpaceList::VirtualSpaceList(size_t word_size ) :
                                   _is_class(false),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
                                   _virtual_space_total(0),
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  bool initialization_succeeded = grow_vs(word_size);

1073 1074 1075
  _chunk_manager.free_chunks(SpecializedIndex)->set_size(SpecializedChunk);
  _chunk_manager.free_chunks(SmallIndex)->set_size(SmallChunk);
  _chunk_manager.free_chunks(MediumIndex)->set_size(MediumChunk);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
  assert(initialization_succeeded,
    " VirtualSpaceList initialization should not fail");
}

VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
                                   _is_class(true),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
                                   _virtual_space_total(0),
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
  bool succeeded = class_entry->initialize();
1090 1091 1092
  _chunk_manager.free_chunks(SpecializedIndex)->set_size(SpecializedChunk);
  _chunk_manager.free_chunks(SmallIndex)->set_size(ClassSmallChunk);
  _chunk_manager.free_chunks(MediumIndex)->set_size(ClassMediumChunk);
1093 1094 1095 1096
  assert(succeeded, " VirtualSpaceList initialization should not fail");
  link_vs(class_entry, rs.size()/BytesPerWord);
}

1097 1098 1099 1100
size_t VirtualSpaceList::free_bytes() {
  return virtual_space_list()->free_words_in_vs() * BytesPerWord;
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
// Allocate another meta virtual space and add it to the list.
bool VirtualSpaceList::grow_vs(size_t vs_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
  if (vs_word_size == 0) {
    return false;
  }
  // Reserve the space
  size_t vs_byte_size = vs_word_size * BytesPerWord;
  assert(vs_byte_size % os::vm_page_size() == 0, "Not aligned");

  // Allocate the meta virtual space and initialize it.
  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
  if (!new_entry->initialize()) {
    delete new_entry;
    return false;
  } else {
1117 1118
    // ensure lock-free iteration sees fully initialized node
    OrderAccess::storestore();
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    link_vs(new_entry, vs_word_size);
    return true;
  }
}

void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry, size_t vs_word_size) {
  if (virtual_space_list() == NULL) {
      set_virtual_space_list(new_entry);
  } else {
    current_virtual_space()->set_next(new_entry);
  }
  set_current_virtual_space(new_entry);
  inc_virtual_space_total(vs_word_size);
  inc_virtual_space_count();
#ifdef ASSERT
  new_entry->mangle();
#endif
  if (TraceMetavirtualspaceAllocation && Verbose) {
    VirtualSpaceNode* vsl = current_virtual_space();
    vsl->print_on(tty);
  }
}

Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1143 1144
                                           size_t grow_chunks_by_words,
                                           size_t medium_chunk_bunch) {
1145 1146 1147 1148

  // Get a chunk from the chunk freelist
  Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);

1149 1150 1151 1152
  if (next != NULL) {
    next->container()->inc_container_count();
  } else {
    // Allocate a chunk out of the current virtual space.
1153 1154 1155 1156 1157 1158
    next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
  }

  if (next == NULL) {
    // Not enough room in current virtual space.  Try to commit
    // more space.
1159 1160
    size_t expand_vs_by_words = MAX2(medium_chunk_bunch,
                                     grow_chunks_by_words);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    size_t page_size_words = os::vm_page_size() / BytesPerWord;
    size_t aligned_expand_vs_by_words = align_size_up(expand_vs_by_words,
                                                        page_size_words);
    bool vs_expanded =
      current_virtual_space()->expand_by(aligned_expand_vs_by_words, false);
    if (!vs_expanded) {
      // Should the capacity of the metaspaces be expanded for
      // this allocation?  If it's the virtual space for classes and is
      // being used for CompressedHeaders, don't allocate a new virtualspace.
      if (can_grow() && MetaspaceGC::should_expand(this, word_size)) {
        // Get another virtual space.
          size_t grow_vs_words =
            MAX2((size_t)VirtualSpaceSize, aligned_expand_vs_by_words);
        if (grow_vs(grow_vs_words)) {
          // Got it.  It's on the list now.  Get a chunk from it.
          next = current_virtual_space()->get_chunk_vs_with_expand(grow_chunks_by_words);
        }
      } else {
        // Allocation will fail and induce a GC
        if (TraceMetadataChunkAllocation && Verbose) {
          gclog_or_tty->print_cr("VirtualSpaceList::get_new_chunk():"
            " Fail instead of expand the metaspace");
        }
      }
    } else {
      // The virtual space expanded, get a new chunk
      next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
      assert(next != NULL, "Just expanded, should succeed");
    }
  }

1192 1193
  assert(next == NULL || (next->next() == NULL && next->prev() == NULL),
         "New chunk is still on some list");
1194 1195 1196
  return next;
}

1197 1198 1199 1200 1201 1202 1203 1204 1205
Metachunk* VirtualSpaceList::get_initialization_chunk(size_t chunk_word_size,
                                                      size_t chunk_bunch) {
  // Get a chunk from the chunk freelist
  Metachunk* new_chunk = get_new_chunk(chunk_word_size,
                                       chunk_word_size,
                                       chunk_bunch);
  return new_chunk;
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
void VirtualSpaceList::print_on(outputStream* st) const {
  if (TraceMetadataChunkAllocation && Verbose) {
    VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* node = iter.get_next();
      node->print_on(st);
    }
  }
}

bool VirtualSpaceList::contains(const void *ptr) {
  VirtualSpaceNode* list = virtual_space_list();
  VirtualSpaceListIterator iter(list);
  while (iter.repeat()) {
    VirtualSpaceNode* node = iter.get_next();
    if (node->reserved()->contains(ptr)) {
      return true;
    }
  }
  return false;
}


// MetaspaceGC methods

// VM_CollectForMetadataAllocation is the vm operation used to GC.
// Within the VM operation after the GC the attempt to allocate the metadata
// should succeed.  If the GC did not free enough space for the metaspace
// allocation, the HWM is increased so that another virtualspace will be
// allocated for the metadata.  With perm gen the increase in the perm
// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
// metaspace policy uses those as the small and large steps for the HWM.
//
// After the GC the compute_new_size() for MetaspaceGC is called to
// resize the capacity of the metaspaces.  The current implementation
1241
// is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1242
// to resize the Java heap by some GC's.  New flags can be implemented
1243
// if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1244
// free space is desirable in the metaspace capacity to decide how much
1245
// to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
// free space is desirable in the metaspace capacity before decreasing
// the HWM.

// Calculate the amount to increase the high water mark (HWM).
// Increase by a minimum amount (MinMetaspaceExpansion) so that
// another expansion is not requested too soon.  If that is not
// enough to satisfy the allocation (i.e. big enough for a word_size
// allocation), increase by MaxMetaspaceExpansion.  If that is still
// not enough, expand by the size of the allocation (word_size) plus
// some.
size_t MetaspaceGC::delta_capacity_until_GC(size_t word_size) {
  size_t before_inc = MetaspaceGC::capacity_until_GC();
  size_t min_delta_words = MinMetaspaceExpansion / BytesPerWord;
  size_t max_delta_words = MaxMetaspaceExpansion / BytesPerWord;
  size_t page_size_words = os::vm_page_size() / BytesPerWord;
  size_t size_delta_words = align_size_up(word_size, page_size_words);
  size_t delta_words = MAX2(size_delta_words, min_delta_words);
  if (delta_words > min_delta_words) {
    // Don't want to hit the high water mark on the next
    // allocation so make the delta greater than just enough
    // for this allocation.
    delta_words = MAX2(delta_words, max_delta_words);
    if (delta_words > max_delta_words) {
      // This allocation is large but the next ones are probably not
      // so increase by the minimum.
      delta_words = delta_words + min_delta_words;
    }
  }
  return delta_words;
}

bool MetaspaceGC::should_expand(VirtualSpaceList* vsl, size_t word_size) {
1278 1279

  size_t committed_capacity_bytes = MetaspaceAux::allocated_capacity_bytes();
1280
  // If the user wants a limit, impose one.
1281 1282
  size_t max_metaspace_size_bytes = MaxMetaspaceSize;
  size_t metaspace_size_bytes = MetaspaceSize;
1283
  if (!FLAG_IS_DEFAULT(MaxMetaspaceSize) &&
1284
      MetaspaceAux::reserved_in_bytes() >= MaxMetaspaceSize) {
1285 1286 1287
    return false;
  }

1288 1289 1290 1291
  // Class virtual space should always be expanded.  Call GC for the other
  // metadata virtual space.
  if (vsl == Metaspace::class_space_list()) return true;

1292 1293
  // If this is part of an allocation after a GC, expand
  // unconditionally.
1294
  if (MetaspaceGC::expand_after_GC()) {
1295 1296 1297
    return true;
  }

1298

1299

1300 1301 1302 1303
  // If the capacity is below the minimum capacity, allow the
  // expansion.  Also set the high-water-mark (capacity_until_GC)
  // to that minimum capacity so that a GC will not be induced
  // until that minimum capacity is exceeded.
1304
  if (committed_capacity_bytes < metaspace_size_bytes ||
1305
      capacity_until_GC() == 0) {
1306
    set_capacity_until_GC(metaspace_size_bytes);
1307 1308
    return true;
  } else {
1309
    if (committed_capacity_bytes < capacity_until_GC()) {
1310 1311 1312 1313 1314
      return true;
    } else {
      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print_cr("  allocation request size " SIZE_FORMAT
                        "  capacity_until_GC " SIZE_FORMAT
1315
                        "  allocated_capacity_bytes " SIZE_FORMAT,
1316 1317
                        word_size,
                        capacity_until_GC(),
1318
                        MetaspaceAux::allocated_capacity_bytes());
1319 1320 1321 1322 1323 1324
      }
      return false;
    }
  }
}

1325

1326 1327 1328 1329 1330 1331

void MetaspaceGC::compute_new_size() {
  assert(_shrink_factor <= 100, "invalid shrink factor");
  uint current_shrink_factor = _shrink_factor;
  _shrink_factor = 0;

1332 1333 1334 1335
  // Until a faster way of calculating the "used" quantity is implemented,
  // use "capacity".
  const size_t used_after_gc = MetaspaceAux::allocated_capacity_bytes();
  const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1336

1337
  const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;

  const double min_tmp = used_after_gc / maximum_used_percentage;
  size_t minimum_desired_capacity =
    (size_t)MIN2(min_tmp, double(max_uintx));
  // Don't shrink less than the initial generation size
  minimum_desired_capacity = MAX2(minimum_desired_capacity,
                                  MetaspaceSize);

  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
    gclog_or_tty->print_cr("  "
                  "  minimum_free_percentage: %6.2f"
                  "  maximum_used_percentage: %6.2f",
                  minimum_free_percentage,
                  maximum_used_percentage);
    gclog_or_tty->print_cr("  "
1355 1356
                  "   used_after_gc       : %6.1fKB",
                  used_after_gc / (double) K);
1357 1358 1359
  }


1360
  size_t shrink_bytes = 0;
1361 1362 1363 1364 1365 1366
  if (capacity_until_GC < minimum_desired_capacity) {
    // If we have less capacity below the metaspace HWM, then
    // increment the HWM.
    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
    // Don't expand unless it's significant
    if (expand_bytes >= MinMetaspaceExpansion) {
1367
      MetaspaceGC::set_capacity_until_GC(capacity_until_GC + expand_bytes);
1368 1369
    }
    if (PrintGCDetails && Verbose) {
1370
      size_t new_capacity_until_GC = capacity_until_GC;
1371
      gclog_or_tty->print_cr("    expanding:"
1372 1373 1374 1375
                    "  minimum_desired_capacity: %6.1fKB"
                    "  expand_bytes: %6.1fKB"
                    "  MinMetaspaceExpansion: %6.1fKB"
                    "  new metaspace HWM:  %6.1fKB",
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
                    minimum_desired_capacity / (double) K,
                    expand_bytes / (double) K,
                    MinMetaspaceExpansion / (double) K,
                    new_capacity_until_GC / (double) K);
    }
    return;
  }

  // No expansion, now see if we want to shrink
  // We would never want to shrink more than this
1386 1387 1388
  size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
  assert(max_shrink_bytes >= 0, err_msg("max_shrink_bytes " SIZE_FORMAT,
    max_shrink_bytes));
1389 1390

  // Should shrinking be considered?
1391 1392
  if (MaxMetaspaceFreeRatio < 100) {
    const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1393 1394 1395 1396 1397
    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
    const double max_tmp = used_after_gc / minimum_used_percentage;
    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
    maximum_desired_capacity = MAX2(maximum_desired_capacity,
                                    MetaspaceSize);
1398
    if (PrintGCDetails && Verbose) {
1399 1400 1401 1402 1403 1404
      gclog_or_tty->print_cr("  "
                             "  maximum_free_percentage: %6.2f"
                             "  minimum_used_percentage: %6.2f",
                             maximum_free_percentage,
                             minimum_used_percentage);
      gclog_or_tty->print_cr("  "
1405 1406
                             "  minimum_desired_capacity: %6.1fKB"
                             "  maximum_desired_capacity: %6.1fKB",
1407 1408 1409 1410 1411 1412 1413 1414 1415
                             minimum_desired_capacity / (double) K,
                             maximum_desired_capacity / (double) K);
    }

    assert(minimum_desired_capacity <= maximum_desired_capacity,
           "sanity check");

    if (capacity_until_GC > maximum_desired_capacity) {
      // Capacity too large, compute shrinking size
1416
      shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1417 1418 1419 1420 1421 1422
      // We don't want shrink all the way back to initSize if people call
      // System.gc(), because some programs do that between "phases" and then
      // we'd just have to grow the heap up again for the next phase.  So we
      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
      // on the third call, and 100% by the fourth call.  But if we recompute
      // size without shrinking, it goes back to 0%.
1423 1424
      shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
      assert(shrink_bytes <= max_shrink_bytes,
1425
        err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1426
          shrink_bytes, max_shrink_bytes));
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
      if (current_shrink_factor == 0) {
        _shrink_factor = 10;
      } else {
        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
      }
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("  "
                      "  shrinking:"
                      "  initSize: %.1fK"
                      "  maximum_desired_capacity: %.1fK",
                      MetaspaceSize / (double) K,
                      maximum_desired_capacity / (double) K);
        gclog_or_tty->print_cr("  "
1440
                      "  shrink_bytes: %.1fK"
1441 1442 1443
                      "  current_shrink_factor: %d"
                      "  new shrink factor: %d"
                      "  MinMetaspaceExpansion: %.1fK",
1444
                      shrink_bytes / (double) K,
1445 1446 1447 1448 1449 1450 1451 1452
                      current_shrink_factor,
                      _shrink_factor,
                      MinMetaspaceExpansion / (double) K);
      }
    }
  }

  // Don't shrink unless it's significant
1453 1454 1455
  if (shrink_bytes >= MinMetaspaceExpansion &&
      ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
    MetaspaceGC::set_capacity_until_GC(capacity_until_GC - shrink_bytes);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
  }
}

// Metadebug methods

void Metadebug::deallocate_chunk_a_lot(SpaceManager* sm,
                                       size_t chunk_word_size){
#ifdef ASSERT
  VirtualSpaceList* vsl = sm->vs_list();
  if (MetaDataDeallocateALot &&
      Metadebug::deallocate_chunk_a_lot_count() % MetaDataDeallocateALotInterval == 0 ) {
    Metadebug::reset_deallocate_chunk_a_lot_count();
    for (uint i = 0; i < metadata_deallocate_a_lock_chunk; i++) {
      Metachunk* dummy_chunk = vsl->current_virtual_space()->take_from_committed(chunk_word_size);
      if (dummy_chunk == NULL) {
        break;
      }
      vsl->chunk_manager()->chunk_freelist_deallocate(dummy_chunk);

      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print("Metadebug::deallocate_chunk_a_lot: %d) ",
                               sm->sum_count_in_chunks_in_use());
        dummy_chunk->print_on(gclog_or_tty);
        gclog_or_tty->print_cr("  Free chunks total %d  count %d",
                               vsl->chunk_manager()->free_chunks_total(),
                               vsl->chunk_manager()->free_chunks_count());
      }
    }
  } else {
    Metadebug::inc_deallocate_chunk_a_lot_count();
  }
#endif
}

void Metadebug::deallocate_block_a_lot(SpaceManager* sm,
                                       size_t raw_word_size){
#ifdef ASSERT
  if (MetaDataDeallocateALot &&
        Metadebug::deallocate_block_a_lot_count() % MetaDataDeallocateALotInterval == 0 ) {
    Metadebug::set_deallocate_block_a_lot_count(0);
    for (uint i = 0; i < metadata_deallocate_a_lot_block; i++) {
1497
      MetaWord* dummy_block = sm->allocate_work(raw_word_size);
1498 1499 1500
      if (dummy_block == 0) {
        break;
      }
1501
      sm->deallocate(dummy_block, raw_word_size);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
    }
  } else {
    Metadebug::inc_deallocate_block_a_lot_count();
  }
#endif
}

void Metadebug::init_allocation_fail_alot_count() {
  if (MetadataAllocationFailALot) {
    _allocation_fail_alot_count =
      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
  }
}

#ifdef ASSERT
bool Metadebug::test_metadata_failure() {
  if (MetadataAllocationFailALot &&
      Threads::is_vm_complete()) {
    if (_allocation_fail_alot_count > 0) {
      _allocation_fail_alot_count--;
    } else {
      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print_cr("Metadata allocation failing for "
                               "MetadataAllocationFailALot");
      }
      init_allocation_fail_alot_count();
      return true;
    }
  }
  return false;
}
#endif

// ChunkManager methods

// Verification of _free_chunks_total and _free_chunks_count does not
// work with the CMS collector because its use of additional locks
// complicate the mutex deadlock detection but it can still be useful
// for detecting errors in the chunk accounting with other collectors.

size_t ChunkManager::free_chunks_total() {
#ifdef ASSERT
  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
    MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
1547
    slow_locked_verify_free_chunks_total();
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
  }
#endif
  return _free_chunks_total;
}

size_t ChunkManager::free_chunks_total_in_bytes() {
  return free_chunks_total() * BytesPerWord;
}

size_t ChunkManager::free_chunks_count() {
#ifdef ASSERT
  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
    MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
    // This lock is only needed in debug because the verification
    // of the _free_chunks_totals walks the list of free chunks
1564
    slow_locked_verify_free_chunks_count();
1565 1566
  }
#endif
1567
  return _free_chunks_count;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
}

void ChunkManager::locked_verify_free_chunks_total() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks() == _free_chunks_total,
    err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_total,
           sum_free_chunks()));
}

void ChunkManager::verify_free_chunks_total() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_total();
}

void ChunkManager::locked_verify_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks_count() == _free_chunks_count,
    err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_count,
           sum_free_chunks_count()));
}

void ChunkManager::verify_free_chunks_count() {
#ifdef ASSERT
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_count();
#endif
}

void ChunkManager::verify() {
1601 1602 1603
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify();
1604 1605 1606 1607
}

void ChunkManager::locked_verify() {
  locked_verify_free_chunks_count();
1608
  locked_verify_free_chunks_total();
1609 1610 1611 1612
}

void ChunkManager::locked_print_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1613
  st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1614 1615 1616 1617 1618
                _free_chunks_total, _free_chunks_count);
}

void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1619
  st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
                sum_free_chunks(), sum_free_chunks_count());
}
ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
  return &_free_chunks[index];
}

// These methods that sum the free chunk lists are used in printing
// methods that are used in product builds.
size_t ChunkManager::sum_free_chunks() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t result = 0;
1631
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1632 1633 1634 1635 1636 1637
    ChunkList* list = free_chunks(i);

    if (list == NULL) {
      continue;
    }

1638
    result = result + list->count() * list->size();
1639
  }
1640
  result = result + humongous_dictionary()->total_size();
1641 1642 1643 1644 1645 1646
  return result;
}

size_t ChunkManager::sum_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t count = 0;
1647
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1648 1649 1650 1651
    ChunkList* list = free_chunks(i);
    if (list == NULL) {
      continue;
    }
1652
    count = count + list->count();
1653
  }
1654
  count = count + humongous_dictionary()->total_free_blocks();
1655 1656 1657 1658
  return count;
}

ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1659 1660 1661
  ChunkIndex index = list_index(word_size);
  assert(index < HumongousIndex, "No humongous list");
  return free_chunks(index);
1662 1663 1664 1665 1666 1667 1668 1669 1670
}

void ChunkManager::free_chunks_put(Metachunk* chunk) {
  assert_lock_strong(SpaceManager::expand_lock());
  ChunkList* free_list = find_free_chunks_list(chunk->word_size());
  chunk->set_next(free_list->head());
  free_list->set_head(chunk);
  // chunk is being returned to the chunk free list
  inc_free_chunks_total(chunk->capacity_word_size());
1671
  slow_locked_verify();
1672 1673 1674 1675 1676 1677 1678
}

void ChunkManager::chunk_freelist_deallocate(Metachunk* chunk) {
  // The deallocation of a chunk originates in the freelist
  // manangement code for a Metaspace and does not hold the
  // lock.
  assert(chunk != NULL, "Deallocating NULL");
1679 1680
  assert_lock_strong(SpaceManager::expand_lock());
  slow_locked_verify();
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
  if (TraceMetadataChunkAllocation) {
    tty->print_cr("ChunkManager::chunk_freelist_deallocate: chunk "
                  PTR_FORMAT "  size " SIZE_FORMAT,
                  chunk, chunk->word_size());
  }
  free_chunks_put(chunk);
}

Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());

1692
  slow_locked_verify();
1693

1694
  Metachunk* chunk = NULL;
1695
  if (list_index(word_size) != HumongousIndex) {
1696 1697
    ChunkList* free_list = find_free_chunks_list(word_size);
    assert(free_list != NULL, "Sanity check");
1698

1699 1700 1701 1702 1703 1704
    chunk = free_list->head();
    debug_only(Metachunk* debug_head = chunk;)

    if (chunk == NULL) {
      return NULL;
    }
1705 1706

    // Remove the chunk as the head of the list.
1707
    free_list->remove_chunk(chunk);
1708 1709

    // Chunk is being removed from the chunks free list.
1710
    dec_free_chunks_total(chunk->capacity_word_size());
1711 1712 1713 1714 1715 1716 1717

    if (TraceMetadataChunkAllocation && Verbose) {
      tty->print_cr("ChunkManager::free_chunks_get: free_list "
                    PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
                    free_list, chunk, chunk->word_size());
    }
  } else {
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
    chunk = humongous_dictionary()->get_chunk(
      word_size,
      FreeBlockDictionary<Metachunk>::atLeast);

    if (chunk != NULL) {
      if (TraceMetadataHumongousAllocation) {
        size_t waste = chunk->word_size() - word_size;
        tty->print_cr("Free list allocate humongous chunk size " SIZE_FORMAT
                      " for requested size " SIZE_FORMAT
                      " waste " SIZE_FORMAT,
                      chunk->word_size(), word_size, waste);
1729
      }
1730 1731
      // Chunk is being removed from the chunks free list.
      dec_free_chunks_total(chunk->capacity_word_size());
1732 1733
    } else {
      return NULL;
1734 1735
    }
  }
1736 1737 1738 1739

  // Remove it from the links to this freelist
  chunk->set_next(NULL);
  chunk->set_prev(NULL);
1740 1741 1742 1743 1744
#ifdef ASSERT
  // Chunk is no longer on any freelist. Setting to false make container_count_slow()
  // work.
  chunk->set_is_free(false);
#endif
1745
  slow_locked_verify();
1746 1747 1748 1749 1750
  return chunk;
}

Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
1751
  slow_locked_verify();
1752 1753 1754 1755 1756 1757 1758

  // Take from the beginning of the list
  Metachunk* chunk = free_chunks_get(word_size);
  if (chunk == NULL) {
    return NULL;
  }

1759 1760 1761
  assert((word_size <= chunk->word_size()) ||
         list_index(chunk->word_size() == HumongousIndex),
         "Non-humongous variable sized chunk");
1762
  if (TraceMetadataChunkAllocation) {
1763 1764 1765
    size_t list_count;
    if (list_index(word_size) < HumongousIndex) {
      ChunkList* list = find_free_chunks_list(word_size);
1766
      list_count = list->count();
1767 1768 1769 1770 1771 1772
    } else {
      list_count = humongous_dictionary()->total_count();
    }
    tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
               PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
               this, chunk, chunk->word_size(), list_count);
1773 1774 1775 1776 1777 1778
    locked_print_free_chunks(tty);
  }

  return chunk;
}

1779 1780 1781 1782 1783 1784
void ChunkManager::print_on(outputStream* out) {
  if (PrintFLSStatistics != 0) {
    humongous_dictionary()->report_statistics();
  }
}

1785 1786
// SpaceManager methods

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                                           size_t* chunk_word_size,
                                           size_t* class_chunk_word_size) {
  switch (type) {
  case Metaspace::BootMetaspaceType:
    *chunk_word_size = Metaspace::first_chunk_word_size();
    *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
    break;
  case Metaspace::ROMetaspaceType:
    *chunk_word_size = SharedReadOnlySize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::ReadWriteMetaspaceType:
    *chunk_word_size = SharedReadWriteSize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::AnonymousMetaspaceType:
  case Metaspace::ReflectionMetaspaceType:
    *chunk_word_size = SpecializedChunk;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  default:
    *chunk_word_size = SmallChunk;
    *class_chunk_word_size = ClassSmallChunk;
    break;
  }
1813
  assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1814 1815
    err_msg("Initial chunks sizes bad: data  " SIZE_FORMAT
            " class " SIZE_FORMAT,
1816
            *chunk_word_size, *class_chunk_word_size));
1817 1818
}

1819 1820 1821
size_t SpaceManager::sum_free_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t free = 0;
1822
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      free += chunk->free_word_size();
      chunk = chunk->next();
    }
  }
  return free;
}

size_t SpaceManager::sum_waste_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t result = 0;
1835
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1836 1837
   result += sum_waste_in_chunks_in_use(i);
  }
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847
  return result;
}

size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
  size_t result = 0;
  Metachunk* chunk = chunks_in_use(index);
  // Count the free space in all the chunk but not the
  // current chunk from which allocations are still being done.
  if (chunk != NULL) {
1848 1849 1850 1851
    Metachunk* prev = chunk;
    while (chunk != NULL && chunk != current_chunk()) {
      result += chunk->free_word_size();
      prev = chunk;
1852 1853 1854 1855 1856 1857 1858
      chunk = chunk->next();
    }
  }
  return result;
}

size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
  // For CMS use "allocated_chunks_words()" which does not need the
  // Metaspace lock.  For the other collectors sum over the
  // lists.  Use both methods as a check that "allocated_chunks_words()"
  // is correct.  That is, sum_capacity_in_chunks() is too expensive
  // to use in the product and allocated_chunks_words() should be used
  // but allow for  checking that allocated_chunks_words() returns the same
  // value as sum_capacity_in_chunks_in_use() which is the definitive
  // answer.
  if (UseConcMarkSweepGC) {
    return allocated_chunks_words();
  } else {
    MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
    size_t sum = 0;
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
      Metachunk* chunk = chunks_in_use(i);
      while (chunk != NULL) {
        sum += chunk->capacity_word_size();
        chunk = chunk->next();
      }
1878 1879
    }
  return sum;
1880
  }
1881 1882 1883 1884
}

size_t SpaceManager::sum_count_in_chunks_in_use() {
  size_t count = 0;
1885
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1886 1887
    count = count + sum_count_in_chunks_in_use(i);
  }
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
  return count;
}

size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
  size_t count = 0;
  Metachunk* chunk = chunks_in_use(i);
  while (chunk != NULL) {
    count++;
    chunk = chunk->next();
  }
  return count;
}


size_t SpaceManager::sum_used_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t used = 0;
1906
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      used += chunk->used_word_size();
      chunk = chunk->next();
    }
  }
  return used;
}

void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
    Metachunk* chunk = chunks_in_use(i);
    st->print("SpaceManager: %s " PTR_FORMAT,
                 chunk_size_name(i), chunk);
    if (chunk != NULL) {
      st->print_cr(" free " SIZE_FORMAT,
                   chunk->free_word_size());
    } else {
      st->print_cr("");
    }
  }
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

  vs_list()->chunk_manager()->locked_print_free_chunks(st);
  vs_list()->chunk_manager()->locked_print_sum_free_chunks(st);
}

size_t SpaceManager::calc_chunk_size(size_t word_size) {

  // Decide between a small chunk and a medium chunk.  Up to
  // _small_chunk_limit small chunks can be allocated but
  // once a medium chunk has been allocated, no more small
  // chunks will be allocated.
  size_t chunk_word_size;
  if (chunks_in_use(MediumIndex) == NULL &&
      (!has_small_chunk_limit() ||
       sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit)) {
1944 1945 1946
    chunk_word_size = (size_t) small_chunk_size();
    if (word_size + Metachunk::overhead() > small_chunk_size()) {
      chunk_word_size = medium_chunk_size();
1947 1948
    }
  } else {
1949
    chunk_word_size = medium_chunk_size();
1950 1951
  }

1952 1953 1954 1955 1956 1957
  // Might still need a humongous chunk.  Enforce an
  // eight word granularity to facilitate reuse (some
  // wastage but better chance of reuse).
  size_t if_humongous_sized_chunk =
    align_size_up(word_size + Metachunk::overhead(),
                  HumongousChunkGranularity);
1958
  chunk_word_size =
1959
    MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
1960

1961 1962 1963 1964 1965
  assert(!SpaceManager::is_humongous(word_size) ||
         chunk_word_size == if_humongous_sized_chunk,
         err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
                 " chunk_word_size " SIZE_FORMAT,
                 word_size, chunk_word_size));
1966 1967 1968 1969 1970 1971
  if (TraceMetadataHumongousAllocation &&
      SpaceManager::is_humongous(word_size)) {
    gclog_or_tty->print_cr("Metadata humongous allocation:");
    gclog_or_tty->print_cr("  word_size " PTR_FORMAT, word_size);
    gclog_or_tty->print_cr("  chunk_word_size " PTR_FORMAT,
                           chunk_word_size);
1972
    gclog_or_tty->print_cr("    chunk overhead " PTR_FORMAT,
1973 1974 1975 1976 1977
                           Metachunk::overhead());
  }
  return chunk_word_size;
}

1978
MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
1979 1980 1981 1982 1983 1984 1985 1986
  assert(vs_list()->current_virtual_space() != NULL,
         "Should have been set");
  assert(current_chunk() == NULL ||
         current_chunk()->allocate(word_size) == NULL,
         "Don't need to expand");
  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  if (TraceMetadataChunkAllocation && Verbose) {
1987 1988 1989 1990 1991 1992
    size_t words_left = 0;
    size_t words_used = 0;
    if (current_chunk() != NULL) {
      words_left = current_chunk()->free_word_size();
      words_used = current_chunk()->used_word_size();
    }
1993
    gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
1994 1995 1996
                           " words " SIZE_FORMAT " words used " SIZE_FORMAT
                           " words left",
                            word_size, words_used, words_left);
1997 1998 1999 2000
  }

  // Get another chunk out of the virtual space
  size_t grow_chunks_by_words = calc_chunk_size(word_size);
2001
  Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

  // If a chunk was available, add it to the in-use chunk list
  // and do an allocation from it.
  if (next != NULL) {
    Metadebug::deallocate_chunk_a_lot(this, grow_chunks_by_words);
    // Add to this manager's list of chunks in use.
    add_chunk(next, false);
    return next->allocate(word_size);
  }
  return NULL;
}

void SpaceManager::print_on(outputStream* st) const {

2016
  for (ChunkIndex i = ZeroIndex;
2017
       i < NumberOfInUseLists ;
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
       i = next_chunk_index(i) ) {
    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
                 chunks_in_use(i),
                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
  }
  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
               " Humongous " SIZE_FORMAT,
               sum_waste_in_chunks_in_use(SmallIndex),
               sum_waste_in_chunks_in_use(MediumIndex),
               sum_waste_in_chunks_in_use(HumongousIndex));
2028 2029 2030 2031 2032
  // block free lists
  if (block_freelists() != NULL) {
    st->print_cr("total in block free lists " SIZE_FORMAT,
      block_freelists()->total_size());
  }
2033 2034
}

2035 2036
SpaceManager::SpaceManager(Mutex* lock,
                           VirtualSpaceList* vs_list) :
2037
  _vs_list(vs_list),
2038 2039 2040
  _allocated_blocks_words(0),
  _allocated_chunks_words(0),
  _allocated_chunks_count(0),
2041 2042 2043 2044 2045
  _lock(lock)
{
  initialize();
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
void SpaceManager::inc_size_metrics(size_t words) {
  assert_lock_strong(SpaceManager::expand_lock());
  // Total of allocated Metachunks and allocated Metachunks count
  // for each SpaceManager
  _allocated_chunks_words = _allocated_chunks_words + words;
  _allocated_chunks_count++;
  // Global total of capacity in allocated Metachunks
  MetaspaceAux::inc_capacity(words);
  // Global total of allocated Metablocks.
  // used_words_slow() includes the overhead in each
  // Metachunk so include it in the used when the
  // Metachunk is first added (so only added once per
  // Metachunk).
  MetaspaceAux::inc_used(Metachunk::overhead());
}

void SpaceManager::inc_used_metrics(size_t words) {
  // Add to the per SpaceManager total
  Atomic::add_ptr(words, &_allocated_blocks_words);
  // Add to the global total
  MetaspaceAux::inc_used(words);
}

void SpaceManager::dec_total_from_size_metrics() {
  MetaspaceAux::dec_capacity(allocated_chunks_words());
  MetaspaceAux::dec_used(allocated_blocks_words());
  // Also deduct the overhead per Metachunk
  MetaspaceAux::dec_used(allocated_chunks_count() * Metachunk::overhead());
}

2076
void SpaceManager::initialize() {
2077
  Metadebug::init_allocation_fail_alot_count();
2078
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2079 2080 2081 2082 2083 2084 2085 2086
    _chunks_in_use[i] = NULL;
  }
  _current_chunk = NULL;
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
  }
}

2087 2088 2089 2090 2091 2092 2093 2094 2095
void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
  if (chunks == NULL) {
    return;
  }
  ChunkList* list = free_chunks(index);
  assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
  assert_lock_strong(SpaceManager::expand_lock());
  Metachunk* cur = chunks;

2096
  // This returns chunks one at a time.  If a new
2097 2098 2099 2100
  // class List can be created that is a base class
  // of FreeList then something like FreeList::prepend()
  // can be used in place of this loop
  while (cur != NULL) {
2101 2102
    assert(cur->container() != NULL, "Container should have been set");
    cur->container()->dec_container_count();
2103 2104 2105 2106 2107 2108 2109 2110 2111
    // Capture the next link before it is changed
    // by the call to return_chunk_at_head();
    Metachunk* next = cur->next();
    cur->set_is_free(true);
    list->return_chunk_at_head(cur);
    cur = next;
  }
}

2112
SpaceManager::~SpaceManager() {
2113
  // This call this->_lock which can't be done while holding expand_lock()
2114 2115 2116 2117
  assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
    err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
            " allocated_chunks_words() " SIZE_FORMAT,
            sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2118

2119 2120 2121 2122 2123
  MutexLockerEx fcl(SpaceManager::expand_lock(),
                    Mutex::_no_safepoint_check_flag);

  ChunkManager* chunk_manager = vs_list()->chunk_manager();

2124
  chunk_manager->slow_locked_verify();
2125

2126 2127
  dec_total_from_size_metrics();

2128 2129 2130 2131 2132
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
    locked_print_chunks_in_use_on(gclog_or_tty);
  }

2133 2134
  // Do not mangle freed Metachunks.  The chunk size inside Metachunks
  // is during the freeing of a VirtualSpaceNodes.
2135

2136 2137
  // Have to update before the chunks_in_use lists are emptied
  // below.
2138
  chunk_manager->inc_free_chunks_total(allocated_chunks_words(),
2139 2140 2141 2142 2143
                                       sum_count_in_chunks_in_use());

  // Add all the chunks in use by this space manager
  // to the global list of free chunks.

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
  // Follow each list of chunks-in-use and add them to the
  // free lists.  Each list is NULL terminated.

  for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("returned %d %s chunks to freelist",
                             sum_count_in_chunks_in_use(i),
                             chunk_size_name(i));
    }
    Metachunk* chunks = chunks_in_use(i);
2154
    chunk_manager->return_chunks(i, chunks);
2155 2156 2157
    set_chunks_in_use(i, NULL);
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("updated freelist count %d %s",
2158
                             chunk_manager->free_chunks(i)->count(),
2159 2160 2161
                             chunk_size_name(i));
    }
    assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2162 2163
  }

2164 2165 2166 2167
  // The medium chunk case may be optimized by passing the head and
  // tail of the medium chunk list to add_at_head().  The tail is often
  // the current chunk but there are probably exceptions.

2168
  // Humongous chunks
2169 2170 2171 2172 2173 2174
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("returned %d %s humongous chunks to dictionary",
                            sum_count_in_chunks_in_use(HumongousIndex),
                            chunk_size_name(HumongousIndex));
    gclog_or_tty->print("Humongous chunk dictionary: ");
  }
2175 2176 2177
  // Humongous chunks are never the current chunk.
  Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);

2178 2179 2180 2181
  while (humongous_chunks != NULL) {
#ifdef ASSERT
    humongous_chunks->set_is_free(true);
#endif
2182 2183 2184 2185 2186 2187 2188 2189 2190
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
                          humongous_chunks,
                          humongous_chunks->word_size());
    }
    assert(humongous_chunks->word_size() == (size_t)
           align_size_up(humongous_chunks->word_size(),
                             HumongousChunkGranularity),
           err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2191
                   " granularity %d",
2192
                   humongous_chunks->word_size(), HumongousChunkGranularity));
2193
    Metachunk* next_humongous_chunks = humongous_chunks->next();
2194
    humongous_chunks->container()->dec_container_count();
2195 2196
    chunk_manager->humongous_dictionary()->return_chunk(humongous_chunks);
    humongous_chunks = next_humongous_chunks;
2197
  }
2198 2199 2200 2201 2202 2203
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("updated dictionary count %d %s",
                     chunk_manager->humongous_dictionary()->total_count(),
                     chunk_size_name(HumongousIndex));
  }
2204
  chunk_manager->slow_locked_verify();
2205 2206
}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
  switch (index) {
    case SpecializedIndex:
      return "Specialized";
    case SmallIndex:
      return "Small";
    case MediumIndex:
      return "Medium";
    case HumongousIndex:
      return "Humongous";
    default:
      return NULL;
  }
}

ChunkIndex ChunkManager::list_index(size_t size) {
  switch (size) {
    case SpecializedChunk:
      assert(SpecializedChunk == ClassSpecializedChunk,
             "Need branch for ClassSpecializedChunk");
      return SpecializedIndex;
    case SmallChunk:
    case ClassSmallChunk:
      return SmallIndex;
    case MediumChunk:
    case ClassMediumChunk:
      return MediumIndex;
    default:
2235
      assert(size > MediumChunk || size > ClassMediumChunk,
2236 2237 2238 2239 2240
             "Not a humongous chunk");
      return HumongousIndex;
  }
}

2241
void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2242
  assert_lock_strong(_lock);
2243 2244 2245 2246
  size_t min_size = TreeChunk<Metablock, FreeList>::min_size();
  assert(word_size >= min_size,
    err_msg("Should not deallocate dark matter " SIZE_FORMAT, word_size));
  block_freelists()->return_block(p, word_size);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
}

// Adds a chunk to the list of chunks in use.
void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {

  assert(new_chunk != NULL, "Should not be NULL");
  assert(new_chunk->next() == NULL, "Should not be on a list");

  new_chunk->reset_empty();

  // Find the correct list and and set the current
  // chunk for that list.
2259
  ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2260

2261
  if (index != HumongousIndex) {
2262
    set_current_chunk(new_chunk);
2263 2264 2265
    new_chunk->set_next(chunks_in_use(index));
    set_chunks_in_use(index, new_chunk);
  } else {
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
    // For null class loader data and DumpSharedSpaces, the first chunk isn't
    // small, so small will be null.  Link this first chunk as the current
    // chunk.
    if (make_current) {
      // Set as the current chunk but otherwise treat as a humongous chunk.
      set_current_chunk(new_chunk);
    }
    // Link at head.  The _current_chunk only points to a humongous chunk for
    // the null class loader metaspace (class and data virtual space managers)
    // any humongous chunks so will not point to the tail
    // of the humongous chunks list.
    new_chunk->set_next(chunks_in_use(HumongousIndex));
    set_chunks_in_use(HumongousIndex, new_chunk);

2280
    assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2281 2282
  }

2283 2284 2285
  // Add to the running sum of capacity
  inc_size_metrics(new_chunk->word_size());

2286 2287 2288 2289 2290
  assert(new_chunk->is_empty(), "Not ready for reuse");
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
                        sum_count_in_chunks_in_use());
    new_chunk->print_on(gclog_or_tty);
2291 2292 2293
    if (vs_list() != NULL) {
      vs_list()->chunk_manager()->locked_print_free_chunks(tty);
    }
2294 2295 2296
  }
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
Metachunk* SpaceManager::get_new_chunk(size_t word_size,
                                       size_t grow_chunks_by_words) {

  Metachunk* next = vs_list()->get_new_chunk(word_size,
                                             grow_chunks_by_words,
                                             medium_chunk_bunch());

  if (TraceMetadataHumongousAllocation &&
      SpaceManager::is_humongous(next->word_size())) {
    gclog_or_tty->print_cr("  new humongous chunk word size " PTR_FORMAT,
                           next->word_size());
  }

  return next;
}

2313 2314 2315 2316 2317 2318
MetaWord* SpaceManager::allocate(size_t word_size) {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);

  // If only the dictionary is going to be used (i.e., no
  // indexed free list), then there is a minimum size requirement.
  // MinChunkSize is a placeholder for the real minimum size JJJ
2319 2320 2321 2322 2323 2324 2325
  size_t byte_size = word_size * BytesPerWord;

  size_t byte_size_with_overhead = byte_size + Metablock::overhead();

  size_t raw_bytes_size = MAX2(byte_size_with_overhead,
                               Metablock::min_block_byte_size());
  raw_bytes_size = ARENA_ALIGN(raw_bytes_size);
2326 2327 2328 2329
  size_t raw_word_size = raw_bytes_size / BytesPerWord;
  assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");

  BlockFreelist* fl =  block_freelists();
2330
  MetaWord* p = NULL;
2331 2332 2333 2334 2335
  // Allocation from the dictionary is expensive in the sense that
  // the dictionary has to be searched for a size.  Don't allocate
  // from the dictionary until it starts to get fat.  Is this
  // a reasonable policy?  Maybe an skinny dictionary is fast enough
  // for allocations.  Do some profiling.  JJJ
2336 2337
  if (fl->total_size() > allocation_from_dictionary_limit) {
    p = fl->get_block(raw_word_size);
2338
  }
2339 2340
  if (p == NULL) {
    p = allocate_work(raw_word_size);
2341 2342 2343
  }
  Metadebug::deallocate_block_a_lot(this, raw_word_size);

2344
  return p;
2345 2346 2347 2348
}

// Returns the address of spaced allocated for "word_size".
// This methods does not know about blocks (Metablocks)
2349
MetaWord* SpaceManager::allocate_work(size_t word_size) {
2350 2351 2352 2353 2354 2355 2356
  assert_lock_strong(_lock);
#ifdef ASSERT
  if (Metadebug::test_metadata_failure()) {
    return NULL;
  }
#endif
  // Is there space in the current chunk?
2357
  MetaWord* result = NULL;
2358 2359 2360 2361 2362 2363

  // For DumpSharedSpaces, only allocate out of the current chunk which is
  // never null because we gave it the size we wanted.   Caller reports out
  // of memory if this returns null.
  if (DumpSharedSpaces) {
    assert(current_chunk() != NULL, "should never happen");
2364
    inc_used_metrics(word_size);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
    return current_chunk()->allocate(word_size); // caller handles null result
  }
  if (current_chunk() != NULL) {
    result = current_chunk()->allocate(word_size);
  }

  if (result == NULL) {
    result = grow_and_allocate(word_size);
  }
  if (result > 0) {
2375
    inc_used_metrics(word_size);
2376 2377
    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
           "Head of the list is being allocated");
2378 2379 2380 2381 2382 2383 2384 2385 2386
  }

  return result;
}

void SpaceManager::verify() {
  // If there are blocks in the dictionary, then
  // verfication of chunks does not work since
  // being in the dictionary alters a chunk.
2387
  if (block_freelists()->total_size() == 0) {
2388
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2389 2390 2391
      Metachunk* curr = chunks_in_use(i);
      while (curr != NULL) {
        curr->verify();
2392
        verify_chunk_size(curr);
2393 2394 2395 2396 2397 2398
        curr = curr->next();
      }
    }
  }
}

2399 2400
void SpaceManager::verify_chunk_size(Metachunk* chunk) {
  assert(is_humongous(chunk->word_size()) ||
2401 2402 2403
         chunk->word_size() == medium_chunk_size() ||
         chunk->word_size() == small_chunk_size() ||
         chunk->word_size() == specialized_chunk_size(),
2404 2405 2406 2407
         "Chunk size is wrong");
  return;
}

2408
#ifdef ASSERT
2409
void SpaceManager::verify_allocated_blocks_words() {
2410
  // Verification is only guaranteed at a safepoint.
2411 2412 2413
  assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
    "Verification can fail if the applications is running");
  assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2414 2415
    err_msg("allocation total is not consistent " SIZE_FORMAT
            " vs " SIZE_FORMAT,
2416
            allocated_blocks_words(), sum_used_in_chunks_in_use()));
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
}

#endif

void SpaceManager::dump(outputStream* const out) const {
  size_t curr_total = 0;
  size_t waste = 0;
  uint i = 0;
  size_t used = 0;
  size_t capacity = 0;

  // Add up statistics for all chunks in this SpaceManager.
2429
  for (ChunkIndex index = ZeroIndex;
2430
       index < NumberOfInUseLists;
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      out->print("%d) ", i++);
      curr->print_on(out);
      if (TraceMetadataChunkAllocation && Verbose) {
        block_freelists()->print_on(out);
      }
      curr_total += curr->word_size();
      used += curr->used_word_size();
      capacity += curr->capacity_word_size();
      waste += curr->free_word_size() + curr->overhead();;
    }
  }

2447
  size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2448 2449 2450 2451 2452 2453 2454 2455
  // Free space isn't wasted.
  waste -= free;

  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
}

2456
#ifndef PRODUCT
2457
void SpaceManager::mangle_freed_chunks() {
2458
  for (ChunkIndex index = ZeroIndex;
2459
       index < NumberOfInUseLists;
2460 2461 2462 2463 2464 2465 2466 2467
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      curr->mangle();
    }
  }
}
2468
#endif // PRODUCT
2469 2470 2471

// MetaspaceAux

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

size_t MetaspaceAux::_allocated_capacity_words = 0;
size_t MetaspaceAux::_allocated_used_words = 0;

size_t MetaspaceAux::free_bytes() {
  size_t result = 0;
  if (Metaspace::class_space_list() != NULL) {
    result = result + Metaspace::class_space_list()->free_bytes();
  }
  if (Metaspace::space_list() != NULL) {
    result = result + Metaspace::space_list()->free_bytes();
  }
  return result;
}

void MetaspaceAux::dec_capacity(size_t words) {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(words <= _allocated_capacity_words,
    err_msg("About to decrement below 0: words " SIZE_FORMAT
            " is greater than _allocated_capacity_words " SIZE_FORMAT,
            words, _allocated_capacity_words));
  _allocated_capacity_words = _allocated_capacity_words - words;
}

void MetaspaceAux::inc_capacity(size_t words) {
  assert_lock_strong(SpaceManager::expand_lock());
  // Needs to be atomic
  _allocated_capacity_words = _allocated_capacity_words + words;
}

void MetaspaceAux::dec_used(size_t words) {
  assert(words <= _allocated_used_words,
    err_msg("About to decrement below 0: words " SIZE_FORMAT
            " is greater than _allocated_used_words " SIZE_FORMAT,
            words, _allocated_used_words));
  // For CMS deallocation of the Metaspaces occurs during the
  // sweep which is a concurrent phase.  Protection by the expand_lock()
  // is not enough since allocation is on a per Metaspace basis
  // and protected by the Metaspace lock.
  jlong minus_words = (jlong) - (jlong) words;
  Atomic::add_ptr(minus_words, &_allocated_used_words);
}

void MetaspaceAux::inc_used(size_t words) {
  // _allocated_used_words tracks allocations for
  // each piece of metadata.  Those allocations are
  // generally done concurrently by different application
  // threads so must be done atomically.
  Atomic::add_ptr(words, &_allocated_used_words);
}

size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2524 2525 2526 2527
  size_t used = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
2528
    // Sum allocated_blocks_words for each metaspace
2529
    if (msp != NULL) {
2530
      used += msp->used_words_slow(mdtype);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
    }
  }
  return used * BytesPerWord;
}

size_t MetaspaceAux::free_in_bytes(Metaspace::MetadataType mdtype) {
  size_t free = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
      free += msp->free_words(mdtype);
    }
  }
  return free * BytesPerWord;
}

2548 2549 2550 2551
size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
  // Don't count the space in the freelists.  That space will be
  // added to the capacity calculation as needed.
  size_t capacity = 0;
2552 2553 2554 2555
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2556
      capacity += msp->capacity_words_slow(mdtype);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
    }
  }
  return capacity * BytesPerWord;
}

size_t MetaspaceAux::reserved_in_bytes(Metaspace::MetadataType mdtype) {
  size_t reserved = (mdtype == Metaspace::ClassType) ?
                       Metaspace::class_space_list()->virtual_space_total() :
                       Metaspace::space_list()->virtual_space_total();
  return reserved * BytesPerWord;
}

2569
size_t MetaspaceAux::min_chunk_size() { return Metaspace::first_chunk_word_size(); }
2570 2571 2572 2573 2574

size_t MetaspaceAux::free_chunks_total(Metaspace::MetadataType mdtype) {
  ChunkManager* chunk = (mdtype == Metaspace::ClassType) ?
                            Metaspace::class_space_list()->chunk_manager() :
                            Metaspace::space_list()->chunk_manager();
2575
  chunk->slow_verify();
2576 2577 2578 2579 2580 2581 2582
  return chunk->free_chunks_total();
}

size_t MetaspaceAux::free_chunks_total_in_bytes(Metaspace::MetadataType mdtype) {
  return free_chunks_total(mdtype) * BytesPerWord;
}

2583 2584 2585 2586 2587 2588 2589 2590 2591
size_t MetaspaceAux::free_chunks_total() {
  return free_chunks_total(Metaspace::ClassType) +
         free_chunks_total(Metaspace::NonClassType);
}

size_t MetaspaceAux::free_chunks_total_in_bytes() {
  return free_chunks_total() * BytesPerWord;
}

2592 2593 2594 2595 2596
void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
  gclog_or_tty->print(", [Metaspace:");
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
2597
                        "("  SIZE_FORMAT ")",
2598
                        prev_metadata_used,
2599
                        allocated_capacity_bytes(),
2600 2601 2602 2603
                        reserved_in_bytes());
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
2604
                        "("  SIZE_FORMAT "K)",
2605
                        prev_metadata_used / K,
2606
                        allocated_capacity_bytes() / K,
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
                        reserved_in_bytes()/ K);
  }

  gclog_or_tty->print("]");
}

// This is printed when PrintGCDetails
void MetaspaceAux::print_on(outputStream* out) {
  Metaspace::MetadataType ct = Metaspace::ClassType;
  Metaspace::MetadataType nct = Metaspace::NonClassType;

  out->print_cr(" Metaspace total "
                SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
                " reserved " SIZE_FORMAT "K",
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
                allocated_capacity_bytes()/K, allocated_used_bytes()/K, reserved_in_bytes()/K);
#if 0
// The calls to capacity_bytes_slow() and used_bytes_slow() cause
// lock ordering assertion failures with some collectors.  Do
// not include this code until the lock ordering is fixed.
  if (PrintGCDetails && Verbose) {
    out->print_cr("  data space     "
                  SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
                  " reserved " SIZE_FORMAT "K",
                  capacity_bytes_slow(nct)/K, used_bytes_slow(nct)/K, reserved_in_bytes(nct)/K);
    out->print_cr("  class space    "
                  SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
                  " reserved " SIZE_FORMAT "K",
                  capacity_bytes_slow(ct)/K, used_bytes_slow(ct)/K, reserved_in_bytes(ct)/K);
  }
#endif
2637 2638 2639 2640 2641 2642
}

// Print information for class space and data space separately.
// This is almost the same as above.
void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
  size_t free_chunks_capacity_bytes = free_chunks_total_in_bytes(mdtype);
2643 2644
  size_t capacity_bytes = capacity_bytes_slow(mdtype);
  size_t used_bytes = used_bytes_slow(mdtype);
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
  size_t free_bytes = free_in_bytes(mdtype);
  size_t used_and_free = used_bytes + free_bytes +
                           free_chunks_capacity_bytes;
  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
             "K + unused in chunks " SIZE_FORMAT "K  + "
             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
             "K  capacity in allocated chunks " SIZE_FORMAT "K",
             used_bytes / K,
             free_bytes / K,
             free_chunks_capacity_bytes / K,
             used_and_free / K,
             capacity_bytes / K);
2657 2658
  // Accounting can only be correct if we got the values during a safepoint
  assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2659 2660 2661 2662 2663
}

// Print total fragmentation for class and data metaspaces separately
void MetaspaceAux::print_waste(outputStream* out) {

2664 2665 2666 2667
  size_t specialized_waste = 0, small_waste = 0, medium_waste = 0, large_waste = 0;
  size_t specialized_count = 0, small_count = 0, medium_count = 0, large_count = 0;
  size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0, cls_large_waste = 0;
  size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_large_count = 0;
2668 2669 2670 2671 2672

  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2673 2674
      specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2675
      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2676
      small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2677
      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2678
      medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2679
      large_waste += msp->vsm()->sum_waste_in_chunks_in_use(HumongousIndex);
2680
      large_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2681

2682 2683
      cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2684
      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2685
      cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2686
      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2687
      cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2688
      cls_large_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(HumongousIndex);
2689
      cls_large_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2690 2691 2692
    }
  }
  out->print_cr("Total fragmentation waste (words) doesn't count free space");
2693 2694 2695 2696 2697 2698 2699 2700 2701
  out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                        SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
                        SIZE_FORMAT " medium(s) " SIZE_FORMAT,
             specialized_count, specialized_waste, small_count,
             small_waste, medium_count, medium_waste);
  out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                           SIZE_FORMAT " small(s) " SIZE_FORMAT,
             cls_specialized_count, cls_specialized_waste,
             cls_small_count, cls_small_waste);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
}

// Dump global metaspace things from the end of ClassLoaderDataGraph
void MetaspaceAux::dump(outputStream* out) {
  out->print_cr("All Metaspace:");
  out->print("data space: "); print_on(out, Metaspace::NonClassType);
  out->print("class space: "); print_on(out, Metaspace::ClassType);
  print_waste(out);
}

2712 2713 2714 2715 2716
void MetaspaceAux::verify_free_chunks() {
  Metaspace::space_list()->chunk_manager()->verify();
  Metaspace::class_space_list()->chunk_manager()->verify();
}

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
void MetaspaceAux::verify_capacity() {
#ifdef ASSERT
  size_t running_sum_capacity_bytes = allocated_capacity_bytes();
  // For purposes of the running sum of used, verify against capacity
  size_t capacity_in_use_bytes = capacity_bytes_slow();
  assert(running_sum_capacity_bytes == capacity_in_use_bytes,
    err_msg("allocated_capacity_words() * BytesPerWord " SIZE_FORMAT
            " capacity_bytes_slow()" SIZE_FORMAT,
            running_sum_capacity_bytes, capacity_in_use_bytes));
#endif
}

void MetaspaceAux::verify_used() {
#ifdef ASSERT
  size_t running_sum_used_bytes = allocated_used_bytes();
  // For purposes of the running sum of used, verify against capacity
  size_t used_in_use_bytes = used_bytes_slow();
  assert(allocated_used_bytes() == used_in_use_bytes,
    err_msg("allocated_used_bytes() " SIZE_FORMAT
            " used_bytes_slow()()" SIZE_FORMAT,
            allocated_used_bytes(), used_in_use_bytes));
#endif
}

void MetaspaceAux::verify_metrics() {
  verify_capacity();
  verify_used();
}


2747 2748 2749
// Metaspace methods

size_t Metaspace::_first_chunk_word_size = 0;
2750
size_t Metaspace::_first_class_chunk_word_size = 0;
2751

2752 2753
Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
  initialize(lock, type);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
}

Metaspace::~Metaspace() {
  delete _vsm;
  delete _class_vsm;
}

VirtualSpaceList* Metaspace::_space_list = NULL;
VirtualSpaceList* Metaspace::_class_space_list = NULL;

#define VIRTUALSPACEMULTIPLIER 2

void Metaspace::global_initialize() {
  // Initialize the alignment for shared spaces.
  int max_alignment = os::vm_page_size();
  MetaspaceShared::set_max_alignment(max_alignment);

  if (DumpSharedSpaces) {
    SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment);
    SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
    SharedMiscDataSize  = align_size_up(SharedMiscDataSize, max_alignment);
    SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize, max_alignment);

    // Initialize with the sum of the shared space sizes.  The read-only
    // and read write metaspace chunks will be allocated out of this and the
    // remainder is the misc code and data chunks.
    size_t total = align_size_up(SharedReadOnlySize + SharedReadWriteSize +
                                 SharedMiscDataSize + SharedMiscCodeSize,
                                 os::vm_allocation_granularity());
    size_t word_size = total/wordSize;
    _space_list = new VirtualSpaceList(word_size);
  } else {
    // If using shared space, open the file that contains the shared space
    // and map in the memory before initializing the rest of metaspace (so
    // the addresses don't conflict)
    if (UseSharedSpaces) {
      FileMapInfo* mapinfo = new FileMapInfo();
      memset(mapinfo, 0, sizeof(FileMapInfo));

      // Open the shared archive file, read and validate the header. If
      // initialization fails, shared spaces [UseSharedSpaces] are
      // disabled and the file is closed.
      // Map in spaces now also
      if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
        FileMapInfo::set_current_info(mapinfo);
      } else {
        assert(!mapinfo->is_open() && !UseSharedSpaces,
               "archive file not closed or shared spaces not disabled.");
      }
    }

2805
    // Initialize these before initializing the VirtualSpaceList
2806
    _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
2807 2808 2809 2810 2811 2812 2813
    _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
    // Make the first class chunk bigger than a medium chunk so it's not put
    // on the medium chunk list.   The next chunk will be small and progress
    // from there.  This size calculated by -version.
    _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
                                       (ClassMetaspaceSize/BytesPerWord)*2);
    _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
2814 2815
    // Arbitrarily set the initial virtual space to a multiple
    // of the boot class loader size.
2816
    size_t word_size = VIRTUALSPACEMULTIPLIER * first_chunk_word_size();
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
    // Initialize the list of virtual spaces.
    _space_list = new VirtualSpaceList(word_size);
  }
}

// For UseCompressedKlassPointers the class space is reserved as a piece of the
// Java heap because the compression algorithm is the same for each.  The
// argument passed in is at the top of the compressed space
void Metaspace::initialize_class_space(ReservedSpace rs) {
  // The reserved space size may be bigger because of alignment, esp with UseLargePages
2827 2828
  assert(rs.size() >= ClassMetaspaceSize,
         err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), ClassMetaspaceSize));
2829 2830 2831
  _class_space_list = new VirtualSpaceList(rs);
}

2832 2833
void Metaspace::initialize(Mutex* lock,
                           MetaspaceType type) {
2834 2835 2836 2837 2838 2839 2840 2841

  assert(space_list() != NULL,
    "Metadata VirtualSpaceList has not been initialized");

  _vsm = new SpaceManager(lock, space_list());
  if (_vsm == NULL) {
    return;
  }
2842 2843 2844 2845 2846
  size_t word_size;
  size_t class_word_size;
  vsm()->get_initial_chunk_sizes(type,
                                 &word_size,
                                 &class_word_size);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860

  assert(class_space_list() != NULL,
    "Class VirtualSpaceList has not been initialized");

  // Allocate SpaceManager for classes.
  _class_vsm = new SpaceManager(lock, class_space_list());
  if (_class_vsm == NULL) {
    return;
  }

  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  // Allocate chunk for metadata objects
  Metachunk* new_chunk =
2861 2862
     space_list()->get_initialization_chunk(word_size,
                                            vsm()->medium_chunk_bunch());
2863 2864 2865 2866 2867 2868 2869 2870
  assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
  if (new_chunk != NULL) {
    // Add to this manager's list of chunks in use and current_chunk().
    vsm()->add_chunk(new_chunk, true);
  }

  // Allocate chunk for class metadata objects
  Metachunk* class_chunk =
2871 2872
     class_space_list()->get_initialization_chunk(class_word_size,
                                                  class_vsm()->medium_chunk_bunch());
2873 2874 2875 2876 2877
  if (class_chunk != NULL) {
    class_vsm()->add_chunk(class_chunk, true);
  }
}

2878 2879 2880 2881 2882
size_t Metaspace::align_word_size_up(size_t word_size) {
  size_t byte_size = word_size * wordSize;
  return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
}

2883 2884 2885
MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
  // DumpSharedSpaces doesn't use class metadata area (yet)
  if (mdtype == ClassType && !DumpSharedSpaces) {
2886
    return  class_vsm()->allocate(word_size);
2887
  } else {
2888
    return  vsm()->allocate(word_size);
2889 2890 2891
  }
}

2892 2893 2894 2895
MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
  MetaWord* result;
  MetaspaceGC::set_expand_after_GC(true);
  size_t before_inc = MetaspaceGC::capacity_until_GC();
2896 2897
  size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size) * BytesPerWord;
  MetaspaceGC::inc_capacity_until_GC(delta_bytes);
2898 2899 2900 2901
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
      " to " SIZE_FORMAT, before_inc, MetaspaceGC::capacity_until_GC());
  }
2902

2903 2904 2905 2906 2907
  result = allocate(word_size, mdtype);

  return result;
}

2908 2909 2910 2911 2912 2913 2914
// Space allocated in the Metaspace.  This may
// be across several metadata virtual spaces.
char* Metaspace::bottom() const {
  assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
  return (char*)vsm()->current_chunk()->bottom();
}

2915 2916
size_t Metaspace::used_words_slow(MetadataType mdtype) const {
  // return vsm()->allocated_used_words();
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
  return mdtype == ClassType ? class_vsm()->sum_used_in_chunks_in_use() :
                               vsm()->sum_used_in_chunks_in_use();  // includes overhead!
}

size_t Metaspace::free_words(MetadataType mdtype) const {
  return mdtype == ClassType ? class_vsm()->sum_free_in_chunks_in_use() :
                               vsm()->sum_free_in_chunks_in_use();
}

// Space capacity in the Metaspace.  It includes
// space in the list of chunks from which allocations
// have been made. Don't include space in the global freelist and
// in the space available in the dictionary which
// is already counted in some chunk.
2931
size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
2932 2933 2934 2935
  return mdtype == ClassType ? class_vsm()->sum_capacity_in_chunks_in_use() :
                               vsm()->sum_capacity_in_chunks_in_use();
}

2936 2937 2938 2939 2940 2941 2942 2943
size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
  return used_words_slow(mdtype) * BytesPerWord;
}

size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
  return capacity_words_slow(mdtype) * BytesPerWord;
}

2944 2945 2946
void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
  if (SafepointSynchronize::is_at_safepoint()) {
    assert(Thread::current()->is_VM_thread(), "should be the VM thread");
2947
    // Don't take Heap_lock
2948
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
2949 2950 2951 2952 2953 2954 2955
    if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
2956
    if (is_class) {
2957
       class_vsm()->deallocate(ptr, word_size);
2958
    } else {
2959
      vsm()->deallocate(ptr, word_size);
2960 2961
    }
  } else {
2962
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
2963

2964 2965 2966 2967 2968 2969 2970
    if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
2971
    if (is_class) {
2972
      class_vsm()->deallocate(ptr, word_size);
2973
    } else {
2974
      vsm()->deallocate(ptr, word_size);
2975 2976 2977 2978
    }
  }
}

2979
Metablock* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
                              bool read_only, MetadataType mdtype, TRAPS) {
  if (HAS_PENDING_EXCEPTION) {
    assert(false, "Should not allocate with exception pending");
    return NULL;  // caller does a CHECK_NULL too
  }

  // SSS: Should we align the allocations and make sure the sizes are aligned.
  MetaWord* result = NULL;

  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
        "ClassLoaderData::the_null_class_loader_data() should have been used.");
  // Allocate in metaspaces without taking out a lock, because it deadlocks
  // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
  // to revisit this for application class data sharing.
  if (DumpSharedSpaces) {
    if (read_only) {
      result = loader_data->ro_metaspace()->allocate(word_size, NonClassType);
    } else {
      result = loader_data->rw_metaspace()->allocate(word_size, NonClassType);
    }
    if (result == NULL) {
      report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
    }
3003
    return Metablock::initialize(result, word_size);
3004 3005 3006 3007 3008 3009 3010
  }

  result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);

  if (result == NULL) {
    // Try to clean out some memory and retry.
    result =
3011
      Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3012 3013 3014 3015
        loader_data, word_size, mdtype);

    // If result is still null, we are out of memory.
    if (result == NULL) {
3016 3017 3018 3019 3020 3021
      if (Verbose && TraceMetadataChunkAllocation) {
        gclog_or_tty->print_cr("Metaspace allocation failed for size "
          SIZE_FORMAT, word_size);
        if (loader_data->metaspace_or_null() != NULL) loader_data->metaspace_or_null()->dump(gclog_or_tty);
        MetaspaceAux::dump(gclog_or_tty);
      }
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
      // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
      report_java_out_of_memory("Metadata space");

      if (JvmtiExport::should_post_resource_exhausted()) {
        JvmtiExport::post_resource_exhausted(
            JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
            "Metadata space");
      }
      THROW_OOP_0(Universe::out_of_memory_error_perm_gen());
    }
  }
3033
  return Metablock::initialize(result, word_size);
3034 3035
}

3036 3037 3038 3039 3040 3041 3042
void Metaspace::purge() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  space_list()->purge();
  class_space_list()->purge();
}

3043 3044 3045 3046 3047 3048 3049 3050
void Metaspace::print_on(outputStream* out) const {
  // Print both class virtual space counts and metaspace.
  if (Verbose) {
      vsm()->print_on(out);
      class_vsm()->print_on(out);
  }
}

3051
bool Metaspace::contains(const void * ptr) {
3052 3053 3054
  if (MetaspaceShared::is_in_shared_space(ptr)) {
    return true;
  }
3055 3056 3057 3058 3059
  // This is checked while unlocked.  As long as the virtualspaces are added
  // at the end, the pointer will be in one of them.  The virtual spaces
  // aren't deleted presently.  When they are, some sort of locking might
  // be needed.  Note, locking this can cause inversion problems with the
  // caller in MetaspaceObj::is_metadata() function.
3060 3061
  return space_list()->contains(ptr) ||
         class_space_list()->contains(ptr);
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
}

void Metaspace::verify() {
  vsm()->verify();
  class_vsm()->verify();
}

void Metaspace::dump(outputStream* const out) const {
  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
  vsm()->dump(out);
  out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
  class_vsm()->dump(out);
}