g1CollectedHeap.cpp 193.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
31
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
48

49 50
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

51 52 53
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
54
#define YOUNG_LIST_VERBOSE 0
55 56 57 58 59 60
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
61 62 63 64 65
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
81 82 83 84 85 86
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

153 154 155 156 157 158 159 160
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

161 162
YoungList::YoungList(G1CollectedHeap* g1h)
  : _g1h(g1h), _head(NULL),
163
    _length(0),
164
    _last_sampled_rs_lengths(0),
165
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
{
  guarantee( check_list_empty(false), "just making sure..." );
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

  hr->set_young();
  double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
183
  assert(hr->is_survivor(), "should be flagged as survivor region");
184 185 186 187
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
188
    _survivor_tail = hr;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  }
  _survivor_head = hr;

  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
214
  _survivor_tail = NULL;
215 216 217 218 219 220 221 222 223 224 225 226 227 228
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

  size_t length = 0;
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
229
    if (!curr->is_young()) {
230
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
231
                             "incorrectly tagged (y: %d, surv: %d)",
232
                             curr->bottom(), curr->end(),
233
                             curr->is_young(), curr->is_survivor());
234 235 236 237 238 239 240 241 242 243 244 245 246 247
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
                           length, _length);
  }

248
  return ret;
249 250
}

251
bool YoungList::check_list_empty(bool check_sample) {
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  bool ret = true;

  if (_length != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

271
  return ret;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
288 289 290 291 292 293 294 295 296 297 298 299
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

300 301 302 303 304 305 306 307 308 309 310 311 312 313
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
314
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
315

316 317 318 319
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    _g1h->g1_policy()->set_region_survivors(curr);
320 321 322 323 324

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
325 326 327
  }
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

328 329
  _head   = _survivor_head;
  _length = _survivor_length;
330
  if (_survivor_head != NULL) {
331 332 333
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
334 335
  }

336 337 338 339
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
340

341
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
342 343 344 345 346

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
347 348
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
349 350 351 352 353 354 355 356

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
      gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
357
                             "age: %4d, y: %d, surv: %d",
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
                             curr->bottom(), curr->end(),
                             curr->top(),
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
                             curr->top_at_conc_mark_count(),
                             curr->age_in_surv_rate_group_cond(),
                             curr->is_young(),
                             curr->is_survivor());
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

426
void G1CollectedHeap::stop_conc_gc_threads() {
427
  _cg1r->stop();
428 429 430
  _cmThread->stop();
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
// can move in an incremental collecction.
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
     // perm gen (or null)
     return false;
  } else {
    return !hr->isHumongous();
  }
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

513
HeapRegion*
T
tonyp 已提交
514
G1CollectedHeap::new_region_try_secondary_free_list() {
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "secondary_free_list has "SIZE_FORMAT" entries",
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
551

552
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
553 554 555 556
  assert(!isHumongous(word_size) ||
                                  word_size <= (size_t) HeapRegion::GrainWords,
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
557

558 559 560 561 562 563 564
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
565
      res = new_region_try_secondary_free_list();
566 567 568 569 570 571 572 573 574 575 576
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
577
    res = new_region_try_secondary_free_list();
578
  }
579
  if (res == NULL && do_expand) {
580 581 582 583 584
    if (expand(word_size * HeapWordSize)) {
      // The expansion succeeded and so we should have at least one
      // region on the free list.
      res = _free_list.remove_head();
    }
585
  }
586 587
  if (res != NULL) {
    if (G1PrintHeapRegions) {
588 589 590
      gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT","PTR_FORMAT"], "
                             "top "PTR_FORMAT, res->hrs_index(),
                             res->bottom(), res->end(), res->top());
591 592 593 594 595
    }
  }
  return res;
}

596 597
HeapRegion* G1CollectedHeap::new_gc_alloc_region(int purpose,
                                                 size_t word_size) {
598 599
  HeapRegion* alloc_region = NULL;
  if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
600
    alloc_region = new_region(word_size, true /* do_expand */);
601
    if (purpose == GCAllocForSurvived && alloc_region != NULL) {
602
      alloc_region->set_survivor();
603 604 605 606 607 608 609 610
    }
    ++_gc_alloc_region_counts[purpose];
  } else {
    g1_policy()->note_alloc_region_limit_reached(purpose);
  }
  return alloc_region;
}

611 612
int G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
                                                       size_t word_size) {
T
tonyp 已提交
613 614 615
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

616 617 618 619 620
  int first = -1;
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
621
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
      first = -1;
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
637
    append_secondary_free_list_if_not_empty_with_lock();
638 639 640 641 642 643 644

    if (free_regions() >= num_regions) {
      first = _hrs->find_contiguous(num_regions);
      if (first != -1) {
        for (int i = first; i < first + (int) num_regions; ++i) {
          HeapRegion* hr = _hrs->at(i);
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
645
          assert(is_on_master_free_list(hr), "sanity");
646 647 648 649 650 651 652 653 654
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
HeapWord*
G1CollectedHeap::humongous_obj_allocate_initialize_regions(int first,
                                                           size_t num_regions,
                                                           size_t word_size) {
  assert(first != -1, "pre-condition");
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
  int last = first + (int) num_regions;

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
  size_t word_size_sum = num_regions * HeapRegion::GrainWords;
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
  HeapRegion* first_hr = _hrs->at(first);
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
  // should also match the end of the last region in the seriers.
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
  for (int i = first + 1; i < last; ++i) {
    hr = _hrs->at(i);
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
  for (int i = first + 1; i < last; ++i) {
    hr = _hrs->at(i);
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

775 776 777
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
778
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
779
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
780

781
  verify_region_sets_optional();
782 783

  size_t num_regions =
784
         round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
785
  size_t x_size = expansion_regions();
786 787 788 789
  size_t fs = _hrs->free_suffix();
  int first = humongous_obj_allocate_find_first(num_regions, word_size);
  if (first == -1) {
    // The only thing we can do now is attempt expansion.
790
    if (fs + x_size >= num_regions) {
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
        first = humongous_obj_allocate_find_first(num_regions, word_size);
        // If the expansion was successful then the allocation
        // should have been successful.
        assert(first != -1, "this should have worked");
      }
807 808
    }
  }
809

T
tonyp 已提交
810
  HeapWord* result = NULL;
811
  if (first != -1) {
T
tonyp 已提交
812 813 814
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
815
  }
816 817

  verify_region_sets_optional();
T
tonyp 已提交
818 819

  return result;
820 821
}

822 823 824
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
825

826 827
  unsigned int dummy_gc_count_before;
  return attempt_allocation(word_size, &dummy_gc_count_before);
828 829 830
}

HeapWord*
831 832 833 834 835 836 837
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool   is_noref,
                              bool   is_tlab,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!is_tlab, "mem_allocate() this should not be called directly "
         "to allocate TLABs");
838

839 840 841
  // Loop until the allocation is satisified, or unsatisfied after GC.
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
842

843 844 845
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
      result = attempt_allocation(word_size, &gc_count_before);
846
    } else {
847 848 849 850 851
      result = attempt_allocation_humongous(word_size, &gc_count_before);
    }
    if (result != NULL) {
      return result;
    }
852

853 854 855 856
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
857

858 859 860 861 862 863
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
864
        // Allocations that take place on VM operations do not do any
865 866
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
867 868 869
        dirty_young_block(result, word_size);
      }
      return result;
870 871 872
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
873 874 875 876 877
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
878
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
879 880 881
    }
  }

882
  ShouldNotReachHere();
883 884 885
  return NULL;
}

886 887 888 889 890 891 892
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
                                           unsigned int *gc_count_before_ret) {
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
893

894 895 896 897 898 899 900
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
901
  HeapWord* result = NULL;
902 903 904
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
905

906 907 908 909 910 911 912
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
913
      }
914

915 916 917
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
918

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
        // Read the GC count while still holding the Heap_lock.
        gc_count_before = SharedHeap::heap()->total_collections();
        should_try_gc = true;
      }
    }
934

935 936
    if (should_try_gc) {
      bool succeeded;
937 938
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
939
        assert(succeeded, "only way to get back a non-NULL result");
940 941 942
        return result;
      }

943 944 945 946 947 948 949 950 951 952
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = SharedHeap::heap()->total_collections();
        return NULL;
      }
    } else {
      GC_locker::stall_until_clear();
953 954
    }

955 956 957 958 959 960 961 962 963 964 965 966
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
    if (result != NULL ){
      return result;
967 968
    }

969 970 971
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
972
      warning("G1CollectedHeap::attempt_allocation_slow() "
973
              "retries %d times", try_count);
974 975 976
    }
  }

977 978
  ShouldNotReachHere();
  return NULL;
979 980
}

981 982 983 984 985 986 987 988 989 990 991 992 993
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                          unsigned int * gc_count_before_ret) {
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

994
  assert_heap_not_locked_and_not_at_safepoint();
995 996
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
997

998 999 1000 1001 1002
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1003
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1004
    bool should_try_gc;
1005
    unsigned int gc_count_before;
1006

1007
    {
1008
      MutexLockerEx x(Heap_lock);
1009

1010 1011 1012 1013 1014 1015 1016
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
      if (result != NULL) {
        return result;
      }
1017

1018 1019
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
1020
      } else {
1021 1022 1023
        // Read the GC count while still holding the Heap_lock.
        gc_count_before = SharedHeap::heap()->total_collections();
        should_try_gc = true;
1024 1025 1026
      }
    }

1027 1028 1029 1030
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = SharedHeap::heap()->total_collections();
        return NULL;
1046 1047
      }
    } else {
1048
      GC_locker::stall_until_clear();
1049 1050
    }

1051 1052 1053 1054 1055 1056 1057
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1058 1059
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1060 1061
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1062 1063
    }
  }
1064 1065

  ShouldNotReachHere();
1066
  return NULL;
1067 1068
}

1069 1070
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1071
  assert_at_safepoint(true /* should_be_vm_thread */);
1072 1073 1074
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1075

1076 1077 1078 1079 1080
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
    return humongous_obj_allocate(word_size);
1081
  }
1082 1083

  ShouldNotReachHere();
1084 1085
}

1086 1087 1088 1089 1090 1091
void G1CollectedHeap::abandon_gc_alloc_regions() {
  // first, make sure that the GC alloc region list is empty (it should!)
  assert(_gc_alloc_region_list == NULL, "invariant");
  release_gc_alloc_regions(true /* totally */);
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

1126 1127 1128 1129 1130 1131
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1132
    _cl(g1->g1_rem_set(), worker_i),
1133 1134 1135
    _worker_i(worker_i),
    _g1h(g1)
  { }
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

  void work(int i) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1161
bool G1CollectedHeap::do_collection(bool explicit_gc,
1162
                                    bool clear_all_soft_refs,
1163
                                    size_t word_size) {
1164 1165
  assert_at_safepoint(true /* should_be_vm_thread */);

1166
  if (GC_locker::check_active_before_gc()) {
1167
    return false;
1168 1169
  }

1170
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1171 1172
  ResourceMark rm;

1173 1174 1175 1176
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

1177
  verify_region_sets_optional();
1178

1179 1180 1181 1182 1183
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1184 1185 1186 1187
  {
    IsGCActiveMark x;

    // Timing
1188 1189
    bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
    assert(!system_gc || explicit_gc, "invariant");
1190 1191
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1192
    TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1193
                PrintGC, true, gclog_or_tty);
1194

1195
    TraceCollectorStats tcs(g1mm()->full_collection_counters());
1196
    TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1197

1198 1199 1200
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

1201
    wait_while_free_regions_coming();
T
tonyp 已提交
1202
    append_secondary_free_list_if_not_empty_with_lock();
1203

1204
    gc_prologue(true);
1205
    increment_total_collections(true /* full gc */);
1206 1207 1208 1209 1210 1211 1212

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyBeforeGC:");
1213
      prepare_for_verify();
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
      Universe::verify(true);
    }

    COMPILER2_PRESENT(DerivedPointerTable::clear());

    // We want to discover references, but not process them yet.
    // This mode is disabled in
    // instanceRefKlass::process_discovered_references if the
    // generation does some collection work, or
    // instanceRefKlass::enqueue_discovered_references if the
    // generation returns without doing any work.
    ref_processor()->disable_discovery();
    ref_processor()->abandon_partial_discovery();
    ref_processor()->verify_no_references_recorded();

    // Abandon current iterations of concurrent marking and concurrent
    // refinement, if any are in progress.
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
1234
    release_mutator_alloc_region();
1235
    abandon_gc_alloc_regions();
1236
    g1_rem_set()->cleanupHRRS();
1237
    tear_down_region_lists();
1238 1239 1240 1241 1242 1243 1244 1245 1246

    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

1247 1248 1249 1250 1251
    if (g1_policy()->in_young_gc_mode()) {
      empty_young_list();
      g1_policy()->set_full_young_gcs(true);
    }

1252 1253 1254
    // See the comment in G1CollectedHeap::ref_processing_init() about
    // how reference processing currently works in G1.

1255
    // Temporarily make reference _discovery_ single threaded (non-MT).
1256
    ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
1257 1258 1259 1260 1261 1262 1263 1264

    // Temporarily make refs discovery atomic
    ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);

    // Temporarily clear _is_alive_non_header
    ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);

    ref_processor()->enable_discovery();
1265
    ref_processor()->setup_policy(do_clear_all_soft_refs);
1266 1267 1268 1269

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1270
      G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1271
    }
1272
    assert(free_regions() == 0, "we should not have added any free regions");
1273 1274 1275 1276 1277 1278 1279 1280
    rebuild_region_lists();

    _summary_bytes_used = recalculate_used();

    ref_processor()->enqueue_discovered_references();

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1281 1282
    MemoryService::track_memory_usage();

1283 1284 1285
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1286
      prepare_for_verify();
1287 1288 1289 1290 1291 1292
      Universe::verify(false);
    }
    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1293 1294
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1295 1296 1297 1298
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
1299
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1300 1301 1302 1303 1304 1305

    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1306
    // Rebuild remembered sets of all regions.
1307 1308

    if (G1CollectedHeap::use_parallel_gc_threads()) {
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
      set_par_threads(workers()->total_workers());
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1323 1324 1325 1326 1327 1328 1329 1330 1331
    if (PrintGC) {
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

1332 1333 1334 1335 1336 1337 1338 1339 1340
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1341 1342
    init_mutator_alloc_region();

1343 1344 1345
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1346 1347 1348 1349
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1350 1351
    gc_epilogue(true);

1352 1353
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1354 1355
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1356 1357 1358 1359
  }

  if (g1_policy()->in_young_gc_mode()) {
    _young_list->reset_sampled_info();
1360 1361 1362
    // At this point there should be no regions in the
    // entire heap tagged as young.
    assert( check_young_list_empty(true /* check_heap */),
1363 1364
            "young list should be empty at this point");
  }
1365

1366
  // Update the number of full collections that have been completed.
1367
  increment_full_collections_completed(false /* concurrent */);
1368

1369 1370
  verify_region_sets_optional();

1371 1372 1373
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
1374
  g1mm()->update_counters();
1375 1376

  return true;
1377 1378 1379
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1380 1381 1382 1383 1384 1385 1386 1387
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1402 1403 1404 1405
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1406
  // We don't have floating point command-line arguments
1407
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1408
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1409
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1410 1411
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1448 1449

  if (PrintGC && Verbose) {
1450 1451
    const double free_percentage =
      (double) free_after_gc / (double) capacity_after_gc;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
    gclog_or_tty->print_cr("Computing new size after full GC ");
    gclog_or_tty->print_cr("  "
                           "  minimum_free_percentage: %6.2f",
                           minimum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  maximum_free_percentage: %6.2f",
                           maximum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  capacity: %6.1fK"
                           "  minimum_desired_capacity: %6.1fK"
                           "  maximum_desired_capacity: %6.1fK",
1463 1464 1465
                           (double) capacity_after_gc / (double) K,
                           (double) minimum_desired_capacity / (double) K,
                           (double) maximum_desired_capacity / (double) K);
1466
    gclog_or_tty->print_cr("  "
1467 1468 1469 1470
                           "  free_after_gc: %6.1fK"
                           "  used_after_gc: %6.1fK",
                           (double) free_after_gc / (double) K,
                           (double) used_after_gc / (double) K);
1471 1472 1473 1474
    gclog_or_tty->print_cr("  "
                           "   free_percentage: %6.2f",
                           free_percentage);
  }
1475
  if (capacity_after_gc < minimum_desired_capacity) {
1476 1477
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    if (expand(expand_bytes)) {
      if (PrintGC && Verbose) {
        gclog_or_tty->print_cr("  "
                               "  expanding:"
                               "  max_heap_size: %6.1fK"
                               "  minimum_desired_capacity: %6.1fK"
                               "  expand_bytes: %6.1fK",
                               (double) max_heap_size / (double) K,
                               (double) minimum_desired_capacity / (double) K,
                               (double) expand_bytes / (double) K);
      }
1489 1490 1491
    }

    // No expansion, now see if we want to shrink
1492
  } else if (capacity_after_gc > maximum_desired_capacity) {
1493 1494 1495 1496 1497 1498
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
    shrink(shrink_bytes);
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("  "
                             "  shrinking:"
1499 1500 1501 1502 1503 1504
                             "  min_heap_size: %6.1fK"
                             "  maximum_desired_capacity: %6.1fK"
                             "  shrink_bytes: %6.1fK",
                             (double) min_heap_size / (double) K,
                             (double) maximum_desired_capacity / (double) K,
                             (double) shrink_bytes / (double) K);
1505 1506 1507 1508 1509 1510
    }
  }
}


HeapWord*
1511 1512
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1513
  assert_at_safepoint(true /* should_be_vm_thread */);
1514 1515 1516

  *succeeded = true;
  // Let's attempt the allocation first.
1517 1518 1519
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1520 1521 1522 1523
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1524 1525 1526 1527 1528 1529 1530

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1531
    assert(*succeeded, "sanity");
1532 1533 1534
    return result;
  }

1535 1536 1537 1538 1539 1540 1541 1542
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1543

1544 1545
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1546
                                  true /* expect_null_mutator_alloc_region */);
1547
  if (result != NULL) {
1548
    assert(*succeeded, "sanity");
1549 1550 1551
    return result;
  }

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1563
                                  true /* expect_null_mutator_alloc_region */);
1564
  if (result != NULL) {
1565
    assert(*succeeded, "sanity");
1566 1567 1568
    return result;
  }

1569
  assert(!collector_policy()->should_clear_all_soft_refs(),
1570
         "Flag should have been handled and cleared prior to this point");
1571

1572 1573 1574 1575
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1576
  assert(*succeeded, "sanity");
1577 1578 1579 1580 1581 1582 1583 1584 1585
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1586 1587 1588
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1589

1590 1591 1592 1593
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  if (expand(expand_bytes)) {
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1594
                                 false /* expect_null_mutator_alloc_region */);
1595
  }
1596
  return NULL;
1597 1598
}

1599
bool G1CollectedHeap::expand(size_t expand_bytes) {
1600
  size_t old_mem_size = _g1_storage.committed_size();
1601
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1602 1603
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

  if (Verbose && PrintGC) {
    gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
                           old_mem_size/K, aligned_expand_bytes/K);
  }

  HeapWord* old_end = (HeapWord*)_g1_storage.high();
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
    HeapWord* new_end = (HeapWord*)_g1_storage.high();

    // Expand the committed region.
    _g1_committed.set_end(new_end);

    // Tell the cardtable about the expansion.
    Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);

    // And the offset table as well.
    _bot_shared->resize(_g1_committed.word_size());

    expand_bytes = aligned_expand_bytes;
    HeapWord* base = old_end;

    // Create the heap regions for [old_end, new_end)
    while (expand_bytes > 0) {
      HeapWord* high = base + HeapRegion::GrainWords;

1631 1632 1633 1634 1635 1636 1637
      // Create a new HeapRegion.
      MemRegion mr(base, high);
      bool is_zeroed = !_g1_max_committed.contains(base);
      HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);

      // Add it to the HeapRegionSeq.
      _hrs->insert(hr);
1638
      _free_list.add_as_tail(hr);
1639

1640 1641
      // And we used up an expansion region to create it.
      _expansion_regions--;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

      expand_bytes -= HeapRegion::GrainBytes;
      base += HeapRegion::GrainWords;
    }
    assert(base == new_end, "sanity");

    // Now update max_committed if necessary.
    _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), new_end));

  } else {
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1658 1659
    }
  }
1660

1661 1662
  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
1663 1664
    gclog_or_tty->print_cr("...%s, expanded to %ldK",
                           (successful ? "Successful" : "Failed"),
1665 1666
                           new_mem_size/K);
  }
1667
  return successful;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
}

void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
{
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  size_t num_regions_deleted = 0;
  MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);

  assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  if (mr.byte_size() > 0)
    _g1_storage.shrink_by(mr.byte_size());
  assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");

  _g1_committed.set_end(mr.start());
  _expansion_regions += num_regions_deleted;

  // Tell the cardtable about it.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);

  // And the offset table as well.
  _bot_shared->resize(_g1_committed.word_size());

  HeapRegionRemSet::shrink_heap(n_regions());

  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
    gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
                           old_mem_size/K, aligned_shrink_bytes/K,
                           new_mem_size/K);
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1705 1706
  verify_region_sets_optional();

1707
  release_gc_alloc_regions(true /* totally */);
1708 1709 1710
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
1711 1712 1713
  tear_down_region_lists();  // We will rebuild them in a moment.
  shrink_helper(shrink_bytes);
  rebuild_region_lists();
1714 1715

  verify_region_sets_optional();
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1728
  _dirty_card_queue_set(false),
J
johnc 已提交
1729
  _into_cset_dirty_card_queue_set(false),
1730
  _is_alive_closure(this),
1731 1732 1733 1734 1735 1736
  _ref_processor(NULL),
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1737
  _cg1r(NULL), _summary_bytes_used(0),
1738 1739
  _refine_cte_cl(NULL),
  _full_collection(false),
1740 1741 1742 1743
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1744 1745
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1746
  _surviving_young_words(NULL),
1747
  _full_collections_completed(0),
1748
  _in_cset_fast_test(NULL),
1749 1750
  _in_cset_fast_test_base(NULL),
  _dirty_cards_region_list(NULL) {
1751 1752 1753 1754
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1755 1756 1757

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1778 1779 1780 1781 1782 1783
    _gc_alloc_regions[ap]          = NULL;
    _gc_alloc_region_counts[ap]    = 0;
    _retained_gc_alloc_regions[ap] = NULL;
    // by default, we do not retain a GC alloc region for each ap;
    // we'll override this, when appropriate, below
    _retain_gc_alloc_region[ap]    = false;
1784
  }
1785 1786 1787 1788 1789 1790

  // We will try to remember the last half-full tenured region we
  // allocated to at the end of a collection so that we can re-use it
  // during the next collection.
  _retain_gc_alloc_region[GCAllocForTenured]  = true;

1791 1792 1793 1794
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1795
  CollectedHeap::pre_initialize();
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
  os::enable_vtime();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
1821 1822 1823 1824

  const size_t total_reserved = max_byte_size + pgs->max_size();
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

1825 1826
  ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
                        HeapRegion::GrainBytes,
1827
                        UseLargePages, addr);
1828 1829 1830 1831 1832 1833 1834 1835

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
      ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1836
                             UseLargePages, addr);
1837 1838 1839 1840 1841
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
        ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1842
                               UseLargePages, addr);
1843 1844 1845 1846 1847 1848
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  _expansion_regions = max_byte_size/HeapRegion::GrainBytes;

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1875 1876
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1877
  } else {
1878 1879
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  _g1_max_committed = _g1_committed;
I
iveresov 已提交
1894
  _hrs = new HeapRegionSeq(_expansion_regions);
1895 1896
  guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");

1897 1898 1899 1900 1901 1902
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1903 1904 1905
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
            "too many cards per region");
1906

1907 1908
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

1909 1910 1911 1912 1913
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
   _in_cset_fast_test_length = max_regions();
   _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
                ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

1928 1929 1930 1931 1932 1933 1934 1935
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

1936
  // Now expand into the initial heap size.
1937 1938 1939 1940
  if (!expand(init_byte_size)) {
    vm_exit_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  g1_policy()->note_start_of_mark_thread();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
1955
                                               G1SATBProcessCompletedThreshold,
1956
                                               Shared_SATB_Q_lock);
1957 1958 1959

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
1960 1961
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
1962 1963
                                                Shared_DirtyCardQ_lock);

1964 1965 1966
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
1967 1968
                                      -1, // never trigger processing
                                      -1, // no limit on length
1969 1970 1971
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

1982 1983 1984 1985 1986 1987 1988 1989 1990
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  _gc_alloc_region_list = NULL;

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
  MemRegion mr(_g1_reserved.start(), HeapRegion::GrainWords);
  HeapRegion* dummy_region = new HeapRegion(_bot_shared, mr, true);
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2007 2008 2009 2010
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
  _g1mm = new G1MonitoringSupport(this, &_g1_storage);

2011 2012 2013 2014
  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
  // Reference processing in G1 currently works as follows:
  //
  // * There is only one reference processor instance that
  //   'spans' the entire heap. It is created by the code
  //   below.
  // * Reference discovery is not enabled during an incremental
  //   pause (see 6484982).
  // * Discoverered refs are not enqueued nor are they processed
  //   during an incremental pause (see 6484982).
  // * Reference discovery is enabled at initial marking.
  // * Reference discovery is disabled and the discovered
  //   references processed etc during remarking.
  // * Reference discovery is MT (see below).
  // * Reference discovery requires a barrier (see below).
  // * Reference processing is currently not MT (see 6608385).
  // * A full GC enables (non-MT) reference discovery and
  //   processes any discovered references.

2033 2034
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
  _ref_processor =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
                           (int) ParallelGCThreads,   // degree of mt processing
                           ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
                           false,                     // Reference discovery is not atomic
                           &_is_alive_closure,        // is alive closure for efficiency
                           true);                     // Setting next fields of discovered
                                                      // lists requires a barrier.
2045 2046 2047 2048 2049 2050
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

J
johnc 已提交
2051 2052 2053
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2054
                                                 int worker_i) {
2055
  // Clean cards in the hot card cache
J
johnc 已提交
2056
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2057

2058 2059
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2060
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2073 2074
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2075
  size_t result = _summary_bytes_used;
2076
  // Read only once in case it is set to NULL concurrently
2077
  HeapRegion* hr = _mutator_alloc_region.get();
2078 2079
  if (hr != NULL)
    result += hr->used();
2080 2081 2082
  return result;
}

2083 2084 2085 2086 2087
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}

#ifndef PRODUCT
class SumUsedRegionsClosure: public HeapRegionClosure {
  size_t _num;
public:
2111
  SumUsedRegionsClosure() : _num(0) {}
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
      _num += 1;
    }
    return false;
  }
  size_t result() { return _num; }
};

size_t G1CollectedHeap::recalculate_used_regions() const {
  SumUsedRegionsClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}
#endif // PRODUCT

size_t G1CollectedHeap::unsafe_max_alloc() {
2129
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2140 2141
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2142 2143
    return 0;
  }
2144
  return hr->free();
2145 2146
}

2147 2148 2149 2150 2151 2152
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return
    ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
     (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2175
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2176 2177
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2178 2179 2180 2181 2182
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
  // We have already incremented _total_full_collections at the start
  // of the GC, so total_full_collections() represents how many full
  // collections have been started.
  unsigned int full_collections_started = total_full_collections();

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2196
  assert(concurrent ||
2197 2198
         (full_collections_started == _full_collections_completed + 1) ||
         (full_collections_started == _full_collections_completed + 2),
2199
         err_msg("for inner caller (Full GC): full_collections_started = %u "
2200 2201 2202 2203
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  // This is the case for the outer caller, i.e. the concurrent cycle.
2204
  assert(!concurrent ||
2205
         (full_collections_started == _full_collections_completed + 1),
2206 2207
         err_msg("for outer caller (concurrent cycle): "
                 "full_collections_started = %u "
2208 2209 2210 2211 2212
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  _full_collections_completed += 1;

2213 2214 2215 2216
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2217
  if (concurrent) {
2218 2219 2220
    _cmThread->clear_in_progress();
  }

2221 2222 2223 2224 2225 2226 2227
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2228
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2229
  assert_at_safepoint(true /* should_be_vm_thread */);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

2243 2244 2245
void G1CollectedHeap::collect(GCCause::Cause cause) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2246

2247 2248
  unsigned int gc_count_before;
  unsigned int full_gc_count_before;
2249
  {
2250 2251
    MutexLocker ml(Heap_lock);

2252 2253 2254
    // Read the GC count while holding the Heap_lock
    gc_count_before = SharedHeap::heap()->total_collections();
    full_gc_count_before = SharedHeap::heap()->total_full_collections();
2255 2256 2257 2258
  }

  if (should_do_concurrent_full_gc(cause)) {
    // Schedule an initial-mark evacuation pause that will start a
2259 2260
    // concurrent cycle. We're setting word_size to 0 which means that
    // we are not requesting a post-GC allocation.
2261
    VM_G1IncCollectionPause op(gc_count_before,
2262 2263
                               0,     /* word_size */
                               true,  /* should_initiate_conc_mark */
2264 2265 2266 2267 2268 2269 2270
                               g1_policy()->max_pause_time_ms(),
                               cause);
    VMThread::execute(&op);
  } else {
    if (cause == GCCause::_gc_locker
        DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

2271 2272
      // Schedule a standard evacuation pause. We're setting word_size
      // to 0 which means that we are not requesting a post-GC allocation.
2273
      VM_G1IncCollectionPause op(gc_count_before,
2274
                                 0,     /* word_size */
2275 2276 2277
                                 false, /* should_initiate_conc_mark */
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2278
      VMThread::execute(&op);
2279 2280 2281
    } else {
      // Schedule a Full GC.
      VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2282 2283
      VMThread::execute(&op);
    }
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
  }
}

bool G1CollectedHeap::is_in(const void* p) const {
  if (_g1_committed.contains(p)) {
    HeapRegion* hr = _hrs->addr_to_region(p);
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2315
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2316 2317
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
  _hrs->iterate(&blk);
2318 2319 2320
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2321 2322
}

2323
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2324 2325
  IterateOopClosureRegionClosure blk(mr, cl);
  _hrs->iterate(&blk);
2326 2327 2328
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2345
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2346 2347
  IterateObjectClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
2348 2349 2350
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  _hrs->iterate(cl);
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
                                               HeapRegionClosure* cl) {
  _hrs->iterate_from(r, cl);
}

void
G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  _hrs->iterate_from(idx, cl);
}

HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                                 int worker,
                                                 jint claim_value) {
2395
  const size_t regions = n_regions();
2396
  const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
  // try to spread out the starting points of the workers
  const size_t start_index = regions / worker_num * (size_t) worker;

  // each worker will actually look at all regions
  for (size_t count = 0; count < regions; ++count) {
    const size_t index = (start_index + count) % regions;
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2412
    if (r->claimHeapRegion(claim_value)) {
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
        for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2456
      }
2457 2458 2459 2460

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2461 2462 2463 2464
    }
  }
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

void
G1CollectedHeap::reset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
  size_t _failures;
  HeapRegion* _sh_region;
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                             "claim value = %d, should be %d",
                             r->bottom(), r->end(), r->claim_value(),
                             _claim_value);
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
        gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
                               r->bottom(), r->end(),
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
  size_t failures() {
    return _failures;
  }
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
#endif // ASSERT

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2543 2544 2545 2546 2547
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  return _hrs->length() > 0 ? _hrs->at(0) : NULL;
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2613 2614 2615 2616
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

2617
  HeapRegion* hr = _mutator_alloc_region.get();
2618
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2619
  if (hr == NULL) {
2620
    return max_tlab_size;
2621
  } else {
2622
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2623 2624 2625 2626 2627 2628 2629 2630 2631
  }
}

size_t G1CollectedHeap::large_typearray_limit() {
  // FIXME
  return HeapRegion::GrainBytes/HeapWordSize;
}

size_t G1CollectedHeap::max_capacity() const {
2632
  return _g1_reserved.byte_size();
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
  G1CollectedHeap* g1h;
public:
  VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
    g1h = _g1h;
  }
2653 2654 2655 2656 2657 2658 2659
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    guarantee(obj == NULL || !g1h->is_obj_dead(obj),
              "Dead object referenced by a not dead object");
2660 2661 2662 2663
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2664
private:
2665 2666 2667
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2668
  bool _use_prev_marking;
2669
public:
2670 2671 2672 2673
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
    : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
2674 2675 2676 2677 2678
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
    VerifyLivenessOopClosure isLive(_g1h);
    assert(o != NULL, "Huh?");
2679
    if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
2680
      o->oop_iterate(&isLive);
2681 2682 2683 2684
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
2720
private:
2721
  bool _allow_dirty;
2722
  bool _par;
2723
  bool _use_prev_marking;
2724
  bool _failures;
2725 2726 2727 2728
public:
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
2729 2730
    : _allow_dirty(allow_dirty),
      _par(par),
2731 2732 2733 2734 2735 2736
      _use_prev_marking(use_prev_marking),
      _failures(false) {}

  bool failures() {
    return _failures;
  }
2737

2738
  bool doHeapRegion(HeapRegion* r) {
2739 2740
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
2741
    if (!r->continuesHumongous()) {
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
      bool failures = false;
      r->verify(_allow_dirty, _use_prev_marking, &failures);
      if (failures) {
        _failures = true;
      } else {
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
        r->object_iterate(&not_dead_yet_cl);
        if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
          gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                 "max_live_bytes "SIZE_FORMAT" "
                                 "< calculated "SIZE_FORMAT,
                                 r->bottom(), r->end(),
                                 r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
          _failures = true;
        }
      }
2759
    }
2760
    return false; // stop the region iteration if we hit a failure
2761 2762 2763 2764 2765 2766
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
2767
  bool             _use_prev_marking;
2768
  bool             _failures;
2769
public:
2770 2771 2772
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRootsClosure(bool use_prev_marking) :
2773
    _g1h(G1CollectedHeap::heap()),
2774 2775
    _use_prev_marking(use_prev_marking),
    _failures(false) { }
2776 2777 2778

  bool failures() { return _failures; }

2779 2780 2781 2782
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2783
      if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
2784
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2785
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
2786 2787 2788 2789 2790
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
2791 2792 2793

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
2794 2795
};

2796 2797 2798 2799 2800 2801
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
  bool _allow_dirty;
2802
  bool _use_prev_marking;
2803
  bool _failures;
2804 2805

public:
2806 2807 2808 2809
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
                  bool use_prev_marking) :
2810
    AbstractGangTask("Parallel verify task"),
2811 2812
    _g1h(g1h),
    _allow_dirty(allow_dirty),
2813 2814 2815 2816 2817 2818
    _use_prev_marking(use_prev_marking),
    _failures(false) { }

  bool failures() {
    return _failures;
  }
2819 2820

  void work(int worker_i) {
2821
    HandleMark hm;
2822
    VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
2823 2824
    _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
                                          HeapRegion::ParVerifyClaimValue);
2825 2826 2827
    if (blk.failures()) {
      _failures = true;
    }
2828 2829 2830
  }
};

2831
void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2832 2833 2834 2835 2836 2837
  verify(allow_dirty, silent, /* use_prev_marking */ true);
}

void G1CollectedHeap::verify(bool allow_dirty,
                             bool silent,
                             bool use_prev_marking) {
2838
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2839
    if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
2840
    VerifyRootsClosure rootsCl(use_prev_marking);
2841
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2842 2843 2844 2845 2846 2847 2848
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
    const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
    process_strong_roots(true,      // activate StrongRootsScope
                         true,      // we set "collecting perm gen" to true,
                                    // so we don't reset the dirty cards in the perm gen.
                         SharedHeap::ScanningOption(so),  // roots scanning options
2849
                         &rootsCl,
2850
                         &blobsCl,
2851
                         &rootsCl);
2852 2853 2854 2855 2856 2857
    // Since we used "collecting_perm_gen" == true above, we will not have
    // checked the refs from perm into the G1-collected heap. We check those
    // references explicitly below. Whether the relevant cards are dirty
    // is checked further below in the rem set verification.
    if (!silent) { gclog_or_tty->print("Permgen roots "); }
    perm_gen()->oop_iterate(&rootsCl);
2858
    bool failures = rootsCl.failures();
2859 2860 2861
    if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
    verify_region_sets();
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
2862 2863 2864 2865
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

2866
      G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
2867 2868 2869 2870
      int n_workers = workers()->total_workers();
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
2871 2872 2873
      if (task.failures()) {
        failures = true;
      }
2874 2875 2876 2877 2878 2879 2880 2881 2882

      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
2883
      VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
2884
      _hrs->iterate(&blk);
2885 2886 2887
      if (blk.failures()) {
        failures = true;
      }
2888
    }
2889
    if (!silent) gclog_or_tty->print("RemSet ");
2890
    rem_set()->verify();
2891 2892 2893 2894 2895

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
      print_on(gclog_or_tty, true /* extended */);
      gclog_or_tty->print_cr("");
2896
#ifndef PRODUCT
2897
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2898 2899
        concurrent_mark()->print_reachable("at-verification-failure",
                                           use_prev_marking, false /* all */);
2900
      }
2901
#endif
2902 2903 2904
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

2920
void G1CollectedHeap::print() const { print_on(tty); }
2921 2922

void G1CollectedHeap::print_on(outputStream* st) const {
2923 2924 2925 2926 2927 2928
  print_on(st, PrintHeapAtGCExtended);
}

void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2929
            capacity()/K, used_unlocked()/K);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
  st->print("  region size " SIZE_FORMAT "K, ",
            HeapRegion::GrainBytes/K);
  size_t young_regions = _young_list->length();
  st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
            young_regions, young_regions * HeapRegion::GrainBytes / K);
  size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
            survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  perm()->as_gen()->print_on(st);
  if (extended) {
2946
    st->cr();
2947 2948 2949 2950 2951
    print_on_extended(st);
  }
}

void G1CollectedHeap::print_on_extended(outputStream* st) const {
2952 2953 2954 2955 2956
  PrintRegionClosure blk(st);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2957
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
2958
    workers()->print_worker_threads_on(st);
2959
  }
T
tonyp 已提交
2960
  _cmThread->print_on(st);
2961
  st->cr();
T
tonyp 已提交
2962 2963
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
2964 2965 2966 2967
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2968
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2969 2970 2971
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
2972
  _cg1r->threads_do(tc);
2973 2974 2975 2976 2977 2978 2979 2980 2981
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
2982
  if (G1SummarizeRSetStats) {
2983 2984
    g1_rem_set()->print_summary_info();
  }
2985
  if (G1SummarizeConcMark) {
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  HeapRegion* hr = heap_region_containing(addr);
  if (hr == NULL) {
    return 0;
  } else {
    return 1;
  }
}

G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3008
  // always_do_update_barrier = false;
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3022
  // always_do_update_barrier = true;
3023 3024
}

3025 3026 3027 3028
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3029
  g1_policy()->record_stop_world_start();
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3045 3046 3047 3048
}

void
G1CollectedHeap::doConcurrentMark() {
3049 3050 3051 3052
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
  }
}

class VerifyMarkedObjsClosure: public ObjectClosure {
    G1CollectedHeap* _g1h;
    public:
    VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
    void do_object(oop obj) {
      assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
             "markandsweep mark should agree with concurrent deadness");
    }
};

void
G1CollectedHeap::checkConcurrentMark() {
    VerifyMarkedObjsClosure verifycl(this);
    //    MutexLockerEx x(getMarkBitMapLock(),
    //              Mutex::_no_safepoint_check_flag);
3071
    object_iterate(&verifycl, false);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
}

void G1CollectedHeap::do_sync_mark() {
  _cm->checkpointRootsInitial();
  _cm->markFromRoots();
  _cm->checkpointRootsFinal(false);
}

// <NEW PREDICTION>

double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
                                                       bool young) {
  return _g1_policy->predict_region_elapsed_time_ms(hr, young);
}

void G1CollectedHeap::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
3115
  return g1_rem_set()->cardsScanned();
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
}

void
G1CollectedHeap::setup_surviving_young_words() {
  guarantee( _surviving_young_words == NULL, "pre-condition" );
  size_t array_length = g1_policy()->young_cset_length();
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
  memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3128
#ifdef ASSERT
3129
  for (size_t i = 0;  i < array_length; ++i) {
3130
    assert( _surviving_young_words[i] == 0, "memset above" );
3131
  }
3132
#endif // !ASSERT
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  size_t array_length = g1_policy()->young_cset_length();
  for (size_t i = 0; i < array_length; ++i)
    _surviving_young_words[i] += surv_young_words[i];
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

// </NEW PREDICTION>

3152 3153 3154 3155 3156 3157 3158
struct PrepareForRSScanningClosure : public HeapRegionClosure {
  bool doHeapRegion(HeapRegion *r) {
    r->rem_set()->set_iter_claimed(0);
    return false;
  }
};

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3170
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3181
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3182 3183 3184 3185 3186 3187
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3188
bool
3189
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3190 3191 3192
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3193
  if (GC_locker::check_active_before_gc()) {
3194
    return false;
3195 3196
  }

3197
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3198 3199
  ResourceMark rm;

3200 3201
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
3202 3203
  }

3204
  verify_region_sets_optional();
3205
  verify_dirty_young_regions();
3206

3207
  {
3208 3209 3210 3211 3212
    // This call will decide whether this pause is an initial-mark
    // pause. If it is, during_initial_mark_pause() will return true
    // for the duration of this pause.
    g1_policy()->decide_on_conc_mark_initiation();

3213 3214 3215 3216 3217 3218 3219 3220
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
    if (g1_policy()->in_young_gc_mode()) {
      if (g1_policy()->full_young_gcs())
        strcat(verbose_str, "(young)");
      else
        strcat(verbose_str, "(partial)");
    }
3221
    if (g1_policy()->during_initial_mark_pause()) {
3222
      strcat(verbose_str, " (initial-mark)");
3223 3224 3225 3226
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_total_full_collections();
    }
3227

3228 3229 3230 3231 3232 3233
    // if PrintGCDetails is on, we'll print long statistics information
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3234

3235
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3236
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3237

T
tonyp 已提交
3238 3239 3240 3241 3242 3243
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3244
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3245
      append_secondary_free_list_if_not_empty_with_lock();
3246
    }
3247

3248
    increment_gc_time_stamp();
3249

3250 3251 3252 3253
    if (g1_policy()->in_young_gc_mode()) {
      assert(check_young_list_well_formed(),
             "young list should be well formed");
    }
3254

3255 3256 3257 3258 3259
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3260 3261

#if G1_REM_SET_LOGGING
3262 3263
      gclog_or_tty->print_cr("\nJust chose CS, heap:");
      print();
3264 3265
#endif

3266 3267 3268
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyBeforeGC:");
3269
        prepare_for_verify();
3270 3271
        Universe::verify(false);
      }
3272

3273
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3274

3275 3276 3277
      // Please see comment in G1CollectedHeap::ref_processing_init()
      // to see how reference processing currently works in G1.
      //
3278
      // We want to turn off ref discovery, if necessary, and turn it back on
3279
      // on again later if we do. XXX Dubious: why is discovery disabled?
3280 3281
      bool was_enabled = ref_processor()->discovery_enabled();
      if (was_enabled) ref_processor()->disable_discovery();
3282

3283 3284
      // Forget the current alloc region (we might even choose it to be part
      // of the collection set!).
3285
      release_mutator_alloc_region();
3286

3287 3288 3289 3290
      // The elapsed time induced by the start time below deliberately elides
      // the possible verification above.
      double start_time_sec = os::elapsedTime();
      size_t start_used_bytes = used();
3291

3292 3293 3294 3295 3296 3297
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE

3298 3299
      g1_policy()->record_collection_pause_start(start_time_sec,
                                                 start_used_bytes);
3300

3301 3302
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3303
      _young_list->print();
3304
#endif // YOUNG_LIST_VERBOSE
3305

3306
      if (g1_policy()->during_initial_mark_pause()) {
3307 3308 3309
        concurrent_mark()->checkpointRootsInitialPre();
      }
      save_marks();
3310

3311 3312 3313 3314
      // We must do this before any possible evacuation that should propagate
      // marks.
      if (mark_in_progress()) {
        double start_time_sec = os::elapsedTime();
3315

3316 3317 3318 3319 3320 3321 3322 3323 3324
        _cm->drainAllSATBBuffers();
        double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
        g1_policy()->record_satb_drain_time(finish_mark_ms);
      }
      // Record the number of elements currently on the mark stack, so we
      // only iterate over these.  (Since evacuation may add to the mark
      // stack, doing more exposes race conditions.)  If no mark is in
      // progress, this will be zero.
      _cm->set_oops_do_bound();
3325

3326
      if (mark_in_progress()) {
3327
        concurrent_mark()->newCSet();
3328
      }
3329

3330 3331 3332 3333 3334
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3335

3336
      g1_policy()->choose_collection_set(target_pause_time_ms);
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
      // We have chosen the complete collection set. If marking is
      // active then, we clear the region fields of any of the
      // concurrent marking tasks whose region fields point into
      // the collection set as these values will become stale. This
      // will cause the owning marking threads to claim a new region
      // when marking restarts.
      if (mark_in_progress()) {
        concurrent_mark()->reset_active_task_region_fields_in_cset();
      }

3348
      // Nothing to do if we were unable to choose a collection set.
3349
#if G1_REM_SET_LOGGING
3350 3351
      gclog_or_tty->print_cr("\nAfter pause, heap:");
      print();
3352
#endif
3353 3354
      PrepareForRSScanningClosure prepare_for_rs_scan;
      collection_set_iterate(&prepare_for_rs_scan);
3355

3356
      setup_surviving_young_words();
3357

3358 3359
      // Set up the gc allocation regions.
      get_gc_alloc_regions();
3360

3361 3362
      // Actually do the work...
      evacuate_collection_set();
3363

3364 3365
      free_collection_set(g1_policy()->collection_set());
      g1_policy()->clear_collection_set();
3366

3367
      cleanup_surviving_young_words();
3368

3369 3370
      // Start a new incremental collection set for the next pause.
      g1_policy()->start_incremental_cset_building();
3371

3372 3373 3374 3375
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
3376

3377 3378
      if (g1_policy()->in_young_gc_mode()) {
        _young_list->reset_sampled_info();
3379

3380 3381 3382 3383 3384 3385
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
               "young list should be empty");
3386 3387

#if YOUNG_LIST_VERBOSE
3388 3389
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3390
#endif // YOUNG_LIST_VERBOSE
3391

3392
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3393 3394
                                          _young_list->first_survivor_region(),
                                          _young_list->last_survivor_region());
3395

3396
        _young_list->reset_auxilary_lists();
3397 3398
      }

3399 3400 3401 3402 3403 3404 3405
      if (evacuation_failed()) {
        _summary_bytes_used = recalculate_used();
      } else {
        // The "used" of the the collection set have already been subtracted
        // when they were freed.  Add in the bytes evacuated.
        _summary_bytes_used += g1_policy()->bytes_in_to_space();
      }
3406

3407
      if (g1_policy()->in_young_gc_mode() &&
3408
          g1_policy()->during_initial_mark_pause()) {
3409 3410
        concurrent_mark()->checkpointRootsInitialPost();
        set_marking_started();
3411 3412 3413 3414 3415 3416 3417
        // CAUTION: after the doConcurrentMark() call below,
        // the concurrent marking thread(s) could be running
        // concurrently with us. Make sure that anything after
        // this point does not assume that we are the only GC thread
        // running. Note: of course, the actual marking work will
        // not start until the safepoint itself is released in
        // ConcurrentGCThread::safepoint_desynchronize().
3418 3419
        doConcurrentMark();
      }
3420

3421 3422
      allocate_dummy_regions();

3423 3424
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3425
      _young_list->print();
3426 3427
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3428

3429 3430
      init_mutator_alloc_region();

3431 3432 3433
      double end_time_sec = os::elapsedTime();
      double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
      g1_policy()->record_pause_time_ms(pause_time_ms);
3434
      g1_policy()->record_collection_pause_end();
3435

3436 3437
      MemoryService::track_memory_usage();

3438 3439 3440 3441 3442 3443
      if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyAfterGC:");
        prepare_for_verify();
        Universe::verify(false);
      }
3444

3445
      if (was_enabled) ref_processor()->enable_discovery();
3446

3447 3448 3449 3450
      {
        size_t expand_bytes = g1_policy()->expansion_amount();
        if (expand_bytes > 0) {
          size_t bytes_before = capacity();
3451 3452 3453 3454 3455 3456
          if (!expand(expand_bytes)) {
            // We failed to expand the heap so let's verify that
            // committed/uncommitted amount match the backing store
            assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
            assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
          }
3457
        }
3458 3459
      }

3460 3461 3462
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
3463 3464

#ifdef TRACESPINNING
3465
      ParallelTaskTerminator::print_termination_counts();
3466
#endif
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476
      gc_epilogue(false);
    }

    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
3477

3478 3479
  verify_region_sets_optional();

3480 3481 3482
  TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

3483 3484
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
3485
  }
3486 3487
  g1mm()->update_counters();

3488 3489 3490 3491 3492
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
3493 3494

  return true;
3495 3496
}

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}

3515 3516 3517 3518 3519 3520 3521 3522 3523
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
3524

3525 3526
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
3527 3528 3529 3530
  // make sure we don't call set_gc_alloc_region() multiple times on
  // the same region
  assert(r == NULL || !r->is_gc_alloc_region(),
         "shouldn't already be a GC alloc region");
3531 3532 3533
  assert(r == NULL || !r->isHumongous(),
         "humongous regions shouldn't be used as GC alloc regions");

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
  HeapWord* original_top = NULL;
  if (r != NULL)
    original_top = r->top();

  // We will want to record the used space in r as being there before gc.
  // One we install it as a GC alloc region it's eligible for allocation.
  // So record it now and use it later.
  size_t r_used = 0;
  if (r != NULL) {
    r_used = r->used();

3545
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
      // need to take the lock to guard against two threads calling
      // get_gc_alloc_region concurrently (very unlikely but...)
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      r->save_marks();
    }
  }
  HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  _gc_alloc_regions[purpose] = r;
  if (old_alloc_region != NULL) {
    // Replace aliases too.
    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
      if (_gc_alloc_regions[ap] == old_alloc_region) {
        _gc_alloc_regions[ap] = r;
      }
    }
  }
  if (r != NULL) {
    push_gc_alloc_region(r);
    if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
      // We are using a region as a GC alloc region after it has been used
      // as a mutator allocation region during the current marking cycle.
      // The mutator-allocated objects are currently implicitly marked, but
      // when we move hr->next_top_at_mark_start() forward at the the end
      // of the GC pause, they won't be.  We therefore mark all objects in
      // the "gap".  We do this object-by-object, since marking densely
      // does not currently work right with marking bitmap iteration.  This
      // means we rely on TLAB filling at the start of pauses, and no
      // "resuscitation" of filled TLAB's.  If we want to do this, we need
      // to fix the marking bitmap iteration.
      HeapWord* curhw = r->next_top_at_mark_start();
      HeapWord* t = original_top;

      while (curhw < t) {
        oop cur = (oop)curhw;
        // We'll assume parallel for generality.  This is rare code.
        concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
        curhw = curhw + cur->size();
      }
      assert(curhw == t, "Should have parsed correctly.");
    }
    if (G1PolicyVerbose > 1) {
      gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
                          "for survivors:", r->bottom(), original_top, r->end());
      r->print();
    }
    g1_policy()->record_before_bytes(r_used);
  }
}

void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  assert(Thread::current()->is_VM_thread() ||
3597
         FreeList_lock->owned_by_self(), "Precondition");
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
  assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
         "Precondition.");
  hr->set_is_gc_alloc_region(true);
  hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  _gc_alloc_region_list = hr;
}

#ifdef G1_DEBUG
class FindGCAllocRegion: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_gc_alloc_region()) {
      gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
                             r->hrs_index(), r->bottom());
    }
    return false;
  }
};
#endif // G1_DEBUG

void G1CollectedHeap::forget_alloc_region_list() {
3619
  assert_at_safepoint(true /* should_be_vm_thread */);
3620 3621 3622
  while (_gc_alloc_region_list != NULL) {
    HeapRegion* r = _gc_alloc_region_list;
    assert(r->is_gc_alloc_region(), "Invariant.");
3623 3624 3625 3626 3627 3628
    // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
    // newly allocated data in order to be able to apply deferred updates
    // before the GC is done for verification purposes (i.e to allow
    // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
    // collection.
    r->ContiguousSpace::set_saved_mark();
3629 3630 3631
    _gc_alloc_region_list = r->next_gc_alloc_region();
    r->set_next_gc_alloc_region(NULL);
    r->set_is_gc_alloc_region(false);
3632 3633 3634 3635 3636 3637 3638
    if (r->is_survivor()) {
      if (r->is_empty()) {
        r->set_not_young();
      } else {
        _young_list->add_survivor_region(r);
      }
    }
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
  }
#ifdef G1_DEBUG
  FindGCAllocRegion fa;
  heap_region_iterate(&fa);
#endif // G1_DEBUG
}


bool G1CollectedHeap::check_gc_alloc_regions() {
  // TODO: allocation regions check
  return true;
}

void G1CollectedHeap::get_gc_alloc_regions() {
3653 3654 3655
  // First, let's check that the GC alloc region list is empty (it should)
  assert(_gc_alloc_region_list == NULL, "invariant");

3656
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3657
    assert(_gc_alloc_regions[ap] == NULL, "invariant");
3658
    assert(_gc_alloc_region_counts[ap] == 0, "invariant");
3659

3660
    // Create new GC alloc regions.
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
    HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
    _retained_gc_alloc_regions[ap] = NULL;

    if (alloc_region != NULL) {
      assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");

      // let's make sure that the GC alloc region is not tagged as such
      // outside a GC operation
      assert(!alloc_region->is_gc_alloc_region(), "sanity");

      if (alloc_region->in_collection_set() ||
          alloc_region->top() == alloc_region->end() ||
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
          alloc_region->top() == alloc_region->bottom() ||
          alloc_region->isHumongous()) {
        // we will discard the current GC alloc region if
        // * it's in the collection set (it can happen!),
        // * it's already full (no point in using it),
        // * it's empty (this means that it was emptied during
        // a cleanup and it should be on the free list now), or
        // * it's humongous (this means that it was emptied
        // during a cleanup and was added to the free list, but
        // has been subseqently used to allocate a humongous
        // object that may be less than the region size).
3684 3685 3686 3687 3688 3689 3690

        alloc_region = NULL;
      }
    }

    if (alloc_region == NULL) {
      // we will get a new GC alloc region
3691
      alloc_region = new_gc_alloc_region(ap, HeapRegion::GrainWords);
3692 3693 3694
    } else {
      // the region was retained from the last collection
      ++_gc_alloc_region_counts[ap];
3695 3696 3697 3698 3699
      if (G1PrintHeapRegions) {
        gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
                               "top "PTR_FORMAT,
                               alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
      }
3700
    }
3701

3702
    if (alloc_region != NULL) {
3703
      assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
3704 3705
      set_gc_alloc_region(ap, alloc_region);
    }
3706 3707 3708 3709 3710 3711 3712

    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap]->is_gc_alloc_region(),
           "the GC alloc region should be tagged as such");
    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap] == _gc_alloc_region_list,
           "the GC alloc region should be the same as the GC alloc list head");
3713 3714
  }
  // Set alternative regions for allocation purposes that have reached
3715
  // their limit.
3716 3717 3718 3719 3720 3721 3722 3723 3724
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
    if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
      _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
    }
  }
  assert(check_gc_alloc_regions(), "alloc regions messed up");
}

3725
void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
3726
  // We keep a separate list of all regions that have been alloc regions in
3727 3728 3729 3730
  // the current collection pause. Forget that now. This method will
  // untag the GC alloc regions and tear down the GC alloc region
  // list. It's desirable that no regions are tagged as GC alloc
  // outside GCs.
3731

3732 3733 3734 3735 3736 3737
  forget_alloc_region_list();

  // The current alloc regions contain objs that have survived
  // collection. Make them no longer GC alloc regions.
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
3738
    _retained_gc_alloc_regions[ap] = NULL;
3739
    _gc_alloc_region_counts[ap] = 0;
3740 3741 3742 3743 3744 3745

    if (r != NULL) {
      // we retain nothing on _gc_alloc_regions between GCs
      set_gc_alloc_region(ap, NULL);

      if (r->is_empty()) {
3746 3747
        // We didn't actually allocate anything in it; let's just put
        // it back on the free list.
3748
        _free_list.add_as_head(r);
3749 3750 3751
      } else if (_retain_gc_alloc_region[ap] && !totally) {
        // retain it so that we can use it at the beginning of the next GC
        _retained_gc_alloc_regions[ap] = r;
3752 3753 3754 3755 3756
      }
    }
  }
}

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
#ifndef PRODUCT
// Useful for debugging

void G1CollectedHeap::print_gc_alloc_regions() {
  gclog_or_tty->print_cr("GC alloc regions");
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r == NULL) {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
    } else {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
                             ap, r->bottom(), r->used());
    }
  }
}
#endif // PRODUCT

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
3785
  delete _evac_failure_scan_stack;
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
  _evac_failure_scan_stack = NULL;
}



// *** Sequential G1 Evacuation

class G1IsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    // It is reachable if it is outside the collection set, or is inside
    // and forwarded.

#ifdef G1_DEBUG
    gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
                           (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
                           !_g1->obj_in_cs(p) || p->is_forwarded());
#endif // G1_DEBUG

    return !_g1->obj_in_cs(p) || p->is_forwarded();
  }
};

class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3816 3817
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
    oop obj = *p;
#ifdef G1_DEBUG
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
                             p, (void*) obj, (void*) *p);
    }
#endif // G1_DEBUG

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
#ifdef G1_DEBUG
      gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
                             (void*) obj, (void*) *p);
#endif // G1_DEBUG
    }
  }
};

3837 3838 3839 3840 3841 3842 3843 3844 3845
class UpdateRSetDeferred : public OopsInHeapRegionClosure {
private:
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  CardTableModRefBS* _ct_bs;

public:
  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3846

3847 3848 3849
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
3850
    assert(_from->is_in_reserved(p), "paranoia");
3851 3852
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
3853 3854 3855 3856
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
    }
  }
};

class RemoveSelfPointerClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _prev_marked_bytes;
  size_t _next_marked_bytes;
3868
  OopsInHeapRegionClosure *_cl;
3869
public:
3870 3871 3872
  RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
                           OopsInHeapRegionClosure* cl) :
    _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3873
    _next_marked_bytes(0), _cl(cl) {}
3874 3875 3876 3877

  size_t prev_marked_bytes() { return _prev_marked_bytes; }
  size_t next_marked_bytes() { return _next_marked_bytes; }

3878
  // <original comment>
3879 3880 3881 3882 3883 3884 3885 3886 3887
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  // The current approach is to not coalesce and leave the BOT contents intact.
3888 3889 3890 3891 3892 3893
  // </original comment>
  //
  // We now reset the BOT when we start the object iteration over the
  // region and refine its entries for every object we come across. So
  // the above comment is not really relevant and we should be able
  // to coalesce dead objects if we want to.
3894
  void do_object(oop obj) {
3895 3896 3897 3898
    HeapWord* obj_addr = (HeapWord*) obj;
    assert(_hr->is_in(obj_addr), "sanity");
    size_t obj_size = obj->size();
    _hr->update_bot_for_object(obj_addr, obj_size);
3899 3900 3901 3902 3903
    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.
      assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
      _cm->markPrev(obj);
      assert(_cm->isPrevMarked(obj), "Should be marked!");
3904
      _prev_marked_bytes += (obj_size * HeapWordSize);
3905 3906
      if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
        _cm->markAndGrayObjectIfNecessary(obj);
3907
      }
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
      obj->set_mark(markOopDesc::prototype());
      // While we were processing RSet buffers during the
      // collection, we actually didn't scan any cards on the
      // collection set, since we didn't want to update remebered
      // sets with entries that point into the collection set, given
      // that live objects fromthe collection set are about to move
      // and such entries will be stale very soon. This change also
      // dealt with a reliability issue which involved scanning a
      // card in the collection set and coming across an array that
      // was being chunked and looking malformed. The problem is
      // that, if evacuation fails, we might have remembered set
      // entries missing given that we skipped cards on the
      // collection set. So, we'll recreate such entries now.
3921
      obj->oop_iterate(_cl);
3922 3923 3924 3925
      assert(_cm->isPrevMarked(obj), "Should be marked!");
    } else {
      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
3926
      MemRegion mr((HeapWord*)obj, obj_size);
3927
      CollectedHeap::fill_with_object(mr);
3928
      _cm->clearRangeBothMaps(mr);
3929 3930 3931 3932 3933
    }
  }
};

void G1CollectedHeap::remove_self_forwarding_pointers() {
J
johnc 已提交
3934
  UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3935 3936 3937 3938 3939 3940 3941 3942
  DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  UpdateRSetDeferred deferred_update(_g1h, &dcq);
  OopsInHeapRegionClosure *cl;
  if (G1DeferredRSUpdate) {
    cl = &deferred_update;
  } else {
    cl = &immediate_update;
  }
3943 3944 3945
  HeapRegion* cur = g1_policy()->collection_set();
  while (cur != NULL) {
    assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3946
    assert(!cur->isHumongous(), "sanity");
3947 3948 3949

    if (cur->evacuation_failed()) {
      assert(cur->in_collection_set(), "bad CS");
3950 3951 3952
      RemoveSelfPointerClosure rspc(_g1h, cur, cl);

      cur->reset_bot();
3953
      cl->set_region(cur);
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
      cur->object_iterate(&rspc);

      // A number of manipulations to make the TAMS be the current top,
      // and the marked bytes be the ones observed in the iteration.
      if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
        // The comments below are the postconditions achieved by the
        // calls.  Note especially the last such condition, which says that
        // the count of marked bytes has been properly restored.
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        cur->add_to_marked_bytes(rspc.prev_marked_bytes());
        // _next_marked_bytes == prev_marked_bytes.
        cur->note_end_of_marking();
        // _prev_top_at_mark_start == top(),
        // _prev_marked_bytes == prev_marked_bytes
      }
      // If there is no mark in progress, we modified the _next variables
      // above needlessly, but harmlessly.
      if (_g1h->mark_in_progress()) {
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        // _next_marked_bytes == next_marked_bytes.
      }

      // Now make sure the region has the right index in the sorted array.
      g1_policy()->note_change_in_marked_bytes(cur);
    }
    cur = cur->next_in_collection_set();
  }
  assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
                                               oop old) {
4020 4021 4022
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4045 4046 4047 4048 4049 4050 4051
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4064
    if (G1PrintHeapRegions) {
4065
      gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
                          "["PTR_FORMAT","PTR_FORMAT")\n",
                          r, r->bottom(), r->end());
    }
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4082 4083 4084 4085
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

// *** Parallel G1 Evacuation

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4102 4103 4104 4105
  assert(!isHumongous(word_size),
         err_msg("we should not be seeing humongous allocation requests "
                 "during GC, word_size = "SIZE_FORMAT, word_size));

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
  HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  // let the caller handle alloc failure
  if (alloc_region == NULL) return NULL;

  HeapWord* block = alloc_region->par_allocate(word_size);
  if (block == NULL) {
    block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  }
  return block;
}

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
                                            bool par) {
  // Another thread might have obtained alloc_region for the given
  // purpose, and might be attempting to allocate in it, and might
  // succeed.  Therefore, we can't do the "finalization" stuff on the
  // region below until we're sure the last allocation has happened.
  // We ensure this by allocating the remaining space with a garbage
  // object.
  if (par) par_allocate_remaining_space(alloc_region);
  // Now we can do the post-GC stuff on the region.
  alloc_region->note_end_of_copying();
  g1_policy()->record_after_bytes(alloc_region->used());
}

4131 4132 4133 4134 4135
HeapWord*
G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
                                         HeapRegion*    alloc_region,
                                         bool           par,
                                         size_t         word_size) {
4136 4137 4138 4139
  assert(!isHumongous(word_size),
         err_msg("we should not be seeing humongous allocation requests "
                 "during GC, word_size = "SIZE_FORMAT, word_size));

4140 4141 4142 4143 4144 4145
  // We need to make sure we serialize calls to this method. Given
  // that the FreeList_lock guards accesses to the free_list anyway,
  // and we need to potentially remove a region from it, we'll use it
  // to protect the whole call.
  MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
  HeapWord* block = NULL;
  // In the parallel case, a previous thread to obtain the lock may have
  // already assigned a new gc_alloc_region.
  if (alloc_region != _gc_alloc_regions[purpose]) {
    assert(par, "But should only happen in parallel case.");
    alloc_region = _gc_alloc_regions[purpose];
    if (alloc_region == NULL) return NULL;
    block = alloc_region->par_allocate(word_size);
    if (block != NULL) return block;
    // Otherwise, continue; this new region is empty, too.
  }
  assert(alloc_region != NULL, "We better have an allocation region");
4158
  retire_alloc_region(alloc_region, par);
4159 4160 4161 4162 4163 4164 4165 4166

  if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
    // Cannot allocate more regions for the given purpose.
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
    // Is there an alternative?
    if (purpose != alt_purpose) {
      HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
      // Has not the alternative region been aliased?
4167
      if (alloc_region != alt_region && alt_region != NULL) {
4168 4169 4170 4171 4172 4173 4174 4175
        // Try to allocate in the alternative region.
        if (par) {
          block = alt_region->par_allocate(word_size);
        } else {
          block = alt_region->allocate(word_size);
        }
        // Make an alias.
        _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
4176 4177 4178 4179
        if (block != NULL) {
          return block;
        }
        retire_alloc_region(alt_region, par);
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
      }
      // Both the allocation region and the alternative one are full
      // and aliased, replace them with a new allocation region.
      purpose = alt_purpose;
    } else {
      set_gc_alloc_region(purpose, NULL);
      return NULL;
    }
  }

  // Now allocate a new region for allocation.
4191
  alloc_region = new_gc_alloc_region(purpose, word_size);
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

  // let the caller handle alloc failure
  if (alloc_region != NULL) {

    assert(check_gc_alloc_regions(), "alloc regions messed up");
    assert(alloc_region->saved_mark_at_top(),
           "Mark should have been saved already.");
    // This must be done last: once it's installed, other regions may
    // allocate in it (without holding the lock.)
    set_gc_alloc_region(purpose, alloc_region);

    if (par) {
      block = alloc_region->par_allocate(word_size);
    } else {
      block = alloc_region->allocate(word_size);
    }
    // Caller handles alloc failure.
  } else {
    // This sets other apis using the same old alloc region to NULL, also.
    set_gc_alloc_region(purpose, NULL);
  }
  return block;  // May be NULL.
}

void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  HeapWord* block = NULL;
  size_t free_words;
  do {
    free_words = r->free()/HeapWordSize;
    // If there's too little space, no one can allocate, so we're done.
4222
    if (free_words < CollectedHeap::min_fill_size()) return;
4223 4224 4225
    // Otherwise, try to claim it.
    block = r->par_allocate(free_words);
  } while (block == NULL);
4226
  fill_with_object(block, free_words);
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
}

#ifndef PRODUCT
bool GCLabBitMapClosure::do_bit(size_t offset) {
  HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  guarantee(_cm->isMarked(oop(addr)), "it should be!");
  return true;
}
#endif // PRODUCT

4237 4238 4239 4240 4241 4242 4243 4244
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4245 4246
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
    _alloc_buffer_waste(0), _undo_waste(0)
{
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
  size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  size_t array_length = PADDING_ELEM_NUM +
                        real_length +
                        PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, real_length * sizeof(size_t));

4267 4268 4269
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4270 4271
  _start = os::elapsedTime();
}
4272

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4350 4351 4352 4353
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  _par_scan_state(par_scan_state) { }

4354
template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4355 4356 4357 4358
  // This is called _after_ do_oop_work has been called, hence after
  // the object has been relocated to its new location and *p points
  // to its new location.

4359 4360 4361 4362
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop(heap_oop);
    HeapWord* addr = (HeapWord*)obj;
4363
    if (_g1->is_in_g1_reserved(addr)) {
4364
      _cm->grayRoot(oop(addr));
4365
    }
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
  }
}

oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  size_t    word_sz = old->size();
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
  assert( (from_region->is_young() && young_index > 0) ||
          (!from_region->is_young() && young_index == 0), "invariant" );
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4378 4379 4380
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    return _g1->handle_evacuation_failure_par(cl, old);
  }

4392 4393 4394
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4395 4396 4397 4398
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4418
        obj->set_mark(m);
4419
      }
4420 4421 4422
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4423
    }
4424

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
    // preserve "next" mark bit
    if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
      if (!use_local_bitmaps ||
          !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
        // if we couldn't mark it on the local bitmap (this happens when
        // the object was not allocated in the GCLab), we have to bite
        // the bullet and do the standard parallel mark
        _cm->markAndGrayObjectIfNecessary(obj);
      }
#if 1
      if (_g1->isMarkedNext(old)) {
        _cm->nextMarkBitMap()->parClear((HeapWord*)old);
      }
#endif
    }

    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      arrayOop(old)->set_length(0);
4446 4447
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4448
    } else {
4449 4450 4451
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
      _scanner->set_region(_g1->heap_region_containing_raw(obj));
4452 4453 4454 4455 4456 4457 4458 4459 4460
      obj->oop_iterate_backwards(_scanner);
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4461
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4462
template <class T>
4463
void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4464 4465
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4466 4467 4468
  assert(barrier != G1BarrierRS || obj != NULL,
         "Precondition: G1BarrierRS implies obj is nonNull");

4469
  // here the null check is implicit in the cset_fast_test() test
4470
  if (_g1->in_cset_fast_test(obj)) {
4471
#if G1_REM_SET_LOGGING
4472 4473
    gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
                           "into CS.", p, (void*) obj);
4474
#endif
4475
    if (obj->is_forwarded()) {
4476
      oopDesc::encode_store_heap_oop(p, obj->forwardee());
4477
    } else {
4478 4479
      oop copy_oop = copy_to_survivor_space(obj);
      oopDesc::encode_store_heap_oop(p, copy_oop);
4480
    }
4481 4482
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4483
      _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4484
    }
4485
  }
4486

4487
  if (barrier == G1BarrierEvac && obj != NULL) {
4488
    _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4489 4490 4491 4492
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4493 4494 4495
  }
}

4496 4497
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4498

4499
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4500 4501
  assert(has_partial_array_mask(p), "invariant");
  oop old = clear_partial_array_mask(p);
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");

  objArrayOop obj = objArrayOop(old->forwardee());
  assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
4519 4520 4521
    oop* old_p = set_partial_array_mask(old);
    assert(arrayOop(old)->length() < obj->length(), "Empty push?");
    _par_scan_state->push_on_queue(old_p);
4522 4523 4524 4525 4526
  } else {
    // Restore length so that the heap remains parsable in
    // case of evacuation failure.
    arrayOop(old)->set_length(end);
  }
4527
  _scanner.set_region(_g1->heap_region_containing_raw(obj));
4528
  // process our set of indices (include header in first chunk)
4529
  obj->oop_iterate_range(&_scanner, start, end);
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4551
  void do_void();
4552

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4574
        pss->deal_with_reference((narrowOop*) stolen_task);
4575
      } else {
4576
        pss->deal_with_reference((oop*) stolen_task);
4577
      }
4578 4579 4580 4581

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4582
      pss->trim_queue();
4583
    }
4584 4585 4586 4587
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4588 4589 4590 4591 4592 4593

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4594
  int _n_workers;
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
  G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
      _terminator(workers, _queues),
4610 4611
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
      _n_workers(workers)
4612 4613 4614 4615 4616 4617 4618 4619 4620
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

  void work(int i) {
4621
    if (i >= _n_workers) return;  // no work needed this round
4622 4623 4624 4625

    double start_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);

4626 4627 4628
    ResourceMark rm;
    HandleMark   hm;

4629 4630 4631 4632
    G1ParScanThreadState            pss(_g1h, i);
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4633 4634 4635 4636 4637 4638 4639 4640

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
    G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
    G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4641
    G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4642

4643 4644 4645 4646 4647 4648 4649
    G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
    G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
    G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);

    OopsInHeapRegionClosure        *scan_root_cl;
    OopsInHeapRegionClosure        *scan_perm_cl;

4650
    if (_g1h->g1_policy()->during_initial_mark_pause()) {
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
      scan_root_cl = &scan_mark_root_cl;
      scan_perm_cl = &scan_mark_perm_cl;
    } else {
      scan_root_cl = &only_scan_root_cl;
      scan_perm_cl = &only_scan_perm_cl;
    }

    pss.start_strong_roots();
    _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                  SharedHeap::SO_AllClasses,
                                  scan_root_cl,
4662
                                  &push_heap_rs_cl,
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
                                  scan_perm_cl,
                                  i);
    pss.end_strong_roots();
    {
      double start = os::elapsedTime();
      G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
      evac.do_void();
      double elapsed_ms = (os::elapsedTime()-start)*1000.0;
      double term_ms = pss.term_time()*1000.0;
      _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4673
      _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4674
    }
4675
    _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4676 4677 4678 4679 4680 4681
    _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

    // Clean up any par-expanded rem sets.
    HeapRegionRemSet::par_cleanup();

    if (ParallelGCVerbose) {
4682 4683
      MutexLocker x(stats_lock());
      pss.print_termination_stats(i);
4684 4685
    }

4686
    assert(pss.refs()->is_empty(), "should be empty");
4687 4688
    double end_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4689 4690 4691 4692 4693
  }
};

// *** Common G1 Evacuation Stuff

4694 4695
// This method is run in a GC worker.

4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
                        SharedHeap::ScanningOption so,
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4712 4713 4714 4715 4716 4717
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4718
                       &buf_scan_non_heap_roots,
4719
                       &eager_scan_code_roots,
4720
                       &buf_scan_perm);
4721

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
  // Finish up any enqueued closure apps.
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
  double ext_roots_end = os::elapsedTime();
  g1_policy()->reset_obj_copy_time(worker_i);
  double obj_copy_time_sec =
    buf_scan_non_heap_roots.closure_app_seconds() +
    buf_scan_perm.closure_app_seconds();
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

  // Scan strong roots in mark stack.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
    concurrent_mark()->oops_do(scan_non_heap_roots);
  }
  double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);

  // XXX What should this be doing in the parallel case?
  g1_policy()->record_collection_pause_end_CH_strong_roots();
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
  // Finish with the ref_processor roots.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4750 4751 4752 4753
    // We need to treat the discovered reference lists as roots and
    // keep entries (which are added by the marking threads) on them
    // live until they can be processed at the end of marking.
    ref_processor()->weak_oops_do(scan_non_heap_roots);
4754 4755 4756 4757 4758 4759 4760 4761 4762
    ref_processor()->oops_do(scan_non_heap_roots);
  }
  g1_policy()->record_collection_pause_end_G1_strong_roots();
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4763 4764
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
}


class SaveMarksClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->save_marks();
    return false;
  }
};

void G1CollectedHeap::save_marks() {
4777
  if (!CollectedHeap::use_parallel_gc_threads()) {
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
    SaveMarksClosure sm;
    heap_region_iterate(&sm);
  }
  // We do this even in the parallel case
  perm_gen()->save_marks();
}

void G1CollectedHeap::evacuate_collection_set() {
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
4790 4791
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

4792 4793 4794 4795 4796 4797 4798 4799
  int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  set_par_threads(n_workers);
  G1ParTask g1_par_task(this, n_workers, _task_queues);

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

4800 4801
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par = os::elapsedTime();
4802
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4803
    // The individual threads will set their evac-failure closures.
4804
    StrongRootsScope srs(this);
4805
    if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4806 4807
    workers()->run_task(&g1_par_task);
  } else {
4808
    StrongRootsScope srs(this);
4809 4810 4811 4812 4813 4814 4815 4816 4817
    g1_par_task.work(0);
  }

  double par_time = (os::elapsedTime() - start_par) * 1000.0;
  g1_policy()->record_par_time(par_time);
  set_par_threads(0);
  // Is this the right thing to do here?  We don't save marks
  // on individual heap regions when we allocate from
  // them in parallel, so this seems like the correct place for this.
4818
  retire_all_alloc_regions();
4819 4820 4821 4822 4823

  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
4824 4825 4826 4827 4828
  {
    G1IsAliveClosure is_alive(this);
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
4829
  release_gc_alloc_regions(false /* totally */);
4830
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4831

4832
  concurrent_g1_refine()->clear_hot_cache();
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  // Must do this before removing self-forwarding pointers, which clears
  // the per-region evac-failure flags.
  concurrent_mark()->complete_marking_in_collection_set();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
    if (PrintGCDetails) {
4844
      gclog_or_tty->print(" (to-space overflow)");
4845 4846 4847 4848 4849
    } else if (PrintGC) {
      gclog_or_tty->print("--");
    }
  }

4850 4851 4852 4853
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4854 4855 4856

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
4857 4858
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
4859 4860 4861
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
4862
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4863 4864 4865
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
4866
                                     HRRSCleanupTask* hrrs_cleanup_task,
4867 4868 4869 4870 4871 4872 4873 4874
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
4875 4876
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
4877 4878 4879
  }
}

4880 4881 4882
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
4883
                                  bool par) {
4884 4885 4886 4887 4888 4889
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
4890
  free_list->add_as_head(hr);
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

  int i = hr->hrs_index() + 1;
  size_t num = 1;
  while ((size_t) i < n_regions()) {
    HeapRegion* curr_hr = _hrs->at(i);
    if (!curr_hr->continuesHumongous()) {
      break;
4915
    }
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    num += 1;
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
4933
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4934 4935 4936 4937
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
4938
    _summary_bytes_used -= pre_used;
4939 4940 4941
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4942
    _free_list.add_as_head(free_list);
4943 4944 4945 4946
  }
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
  }
}

void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  while (list != NULL) {
    guarantee( list->is_young(), "invariant" );

    HeapWord* bottom = list->bottom();
    HeapWord* end = list->end();
    MemRegion mr(bottom, end);
    ct_bs->dirty(mr);

    list = list->get_next_young_region();
  }
}

4963 4964 4965 4966

class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
4967
  HeapRegion* volatile _su_head;
4968 4969
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4970 4971
                     G1CollectedHeap* g1h,
                     HeapRegion* survivor_list) :
4972 4973
    AbstractGangTask("G1 Par Cleanup CT Task"),
    _ct_bs(ct_bs),
4974 4975
    _g1h(g1h),
    _su_head(survivor_list)
4976 4977 4978 4979 4980 4981 4982
  { }

  void work(int i) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
4983
    // Redirty the cards of the survivor regions.
4984
    dirty_list(&this->_su_head);
4985
  }
4986

4987
  void clear_cards(HeapRegion* r) {
4988 4989
    // Cards for Survivor regions will be dirtied later.
    if (!r->is_survivor()) {
4990 4991 4992
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008

  void dirty_list(HeapRegion* volatile * head_ptr) {
    HeapRegion* head;
    do {
      // Pop region off the list.
      head = *head_ptr;
      if (head != NULL) {
        HeapRegion* r = (HeapRegion*)
          Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
        if (r == head) {
          assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
          _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
        }
      }
    } while (*head_ptr != NULL);
  }
5009 5010 5011
};


5012 5013
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5014
  G1CollectedHeap* _g1h;
5015 5016
  CardTableModRefBS* _ct_bs;
public:
5017 5018
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
    : _g1h(g1h), _ct_bs(ct_bs) { }
5019
  virtual bool doHeapRegion(HeapRegion* r) {
5020
    if (r->is_survivor()) {
5021
      _g1h->verify_dirty_region(r);
5022
    } else {
5023
      _g1h->verify_not_dirty_region(r);
5024 5025 5026 5027
    }
    return false;
  }
};
5028

5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  ct_bs->verify_dirty_region(mr);
}

5049
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5050
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5051
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5052
    verify_dirty_region(hr);
5053 5054 5055 5056 5057 5058 5059
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
  verify_dirty_young_list(_young_list->first_survivor_region());
}
5060 5061
#endif

5062 5063 5064 5065
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

5066
  // Iterate over the dirty cards region list.
5067 5068
  G1ParCleanupCTTask cleanup_task(ct_bs, this,
                                  _young_list->first_survivor_region());
5069

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
  if (ParallelGCThreads > 0) {
    set_par_threads(workers()->total_workers());
    workers()->run_task(&cleanup_task);
    set_par_threads(0);
  } else {
    while (_dirty_cards_region_list) {
      HeapRegion* r = _dirty_cards_region_list;
      cleanup_task.clear_cards(r);
      _dirty_cards_region_list = r->get_next_dirty_cards_region();
      if (_dirty_cards_region_list == r) {
        // The last region.
        _dirty_cards_region_list = NULL;
      }
      r->set_next_dirty_cards_region(NULL);
    }
5085
    // now, redirty the cards of the survivor regions
5086 5087 5088
    // (it seemed faster to do it this way, instead of iterating over
    // all regions and then clearing / dirtying as appropriate)
    dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
5089
  }
5090

5091 5092
  double elapsed = os::elapsedTime() - start;
  g1_policy()->record_clear_ct_time( elapsed * 1000.0);
5093 5094
#ifndef PRODUCT
  if (G1VerifyCTCleanup || VerifyAfterGC) {
5095
    G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5096 5097 5098
    heap_region_iterate(&cleanup_verifier);
  }
#endif
5099 5100 5101
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5102 5103 5104
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5105 5106 5107
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5108 5109 5110 5111 5112
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
5123
    assert(!is_on_master_free_list(cur), "sanity");
5124

5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5135 5136 5137
      double end_sec = os::elapsedTime();
      double elapsed_ms = (end_sec - start_sec) * 1000.0;
      young_time_ms += elapsed_ms;
5138

5139 5140
      start_sec = os::elapsedTime();
      non_young = true;
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
      guarantee( index != -1, "invariant" );
      guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5156 5157 5158 5159 5160 5161

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
    } else {
      int index = cur->young_index_in_cset();
      guarantee( index == -1, "invariant" );
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
      // And the region is empty.
5173 5174
      assert(!cur->is_empty(), "Should not have empty regions in a CS.");
      free_region(cur, &pre_used, &local_free_list, false /* par */);
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
    } else {
      cur->uninstall_surv_rate_group();
      if (cur->is_young())
        cur->set_young_index_in_cset(-1);
      cur->set_not_young();
      cur->set_evacuation_failed(false);
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
  if (non_young)
    non_young_time_ms += elapsed_ms;
  else
    young_time_ms += elapsed_ms;

5195 5196 5197
  update_sets_after_freeing_regions(pre_used, &local_free_list,
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
5198 5199 5200 5201
  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

5223 5224 5225 5226
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
5227 5228
  }

5229 5230
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
5231 5232
}

5233 5234 5235 5236 5237 5238
void G1CollectedHeap::reset_free_regions_coming() {
  {
    assert(free_regions_coming(), "pre-condition");
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
5239 5240
  }

5241 5242 5243
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
5244 5245 5246
  }
}

5247 5248 5249 5250 5251
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
5252 5253
  }

5254 5255 5256
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
5257 5258 5259
  }

  {
5260 5261 5262
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5263 5264 5265
    }
  }

5266 5267 5268
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
5269 5270 5271 5272 5273 5274 5275 5276 5277
  }
}

size_t G1CollectedHeap::n_regions() {
  return _hrs->length();
}

size_t G1CollectedHeap::max_regions() {
  return
5278
    (size_t)align_size_up(max_capacity(), HeapRegion::GrainBytes) /
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
    HeapRegion::GrainBytes;
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
  g1_policy()->set_region_short_lived(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

5305 5306
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
5307

5308
  if (check_heap) {
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

void G1CollectedHeap::empty_young_list() {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");

  _young_list->empty_list();
}

bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  bool no_allocs = true;
  for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    no_allocs = r == NULL || r->saved_mark_at_top();
  }
  return no_allocs;
}

5334
void G1CollectedHeap::retire_all_alloc_regions() {
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r != NULL) {
      // Check for aliases.
      bool has_processed_alias = false;
      for (int i = 0; i < ap; ++i) {
        if (_gc_alloc_regions[i] == r) {
          has_processed_alias = true;
          break;
        }
      }
      if (!has_processed_alias) {
5347
        retire_alloc_region(r, false /* par */);
5348 5349 5350 5351 5352 5353 5354
      }
    }
  }
}

// Done at the start of full GC.
void G1CollectedHeap::tear_down_region_lists() {
5355
  _free_list.remove_all();
5356 5357 5358
}

class RegionResetter: public HeapRegionClosure {
5359 5360 5361
  G1CollectedHeap* _g1h;
  FreeRegionList _local_free_list;

5362
public:
5363 5364 5365
  RegionResetter() : _g1h(G1CollectedHeap::heap()),
                     _local_free_list("Local Free List for RegionResetter") { }

5366 5367 5368 5369 5370 5371 5372 5373 5374
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      if (r->top() < r->end()) {
        Copy::fill_to_words(r->top(),
                          pointer_delta(r->end(), r->top()));
      }
    } else {
      assert(r->is_empty(), "tautology");
5375
      _local_free_list.add_as_tail(r);
5376 5377 5378 5379
    }
    return false;
  }

5380 5381 5382 5383
  void update_free_lists() {
    _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
                                            false /* par */);
  }
5384 5385 5386 5387 5388 5389 5390
};

// Done at the end of full GC.
void G1CollectedHeap::rebuild_region_lists() {
  // This needs to go at the end of the full GC.
  RegionResetter rs;
  heap_region_iterate(&rs);
5391
  rs.update_free_lists();
5392 5393 5394 5395 5396 5397
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

5398 5399 5400 5401 5402 5403
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
5404
  }
5405 5406
}

5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
  if (force || !g1_policy()->is_young_list_full()) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      g1_policy()->update_region_num(true /* next_is_young */);
      set_region_short_lived_locked(new_alloc_region);
5418
      g1mm()->update_eden_counters();
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

// Heap region set verification

5446 5447 5448 5449 5450
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  HumongousRegionSet* _humongous_set;
  FreeRegionList*     _free_list;
  size_t              _region_count;
5451 5452

public:
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
  VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _humongous_set(humongous_set), _free_list(free_list),
    _region_count(0) { }

  size_t region_count()      { return _region_count;      }

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
    }
5474 5475 5476 5477
    return false;
  }
};

5478 5479
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5480

5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
5505

T
tonyp 已提交
5506 5507 5508 5509
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
5510

5511 5512 5513 5514
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
  _humongous_set.verify_start();
  _free_list.verify_start();
5515

5516 5517
  VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  heap_region_iterate(&cl);
5518

5519 5520
  _humongous_set.verify_end();
  _free_list.verify_end();
5521
}