psParallelCompact.cpp 116.2 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_psParallelCompact.cpp.incl"

#include <math.h>

// All sizes are in HeapWords.
31 32 33 34 35 36 37
const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
const size_t ParallelCompactData::RegionSizeBytes =
  RegionSize << LogHeapWordSize;
const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
D
duke 已提交
38

39 40
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_shift = 27;
D
duke 已提交
41

42 43
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
D
duke 已提交
44

45 46
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
D
duke 已提交
47

48 49
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::los_mask = ~dc_mask;
D
duke 已提交
50

51 52
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
D
duke 已提交
53

54 55
const ParallelCompactData::RegionData::region_sz_t
ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
D
duke 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
bool      PSParallelCompact::_print_phases = false;

ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;

double PSParallelCompact::_dwl_mean;
double PSParallelCompact::_dwl_std_dev;
double PSParallelCompact::_dwl_first_term;
double PSParallelCompact::_dwl_adjustment;
#ifdef  ASSERT
bool   PSParallelCompact::_dwl_initialized = false;
#endif  // #ifdef ASSERT

#ifdef VALIDATE_MARK_SWEEP
72
GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
D
duke 已提交
73 74 75 76 77
GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
size_t                  PSParallelCompact::_live_oops_index = 0;
size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
78 79
GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
D
duke 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
bool                    PSParallelCompact::_pointer_tracking = false;
bool                    PSParallelCompact::_root_tracking = true;

GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
#endif

#ifndef PRODUCT
const char* PSParallelCompact::space_names[] = {
  "perm", "old ", "eden", "from", "to  "
};

96
void PSParallelCompact::print_region_ranges()
D
duke 已提交
97 98 99 100 101 102 103
{
  tty->print_cr("space  bottom     top        end        new_top");
  tty->print_cr("------ ---------- ---------- ---------- ----------");

  for (unsigned int id = 0; id < last_space_id; ++id) {
    const MutableSpace* space = _space_info[id].space();
    tty->print_cr("%u %s "
104 105
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
D
duke 已提交
106
                  id, space_names[id],
107 108 109 110
                  summary_data().addr_to_region_idx(space->bottom()),
                  summary_data().addr_to_region_idx(space->top()),
                  summary_data().addr_to_region_idx(space->end()),
                  summary_data().addr_to_region_idx(_space_info[id].new_top()));
D
duke 已提交
111 112 113 114
  }
}

void
115
print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
D
duke 已提交
116
{
117 118
#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
D
duke 已提交
119 120

  ParallelCompactData& sd = PSParallelCompact::summary_data();
121 122 123 124 125
  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
  tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_IDX_FORMAT " " PTR_FORMAT " "
                REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
                REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
D
duke 已提交
126 127
                i, c->data_location(), dci, c->destination(),
                c->partial_obj_size(), c->live_obj_size(),
128
                c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
129

130 131
#undef  REGION_IDX_FORMAT
#undef  REGION_DATA_FORMAT
D
duke 已提交
132 133 134 135 136 137 138 139
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           HeapWord* const beg_addr,
                           HeapWord* const end_addr)
{
  size_t total_words = 0;
140 141
  size_t i = summary_data.addr_to_region_idx(beg_addr);
  const size_t last = summary_data.addr_to_region_idx(end_addr);
D
duke 已提交
142 143 144
  HeapWord* pdest = 0;

  while (i <= last) {
145
    ParallelCompactData::RegionData* c = summary_data.region(i);
D
duke 已提交
146
    if (c->data_size() != 0 || c->destination() != pdest) {
147
      print_generic_summary_region(i, c);
D
duke 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      total_words += c->data_size();
      pdest = c->destination();
    }
    ++i;
  }

  tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
}

void
print_generic_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info)
{
  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
    const MutableSpace* space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(),
                               MAX2(space->top(), space_info[id].new_top()));
  }
}

void
169 170 171
print_initial_summary_region(size_t i,
                             const ParallelCompactData::RegionData* c,
                             bool newline = true)
D
duke 已提交
172
{
173 174 175
  tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
D
duke 已提交
176 177
             i, c->destination(),
             c->partial_obj_size(), c->live_obj_size(),
178
             c->data_size(), c->source_region(), c->destination_count());
D
duke 已提交
179 180 181 182 183 184 185 186 187 188
  if (newline) tty->cr();
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           const MutableSpace* space) {
  if (space->top() == space->bottom()) {
    return;
  }

189 190 191 192 193
  const size_t region_size = ParallelCompactData::RegionSize;
  typedef ParallelCompactData::RegionData RegionData;
  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
  const RegionData* c = summary_data.region(end_region - 1);
D
duke 已提交
194 195 196
  HeapWord* end_addr = c->destination() + c->data_size();
  const size_t live_in_space = pointer_delta(end_addr, space->bottom());

197 198 199 200 201 202
  // Print (and count) the full regions at the beginning of the space.
  size_t full_region_count = 0;
  size_t i = summary_data.addr_to_region_idx(space->bottom());
  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
    print_initial_summary_region(i, summary_data.region(i));
    ++full_region_count;
D
duke 已提交
203 204 205
    ++i;
  }

206
  size_t live_to_right = live_in_space - full_region_count * region_size;
D
duke 已提交
207 208

  double max_reclaimed_ratio = 0.0;
209
  size_t max_reclaimed_ratio_region = 0;
D
duke 已提交
210 211 212
  size_t max_dead_to_right = 0;
  size_t max_live_to_right = 0;

213 214
  // Print the 'reclaimed ratio' for regions while there is something live in
  // the region or to the right of it.  The remaining regions are empty (and
D
duke 已提交
215
  // uninteresting), and computing the ratio will result in division by 0.
216 217 218 219
  while (i < end_region && live_to_right > 0) {
    c = summary_data.region(i);
    HeapWord* const region_addr = summary_data.region_to_addr(i);
    const size_t used_to_right = pointer_delta(space->top(), region_addr);
D
duke 已提交
220 221 222 223 224
    const size_t dead_to_right = used_to_right - live_to_right;
    const double reclaimed_ratio = double(dead_to_right) / live_to_right;

    if (reclaimed_ratio > max_reclaimed_ratio) {
            max_reclaimed_ratio = reclaimed_ratio;
225
            max_reclaimed_ratio_region = i;
D
duke 已提交
226 227 228 229
            max_dead_to_right = dead_to_right;
            max_live_to_right = live_to_right;
    }

230
    print_initial_summary_region(i, c, false);
231
    tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
D
duke 已提交
232 233 234 235 236 237
                  reclaimed_ratio, dead_to_right, live_to_right);

    live_to_right -= c->data_size();
    ++i;
  }

238 239 240
  // Any remaining regions are empty.  Print one more if there is one.
  if (i < end_region) {
    print_initial_summary_region(i, summary_data.region(i));
D
duke 已提交
241 242
  }

243 244
  tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
                "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
245
                max_reclaimed_ratio_region, max_dead_to_right,
D
duke 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                max_live_to_right, max_reclaimed_ratio);
}

void
print_initial_summary_data(ParallelCompactData& summary_data,
                           SpaceInfo* space_info) {
  unsigned int id = PSParallelCompact::perm_space_id;
  const MutableSpace* space;
  do {
    space = space_info[id].space();
    print_initial_summary_data(summary_data, space);
  } while (++id < PSParallelCompact::eden_space_id);

  do {
    space = space_info[id].space();
    print_generic_summary_data(summary_data, space->bottom(), space->top());
  } while (++id < PSParallelCompact::last_space_id);
}
#endif  // #ifndef PRODUCT

#ifdef  ASSERT
size_t add_obj_count;
size_t add_obj_size;
size_t mark_bitmap_count;
size_t mark_bitmap_size;
#endif  // #ifdef ASSERT

ParallelCompactData::ParallelCompactData()
{
  _region_start = 0;

277 278 279
  _region_vspace = 0;
  _region_data = 0;
  _region_count = 0;
D
duke 已提交
280 281 282 283 284 285 286 287
}

bool ParallelCompactData::initialize(MemRegion covered_region)
{
  _region_start = covered_region.start();
  const size_t region_size = covered_region.word_size();
  DEBUG_ONLY(_region_end = _region_start + region_size;)

288
  assert(region_align_down(_region_start) == _region_start,
D
duke 已提交
289
         "region start not aligned");
290 291
  assert((region_size & RegionSizeOffsetMask) == 0,
         "region size not a multiple of RegionSize");
D
duke 已提交
292

293
  bool result = initialize_region_data(region_size);
D
duke 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307

  return result;
}

PSVirtualSpace*
ParallelCompactData::create_vspace(size_t count, size_t element_size)
{
  const size_t raw_bytes = count * element_size;
  const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
  const size_t granularity = os::vm_allocation_granularity();
  const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));

  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
    MAX2(page_sz, granularity);
308
  ReservedSpace rs(bytes, rs_align, rs_align > 0);
D
duke 已提交
309 310 311 312 313 314 315 316
  os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
                       rs.size());
  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
  if (vspace != 0) {
    if (vspace->expand_by(bytes)) {
      return vspace;
    }
    delete vspace;
317 318
    // Release memory reserved in the space.
    rs.release();
D
duke 已提交
319 320 321 322 323
  }

  return 0;
}

324
bool ParallelCompactData::initialize_region_data(size_t region_size)
D
duke 已提交
325
{
326 327 328 329 330
  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
  _region_vspace = create_vspace(count, sizeof(RegionData));
  if (_region_vspace != 0) {
    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
    _region_count = count;
D
duke 已提交
331 332 333 334 335 336 337
    return true;
  }
  return false;
}

void ParallelCompactData::clear()
{
338
  memset(_region_data, 0, _region_vspace->committed_size());
D
duke 已提交
339 340
}

341 342 343
void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
  assert(beg_region <= _region_count, "beg_region out of range");
  assert(end_region <= _region_count, "end_region out of range");
D
duke 已提交
344

345 346
  const size_t region_cnt = end_region - beg_region;
  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
D
duke 已提交
347 348
}

349
HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
D
duke 已提交
350
{
351 352
  const RegionData* cur_cp = region(region_idx);
  const RegionData* const end_cp = region(region_count() - 1);
D
duke 已提交
353

354
  HeapWord* result = region_to_addr(region_idx);
D
duke 已提交
355 356 357
  if (cur_cp < end_cp) {
    do {
      result += cur_cp->partial_obj_size();
358
    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
D
duke 已提交
359 360 361 362 363 364 365
  }
  return result;
}

void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
{
  const size_t obj_ofs = pointer_delta(addr, _region_start);
366 367
  const size_t beg_region = obj_ofs >> Log2RegionSize;
  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
D
duke 已提交
368 369 370 371

  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)

372 373 374
  if (beg_region == end_region) {
    // All in one region.
    _region_data[beg_region].add_live_obj(len);
D
duke 已提交
375 376 377
    return;
  }

378 379 380
  // First region.
  const size_t beg_ofs = region_offset(addr);
  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
D
duke 已提交
381 382

  klassOop klass = ((oop)addr)->klass();
383 384 385 386
  // Middle regions--completely spanned by this object.
  for (size_t region = beg_region + 1; region < end_region; ++region) {
    _region_data[region].set_partial_obj_size(RegionSize);
    _region_data[region].set_partial_obj_addr(addr);
D
duke 已提交
387 388
  }

389 390 391 392
  // Last region.
  const size_t end_ofs = region_offset(addr + len - 1);
  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
  _region_data[end_region].set_partial_obj_addr(addr);
D
duke 已提交
393 394 395 396 397
}

void
ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
{
398 399
  assert(region_offset(beg) == 0, "not RegionSize aligned");
  assert(region_offset(end) == 0, "not RegionSize aligned");
D
duke 已提交
400

401 402
  size_t cur_region = addr_to_region_idx(beg);
  const size_t end_region = addr_to_region_idx(end);
D
duke 已提交
403
  HeapWord* addr = beg;
404 405 406 407 408
  while (cur_region < end_region) {
    _region_data[cur_region].set_destination(addr);
    _region_data[cur_region].set_destination_count(0);
    _region_data[cur_region].set_source_region(cur_region);
    _region_data[cur_region].set_data_location(addr);
D
duke 已提交
409

410 411 412
    // Update live_obj_size so the region appears completely full.
    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
    _region_data[cur_region].set_live_obj_size(live_size);
D
duke 已提交
413

414 415
    ++cur_region;
    addr += RegionSize;
D
duke 已提交
416 417 418 419 420 421 422 423
  }
}

bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
                                    HeapWord* source_beg, HeapWord* source_end,
                                    HeapWord** target_next,
                                    HeapWord** source_next) {
  // This is too strict.
424
  // assert(region_offset(source_beg) == 0, "not RegionSize aligned");
D
duke 已提交
425 426 427 428 429 430 431 432 433 434 435

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
                  "sb=" PTR_FORMAT " se=" PTR_FORMAT " "
                  "tn=" PTR_FORMAT " sn=" PTR_FORMAT,
                  target_beg, target_end,
                  source_beg, source_end,
                  target_next != 0 ? *target_next : (HeapWord*) 0,
                  source_next != 0 ? *source_next : (HeapWord*) 0);
  }

436 437
  size_t cur_region = addr_to_region_idx(source_beg);
  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
D
duke 已提交
438 439

  HeapWord *dest_addr = target_beg;
440 441
  while (cur_region < end_region) {
    size_t words = _region_data[cur_region].data_size();
D
duke 已提交
442 443 444 445 446

#if     1
    assert(pointer_delta(target_end, dest_addr) >= words,
           "source region does not fit into target region");
#else
447 448 449 450
    // XXX - need some work on the corner cases here.  If the region does not
    // fit, then must either make sure any partial_obj from the region fits, or
    // "undo" the initial part of the partial_obj that is in the previous
    // region.
D
duke 已提交
451 452 453
    if (dest_addr + words >= target_end) {
      // Let the caller know where to continue.
      *target_next = dest_addr;
454
      *source_next = region_to_addr(cur_region);
D
duke 已提交
455 456 457 458
      return false;
    }
#endif  // #if 1

459
    _region_data[cur_region].set_destination(dest_addr);
D
duke 已提交
460

461 462 463 464
    // Set the destination_count for cur_region, and if necessary, update
    // source_region for a destination region.  The source_region field is
    // updated if cur_region is the first (left-most) region to be copied to a
    // destination region.
D
duke 已提交
465
    //
466 467 468 469
    // The destination_count calculation is a bit subtle.  A region that has
    // data that compacts into itself does not count itself as a destination.
    // This maintains the invariant that a zero count means the region is
    // available and can be claimed and then filled.
D
duke 已提交
470 471
    if (words > 0) {
      HeapWord* const last_addr = dest_addr + words - 1;
472 473
      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
      const size_t dest_region_2 = addr_to_region_idx(last_addr);
D
duke 已提交
474
#if     0
475
      // Initially assume that the destination regions will be the same and
D
duke 已提交
476
      // adjust the value below if necessary.  Under this assumption, if
477 478 479 480 481
      // cur_region == dest_region_2, then cur_region will be compacted
      // completely into itself.
      uint destination_count = cur_region == dest_region_2 ? 0 : 1;
      if (dest_region_1 != dest_region_2) {
        // Destination regions differ; adjust destination_count.
D
duke 已提交
482
        destination_count += 1;
483 484 485 486 487 488
        // Data from cur_region will be copied to the start of dest_region_2.
        _region_data[dest_region_2].set_source_region(cur_region);
      } else if (region_offset(dest_addr) == 0) {
        // Data from cur_region will be copied to the start of the destination
        // region.
        _region_data[dest_region_1].set_source_region(cur_region);
D
duke 已提交
489 490
      }
#else
491
      // Initially assume that the destination regions will be different and
D
duke 已提交
492
      // adjust the value below if necessary.  Under this assumption, if
493 494 495 496 497 498
      // cur_region == dest_region2, then cur_region will be compacted partially
      // into dest_region_1 and partially into itself.
      uint destination_count = cur_region == dest_region_2 ? 1 : 2;
      if (dest_region_1 != dest_region_2) {
        // Data from cur_region will be copied to the start of dest_region_2.
        _region_data[dest_region_2].set_source_region(cur_region);
D
duke 已提交
499
      } else {
500
        // Destination regions are the same; adjust destination_count.
D
duke 已提交
501
        destination_count -= 1;
502 503 504 505
        if (region_offset(dest_addr) == 0) {
          // Data from cur_region will be copied to the start of the destination
          // region.
          _region_data[dest_region_1].set_source_region(cur_region);
D
duke 已提交
506 507 508 509
        }
      }
#endif  // #if 0

510 511
      _region_data[cur_region].set_destination_count(destination_count);
      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
D
duke 已提交
512 513 514
      dest_addr += words;
    }

515
    ++cur_region;
D
duke 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  }

  *target_next = dest_addr;
  return true;
}

HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
  assert(addr != NULL, "Should detect NULL oop earlier");
  assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
#ifdef ASSERT
  if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
    gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
  }
#endif
  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");

532 533 534 535
  // Region covering the object.
  size_t region_index = addr_to_region_idx(addr);
  const RegionData* const region_ptr = region(region_index);
  HeapWord* const region_addr = region_align_down(addr);
D
duke 已提交
536

537 538
  assert(addr < region_addr + RegionSize, "Region does not cover object");
  assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
D
duke 已提交
539

540
  HeapWord* result = region_ptr->destination();
D
duke 已提交
541

542 543 544 545 546
  // If all the data in the region is live, then the new location of the object
  // can be calculated from the destination of the region plus the offset of the
  // object in the region.
  if (region_ptr->data_size() == RegionSize) {
    result += pointer_delta(addr, region_addr);
D
duke 已提交
547 548 549 550
    return result;
  }

  // The new location of the object is
551 552 553 554 555
  //    region destination +
  //    size of the partial object extending onto the region +
  //    sizes of the live objects in the Region that are to the left of addr
  const size_t partial_obj_size = region_ptr->partial_obj_size();
  HeapWord* const search_start = region_addr + partial_obj_size;
D
duke 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
  size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));

  result += partial_obj_size + live_to_left;
  assert(result <= addr, "object cannot move to the right");
  return result;
}

klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
  klassOop updated_klass;
  if (PSParallelCompact::should_update_klass(old_klass)) {
    updated_klass = (klassOop) calc_new_pointer(old_klass);
  } else {
    updated_klass = old_klass;
  }

  return updated_klass;
}

#ifdef  ASSERT
void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
{
  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
  const size_t* const end = (const size_t*)vspace->committed_high_addr();
  for (const size_t* p = beg; p < end; ++p) {
    assert(*p == 0, "not zero");
  }
}

void ParallelCompactData::verify_clear()
{
588
  verify_clear(_region_vspace);
D
duke 已提交
589 590 591 592
}
#endif  // #ifdef ASSERT

#ifdef NOT_PRODUCT
593
ParallelCompactData::RegionData* debug_region(size_t region_index) {
D
duke 已提交
594
  ParallelCompactData& sd = PSParallelCompact::summary_data();
595
  return sd.region(region_index);
D
duke 已提交
596 597 598 599 600 601 602 603 604 605 606 607
}
#endif

elapsedTimer        PSParallelCompact::_accumulated_time;
unsigned int        PSParallelCompact::_total_invocations = 0;
unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
jlong               PSParallelCompact::_time_of_last_gc = 0;
CollectorCounters*  PSParallelCompact::_counters = NULL;
ParMarkBitMap       PSParallelCompact::_mark_bitmap;
ParallelCompactData PSParallelCompact::_summary_data;

PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
608 609 610 611 612 613 614

void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }

void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }

D
duke 已提交
615 616 617
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);

618 619
void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
D
duke 已提交
620

621
void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
D
duke 已提交
622

623 624
void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
D
duke 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

void PSParallelCompact::post_initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  MemRegion mr = heap->reserved_region();
  _ref_processor = ReferenceProcessor::create_ref_processor(
    mr,                         // span
    true,                       // atomic_discovery
    true,                       // mt_discovery
    &_is_alive_closure,
    ParallelGCThreads,
    ParallelRefProcEnabled);
  _counters = new CollectorCounters("PSParallelCompact", 1);

  // Initialize static fields in ParCompactionManager.
  ParCompactionManager::initialize(mark_bitmap());
}

bool PSParallelCompact::initialize() {
  ParallelScavengeHeap* heap = gc_heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  MemRegion mr = heap->reserved_region();

  // Was the old gen get allocated successfully?
  if (!heap->old_gen()->is_allocated()) {
    return false;
  }

  initialize_space_info();
  initialize_dead_wood_limiter();

  if (!_mark_bitmap.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate bit map for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  if (!_summary_data.initialize(mr)) {
    vm_shutdown_during_initialization("Unable to allocate tables for "
      "parallel garbage collection for the requested heap size.");
    return false;
  }

  return true;
}

void PSParallelCompact::initialize_space_info()
{
  memset(&_space_info, 0, sizeof(_space_info));

  ParallelScavengeHeap* heap = gc_heap();
  PSYoungGen* young_gen = heap->young_gen();
  MutableSpace* perm_space = heap->perm_gen()->object_space();

  _space_info[perm_space_id].set_space(perm_space);
  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
  _space_info[eden_space_id].set_space(young_gen->eden_space());
  _space_info[from_space_id].set_space(young_gen->from_space());
  _space_info[to_space_id].set_space(young_gen->to_space());

  _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());

  _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
                  _space_info[perm_space_id].min_dense_prefix());
  }
}

void PSParallelCompact::initialize_dead_wood_limiter()
{
  const size_t max = 100;
  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
  DEBUG_ONLY(_dwl_initialized = true;)
  _dwl_adjustment = normal_distribution(1.0);
}

// Simple class for storing info about the heap at the start of GC, to be used
// after GC for comparison/printing.
class PreGCValues {
public:
  PreGCValues() { }
  PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }

  void fill(ParallelScavengeHeap* heap) {
    _heap_used      = heap->used();
    _young_gen_used = heap->young_gen()->used_in_bytes();
    _old_gen_used   = heap->old_gen()->used_in_bytes();
    _perm_gen_used  = heap->perm_gen()->used_in_bytes();
  };

  size_t heap_used() const      { return _heap_used; }
  size_t young_gen_used() const { return _young_gen_used; }
  size_t old_gen_used() const   { return _old_gen_used; }
  size_t perm_gen_used() const  { return _perm_gen_used; }

private:
  size_t _heap_used;
  size_t _young_gen_used;
  size_t _old_gen_used;
  size_t _perm_gen_used;
};

void
PSParallelCompact::clear_data_covering_space(SpaceId id)
{
  // At this point, top is the value before GC, new_top() is the value that will
  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
  // should be marked above top.  The summary data is cleared to the larger of
  // top & new_top.
  MutableSpace* const space = _space_info[id].space();
  HeapWord* const bot = space->bottom();
  HeapWord* const top = space->top();
  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());

  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
  _mark_bitmap.clear_range(beg_bit, end_bit);

748 749 750 751
  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
  const size_t end_region =
    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
  _summary_data.clear_range(beg_region, end_region);
D
duke 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
{
  // Update the from & to space pointers in space_info, since they are swapped
  // at each young gen gc.  Do the update unconditionally (even though a
  // promotion failure does not swap spaces) because an unknown number of minor
  // collections will have swapped the spaces an unknown number of times.
  TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
  ParallelScavengeHeap* heap = gc_heap();
  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
  _space_info[to_space_id].set_space(heap->young_gen()->to_space());

  pre_gc_values->fill(heap);

  ParCompactionManager::reset();
  NOT_PRODUCT(_mark_bitmap.reset_counters());
  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)

  // Increment the invocation count
773
  heap->increment_total_collections(true);
D
duke 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

  // We need to track unique mark sweep invocations as well.
  _total_invocations++;

  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

  // Fill in TLABs
  heap->accumulate_statistics_all_tlabs();
  heap->ensure_parsability(true);  // retire TLABs

  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyBeforeGC:");
    Universe::verify(true);
  }

  // Verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyBeforeGC) {
    heap->old_gen()->verify_object_start_array();
    heap->perm_gen()->verify_object_start_array();
  }

  DEBUG_ONLY(mark_bitmap()->verify_clear();)
  DEBUG_ONLY(summary_data().verify_clear();)
J
jcoomes 已提交
801 802 803

  // Have worker threads release resources the next time they run a task.
  gc_task_manager()->release_all_resources();
D
duke 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
}

void PSParallelCompact::post_compact()
{
  TraceTime tm("post compact", print_phases(), true, gclog_or_tty);

  // Clear the marking bitmap and summary data and update top() in each space.
  for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
    clear_data_covering_space(SpaceId(id));
    _space_info[id].space()->set_top(_space_info[id].new_top());
  }

  MutableSpace* const eden_space = _space_info[eden_space_id].space();
  MutableSpace* const from_space = _space_info[from_space_id].space();
  MutableSpace* const to_space   = _space_info[to_space_id].space();

  ParallelScavengeHeap* heap = gc_heap();
  bool eden_empty = eden_space->is_empty();
  if (!eden_empty) {
    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
                                            heap->young_gen(), heap->old_gen());
  }

  // Update heap occupancy information which is used as input to the soft ref
  // clearing policy at the next gc.
  Universe::update_heap_info_at_gc();

  bool young_gen_empty = eden_empty && from_space->is_empty() &&
    to_space->is_empty();

  BarrierSet* bs = heap->barrier_set();
  if (bs->is_a(BarrierSet::ModRef)) {
    ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
    MemRegion old_mr = heap->old_gen()->reserved();
    MemRegion perm_mr = heap->perm_gen()->reserved();
    assert(perm_mr.end() <= old_mr.start(), "Generations out of order");

    if (young_gen_empty) {
      modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
    } else {
      modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
    }
  }

  Threads::gc_epilogue();
  CodeCache::gc_epilogue();

  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

  ref_processor()->enqueue_discovered_references(NULL);

855 856 857 858
  if (ZapUnusedHeapArea) {
    heap->gen_mangle_unused_area();
  }

D
duke 已提交
859 860 861 862 863 864 865 866
  // Update time of last GC
  reset_millis_since_last_gc();
}

HeapWord*
PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
                                                    bool maximum_compaction)
{
867
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
868 869 870
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
871 872 873
  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
874

875
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
876 877
  // of the dense prefix.
  size_t full_count = 0;
878 879
  const RegionData* cp;
  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
D
duke 已提交
880 881 882 883 884 885 886 887
    ++full_count;
  }

  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  if (maximum_compaction || cp == end_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
888
    return sd.region_to_addr(cp);
D
duke 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
  }

  HeapWord* const new_top = _space_info[id].new_top();
  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double cur_density = double(space_live) / space_capacity;
  const double deadwood_density =
    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
                  cur_density, deadwood_density, deadwood_goal);
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
  }

  // XXX - Use binary search?
911 912 913
  HeapWord* dense_prefix = sd.region_to_addr(cp);
  const RegionData* full_cp = cp;
  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
D
duke 已提交
914
  while (cp < end_cp) {
915 916
    HeapWord* region_destination = cp->destination();
    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
D
duke 已提交
917
    if (TraceParallelOldGCDensePrefix && Verbose) {
918 919
      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
                    "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
920
                    sd.region(cp), region_destination,
D
duke 已提交
921 922 923 924
                    dense_prefix, cur_deadwood);
    }

    if (cur_deadwood >= deadwood_goal) {
925 926 927 928 929
      // Found the region that has the correct amount of deadwood to the left.
      // This typically occurs after crossing a fairly sparse set of regions, so
      // iterate backwards over those sparse regions, looking for the region
      // that has the lowest density of live objects 'to the right.'
      size_t space_to_left = sd.region(cp) * region_size;
D
duke 已提交
930 931 932 933 934 935
      size_t live_to_left = space_to_left - cur_deadwood;
      size_t space_to_right = space_capacity - space_to_left;
      size_t live_to_right = space_live - live_to_left;
      double density_to_right = double(live_to_right) / space_to_right;
      while (cp > full_cp) {
        --cp;
936 937 938 939 940 941
        const size_t prev_region_live_to_right = live_to_right -
          cp->data_size();
        const size_t prev_region_space_to_right = space_to_right + region_size;
        double prev_region_density_to_right =
          double(prev_region_live_to_right) / prev_region_space_to_right;
        if (density_to_right <= prev_region_density_to_right) {
D
duke 已提交
942 943 944
          return dense_prefix;
        }
        if (TraceParallelOldGCDensePrefix && Verbose) {
945
          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
946 947
                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
                        prev_region_density_to_right);
D
duke 已提交
948
        }
949 950 951 952
        dense_prefix -= region_size;
        live_to_right = prev_region_live_to_right;
        space_to_right = prev_region_space_to_right;
        density_to_right = prev_region_density_to_right;
D
duke 已提交
953 954 955 956
      }
      return dense_prefix;
    }

957
    dense_prefix += region_size;
D
duke 已提交
958 959 960 961 962 963 964 965 966 967 968 969
    ++cp;
  }

  return dense_prefix;
}

#ifndef PRODUCT
void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
                                                 const SpaceId id,
                                                 const bool maximum_compaction,
                                                 HeapWord* const addr)
{
970 971
  const size_t region_idx = summary_data().addr_to_region_idx(addr);
  RegionData* const cp = summary_data().region(region_idx);
D
duke 已提交
972 973 974 975 976 977 978 979 980 981
  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const new_top = _space_info[id].new_top();

  const size_t space_live = pointer_delta(new_top, space->bottom());
  const size_t dead_to_left = pointer_delta(addr, cp->destination());
  const size_t space_cap = space->capacity_in_words();
  const double dead_to_left_pct = double(dead_to_left) / space_cap;
  const size_t live_to_right = new_top - cp->destination();
  const size_t dead_to_right = space->top() - addr - live_to_right;

982
  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
D
duke 已提交
983 984 985 986
                "spl=" SIZE_FORMAT " "
                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
                " ratio=%10.8f",
987
                algorithm, addr, region_idx,
D
duke 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
                space_live,
                dead_to_left, dead_to_left_pct,
                dead_to_right, live_to_right,
                double(dead_to_right) / live_to_right);
}
#endif  // #ifndef PRODUCT

// Return a fraction indicating how much of the generation can be treated as
// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
// based on the density of live objects in the generation to determine a limit,
// which is then adjusted so the return value is min_percent when the density is
// 1.
//
// The following table shows some return values for a different values of the
// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
// min_percent is 1.
//
//                          fraction allowed as dead wood
//         -----------------------------------------------------------------
// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
// ------- ---------- ---------- ---------- ---------- ---------- ----------
// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000

double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
{
  assert(_dwl_initialized, "uninitialized");

  // The raw limit is the value of the normal distribution at x = density.
  const double raw_limit = normal_distribution(density);

  // Adjust the raw limit so it becomes the minimum when the density is 1.
  //
  // First subtract the adjustment value (which is simply the precomputed value
  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  // Then add the minimum value, so the minimum is returned when the density is
  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  const double min = double(min_percent) / 100.0;
  const double limit = raw_limit - _dwl_adjustment + min;
  return MAX2(limit, 0.0);
}

1049 1050 1051
ParallelCompactData::RegionData*
PSParallelCompact::first_dead_space_region(const RegionData* beg,
                                           const RegionData* end)
D
duke 已提交
1052
{
1053
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1054
  ParallelCompactData& sd = summary_data();
1055 1056
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1057 1058 1059 1060 1061

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1062
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1063
    HeapWord* const dest = middle_ptr->destination();
1064
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1065 1066 1067 1068 1069
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    if (middle > left && dest < addr) {
      right = middle - 1;
1070
    } else if (middle < right && middle_ptr->data_size() == region_size) {
D
duke 已提交
1071 1072 1073 1074 1075
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1076
  return sd.region(left);
D
duke 已提交
1077 1078
}

1079 1080 1081 1082
ParallelCompactData::RegionData*
PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
                                          const RegionData* end,
                                          size_t dead_words)
D
duke 已提交
1083 1084
{
  ParallelCompactData& sd = summary_data();
1085 1086
  size_t left = sd.region(beg);
  size_t right = end > beg ? sd.region(end) - 1 : left;
D
duke 已提交
1087 1088 1089 1090 1091

  // Binary search.
  while (left < right) {
    // Equivalent to (left + right) / 2, but does not overflow.
    const size_t middle = left + (right - left) / 2;
1092
    RegionData* const middle_ptr = sd.region(middle);
D
duke 已提交
1093
    HeapWord* const dest = middle_ptr->destination();
1094
    HeapWord* const addr = sd.region_to_addr(middle);
D
duke 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    assert(dest != NULL, "sanity");
    assert(dest <= addr, "must move left");

    const size_t dead_to_left = pointer_delta(addr, dest);
    if (middle > left && dead_to_left > dead_words) {
      right = middle - 1;
    } else if (middle < right && dead_to_left < dead_words) {
      left = middle + 1;
    } else {
      return middle_ptr;
    }
  }
1107
  return sd.region(left);
D
duke 已提交
1108 1109 1110 1111 1112
}

// The result is valid during the summary phase, after the initial summarization
// of each space into itself, and before final summarization.
inline double
1113
PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
D
duke 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
                                   HeapWord* const bottom,
                                   HeapWord* const top,
                                   HeapWord* const new_top)
{
  ParallelCompactData& sd = summary_data();

  assert(cp != NULL, "sanity");
  assert(bottom != NULL, "sanity");
  assert(top != NULL, "sanity");
  assert(new_top != NULL, "sanity");
  assert(top >= new_top, "summary data problem?");
  assert(new_top > bottom, "space is empty; should not be here");
  assert(new_top >= cp->destination(), "sanity");
1127
  assert(top >= sd.region_to_addr(cp), "sanity");
D
duke 已提交
1128 1129 1130 1131

  HeapWord* const destination = cp->destination();
  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  const size_t compacted_region_live = pointer_delta(new_top, destination);
1132 1133
  const size_t compacted_region_used = pointer_delta(top,
                                                     sd.region_to_addr(cp));
D
duke 已提交
1134 1135 1136 1137 1138 1139 1140
  const size_t reclaimable = compacted_region_used - compacted_region_live;

  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  return double(reclaimable) / divisor;
}

// Return the address of the end of the dense prefix, a.k.a. the start of the
1141
// compacted region.  The address is always on a region boundary.
D
duke 已提交
1142
//
1143 1144 1145 1146 1147 1148 1149
// Completely full regions at the left are skipped, since no compaction can
// occur in those regions.  Then the maximum amount of dead wood to allow is
// computed, based on the density (amount live / capacity) of the generation;
// the region with approximately that amount of dead space to the left is
// identified as the limit region.  Regions between the last completely full
// region and the limit region are scanned and the one that has the best
// (maximum) reclaimed_ratio() is selected.
D
duke 已提交
1150 1151 1152 1153
HeapWord*
PSParallelCompact::compute_dense_prefix(const SpaceId id,
                                        bool maximum_compaction)
{
1154
  const size_t region_size = ParallelCompactData::RegionSize;
D
duke 已提交
1155 1156 1157 1158
  const ParallelCompactData& sd = summary_data();

  const MutableSpace* const space = _space_info[id].space();
  HeapWord* const top = space->top();
1159
  HeapWord* const top_aligned_up = sd.region_align_up(top);
D
duke 已提交
1160
  HeapWord* const new_top = _space_info[id].new_top();
1161
  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
D
duke 已提交
1162
  HeapWord* const bottom = space->bottom();
1163 1164 1165 1166
  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  const RegionData* const new_top_cp =
    sd.addr_to_region_ptr(new_top_aligned_up);
D
duke 已提交
1167

1168
  // Skip full regions at the beginning of the space--they are necessarily part
D
duke 已提交
1169
  // of the dense prefix.
1170 1171
  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
D
duke 已提交
1172
         space->is_empty(), "no dead space allowed to the left");
1173 1174
  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
         "region must have dead space");
D
duke 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

  // The gc number is saved whenever a maximum compaction is done, and used to
  // determine when the maximum compaction interval has expired.  This avoids
  // successive max compactions for different reasons.
  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
    total_invocations() == HeapFirstMaximumCompactionCount;
  if (maximum_compaction || full_cp == top_cp || interval_ended) {
    _maximum_compaction_gc_num = total_invocations();
1185
    return sd.region_to_addr(full_cp);
D
duke 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
  }

  const size_t space_live = pointer_delta(new_top, bottom);
  const size_t space_used = space->used_in_words();
  const size_t space_capacity = space->capacity_in_words();

  const double density = double(space_live) / double(space_capacity);
  const size_t min_percent_free =
          id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  const double limiter = dead_wood_limiter(density, min_percent_free);
  const size_t dead_wood_max = space_used - space_live;
  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
                                      dead_wood_max);

  if (TraceParallelOldGCDensePrefix) {
    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
                  "space_cap=" SIZE_FORMAT,
                  space_live, space_used,
                  space_capacity);
    tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
                  density, min_percent_free, limiter,
                  dead_wood_max, dead_wood_limit);
  }

1211 1212 1213
  // Locate the region with the desired amount of dead space to the left.
  const RegionData* const limit_cp =
    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
D
duke 已提交
1214

1215
  // Scan from the first region with dead space to the limit region and find the
D
duke 已提交
1216 1217
  // one with the best (largest) reclaimed ratio.
  double best_ratio = 0.0;
1218 1219
  const RegionData* best_cp = full_cp;
  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
D
duke 已提交
1220 1221 1222 1223 1224 1225 1226 1227
    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
    if (tmp_ratio > best_ratio) {
      best_cp = cp;
      best_ratio = tmp_ratio;
    }
  }

#if     0
1228 1229 1230
  // Something to consider:  if the region with the best ratio is 'close to' the
  // first region w/free space, choose the first region with free space
  // ("first-free").  The first-free region is usually near the start of the
D
duke 已提交
1231 1232
  // heap, which means we are copying most of the heap already, so copy a bit
  // more to get complete compaction.
1233
  if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
D
duke 已提交
1234 1235 1236 1237 1238
    _maximum_compaction_gc_num = total_invocations();
    best_cp = full_cp;
  }
#endif  // #if 0

1239
  return sd.region_to_addr(best_cp);
D
duke 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
}

void PSParallelCompact::summarize_spaces_quick()
{
  for (unsigned int i = 0; i < last_space_id; ++i) {
    const MutableSpace* space = _space_info[i].space();
    bool result = _summary_data.summarize(space->bottom(), space->end(),
                                          space->bottom(), space->top(),
                                          _space_info[i].new_top_addr());
    assert(result, "should never fail");
    _space_info[i].set_dense_prefix(space->bottom());
  }
}

void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
{
  HeapWord* const dense_prefix_end = dense_prefix(id);
1257
  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
D
duke 已提交
1258
  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1259
  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
D
duke 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    // Only enough dead space is filled so that any remaining dead space to the
    // left is larger than the minimum filler object.  (The remainder is filled
    // during the copy/update phase.)
    //
    // The size of the dead space to the right of the boundary is not a
    // concern, since compaction will be able to use whatever space is
    // available.
    //
    // Here '||' is the boundary, 'x' represents a don't care bit and a box
    // surrounds the space to be filled with an object.
    //
    // In the 32-bit VM, each bit represents two 32-bit words:
    //                              +---+
    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
    //                              +---+
    //
    // In the 64-bit VM, each bit represents one 64-bit word:
    //                              +------------+
    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
    //                              +------------+
    //                          +-------+
    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
    //                          +-------+
    //                      +-----------+
    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
    //                      +-----------+
    //                          +-------+
    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
    //                          +-------+

    // Initially assume case a, c or e will apply.
    size_t obj_len = (size_t)oopDesc::header_size();
    HeapWord* obj_beg = dense_prefix_end - obj_len;

#ifdef  _LP64
    if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
      // Case b above.
      obj_beg = dense_prefix_end - 1;
    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
      // Case d above.
      obj_beg = dense_prefix_end - 3;
      obj_len = 3;
    }
#endif  // #ifdef _LP64

    MemRegion region(obj_beg, obj_len);
    SharedHeap::fill_region_with_object(region);
    _mark_bitmap.mark_obj(obj_beg, obj_len);
    _summary_data.add_obj(obj_beg, obj_len);
    assert(start_array(id) != NULL, "sanity");
    start_array(id)->allocate_block(obj_beg);
  }
}

void
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
{
  assert(id < last_space_id, "id out of range");
1324 1325
  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
         "should have been set in summarize_spaces_quick()");
D
duke 已提交
1326 1327

  const MutableSpace* space = _space_info[id].space();
1328 1329 1330
  if (_space_info[id].new_top() != space->bottom()) {
    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
    _space_info[id].set_dense_prefix(dense_prefix_end);
D
duke 已提交
1331 1332

#ifndef PRODUCT
1333 1334 1335 1336 1337 1338
    if (TraceParallelOldGCDensePrefix) {
      print_dense_prefix_stats("ratio", id, maximum_compaction,
                               dense_prefix_end);
      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
      print_dense_prefix_stats("density", id, maximum_compaction, addr);
    }
D
duke 已提交
1339 1340
#endif  // #ifndef PRODUCT

1341 1342 1343 1344 1345 1346 1347 1348
    // If dead space crosses the dense prefix boundary, it is (at least
    // partially) filled with a dummy object, marked live and added to the
    // summary data.  This simplifies the copy/update phase and must be done
    // before the final locations of objects are determined, to prevent leaving
    // a fragment of dead space that is too small to fill with an object.
    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
      fill_dense_prefix_end(id);
    }
D
duke 已提交
1349

1350
    // Compute the destination of each Region, and thus each object.
1351 1352 1353 1354 1355
    _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
    _summary_data.summarize(dense_prefix_end, space->end(),
                            dense_prefix_end, space->top(),
                            _space_info[id].new_top_addr());
  }
D
duke 已提交
1356 1357

  if (TraceParallelOldGCSummaryPhase) {
1358
    const size_t region_size = ParallelCompactData::RegionSize;
1359
    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1360
    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
D
duke 已提交
1361
    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1362
    HeapWord* const new_top = _space_info[id].new_top();
1363
    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
D
duke 已提交
1364 1365
    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
    tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1366
                  "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
D
duke 已提交
1367 1368
                  "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
                  id, space->capacity_in_words(), dense_prefix_end,
1369 1370
                  dp_region, dp_words / region_size,
                  cr_words / region_size, new_top);
D
duke 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
  }
}

void PSParallelCompact::summary_phase(ParCompactionManager* cm,
                                      bool maximum_compaction)
{
  EventMark m("2 summarize");
  TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  // trace("2");

#ifdef  ASSERT
  if (TraceParallelOldGCMarkingPhase) {
    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
                  "add_obj_bytes=" SIZE_FORMAT,
                  add_obj_count, add_obj_size * HeapWordSize);
    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
                  "mark_bitmap_bytes=" SIZE_FORMAT,
                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  }
#endif  // #ifdef ASSERT

  // Quick summarization of each space into itself, to see how much is live.
  summarize_spaces_quick();

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after summarizing each space to self");
    Universe::print();
1398
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    if (Verbose) {
      NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
    }
  }

  // The amount of live data that will end up in old space (assuming it fits).
  size_t old_space_total_live = 0;
  unsigned int id;
  for (id = old_space_id; id < last_space_id; ++id) {
    old_space_total_live += pointer_delta(_space_info[id].new_top(),
                                          _space_info[id].space()->bottom());
  }

  const MutableSpace* old_space = _space_info[old_space_id].space();
  if (old_space_total_live > old_space->capacity_in_words()) {
    // XXX - should also try to expand
    maximum_compaction = true;
  } else if (!UseParallelOldGCDensePrefix) {
    maximum_compaction = true;
  }

  // Permanent and Old generations.
  summarize_space(perm_space_id, maximum_compaction);
  summarize_space(old_space_id, maximum_compaction);

  // Summarize the remaining spaces (those in the young gen) into old space.  If
  // the live data from a space doesn't fit, the existing summarization is left
  // intact, so the data is compacted down within the space itself.
  HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
  HeapWord* const target_space_end = old_space->end();
  for (id = eden_space_id; id < last_space_id; ++id) {
    const MutableSpace* space = _space_info[id].space();
    const size_t live = pointer_delta(_space_info[id].new_top(),
                                      space->bottom());
    const size_t available = pointer_delta(target_space_end, *new_top_addr);
1434
    if (live > 0 && live <= available) {
D
duke 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443
      // All the live data will fit.
      if (TraceParallelOldGCSummaryPhase) {
        tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
                      id, *new_top_addr);
      }
      _summary_data.summarize(*new_top_addr, target_space_end,
                              space->bottom(), space->top(),
                              new_top_addr);

1444
      // Clear the source_region field for each region in the space.
1445
      HeapWord* const new_top = _space_info[id].new_top();
1446 1447 1448 1449 1450 1451 1452
      HeapWord* const clear_end = _summary_data.region_align_up(new_top);
      RegionData* beg_region =
        _summary_data.addr_to_region_ptr(space->bottom());
      RegionData* end_region = _summary_data.addr_to_region_ptr(clear_end);
      while (beg_region < end_region) {
        beg_region->set_source_region(0);
        ++beg_region;
D
duke 已提交
1453
      }
1454 1455 1456

      // Reset the new_top value for the space.
      _space_info[id].set_new_top(space->bottom());
D
duke 已提交
1457 1458 1459 1460 1461 1462
    }
  }

  if (TraceParallelOldGCSummaryPhase) {
    tty->print_cr("summary_phase:  after final summarization");
    Universe::print();
1463
    NOT_PRODUCT(print_region_ranges());
D
duke 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    if (Verbose) {
      NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
    }
  }
}

// This method should contain all heap-specific policy for invoking a full
// collection.  invoke_no_policy() will only attempt to compact the heap; it
// will do nothing further.  If we need to bail out for policy reasons, scavenge
// before full gc, or any other specialized behavior, it needs to be added here.
//
// Note that this method should only be called from the vm_thread while at a
// safepoint.
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
         "should be in vm thread");
  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  assert(!heap->is_gc_active(), "not reentrant");

  PSAdaptiveSizePolicy* policy = heap->size_policy();

  // Before each allocation/collection attempt, find out from the
  // policy object if GCs are, on the whole, taking too long. If so,
  // bail out without attempting a collection.  The exceptions are
  // for explicitly requested GC's.
  if (!policy->gc_time_limit_exceeded() ||
      GCCause::is_user_requested_gc(gc_cause) ||
      GCCause::is_serviceability_requested_gc(gc_cause)) {
    IsGCActiveMark mark;

    if (ScavengeBeforeFullGC) {
      PSScavenge::invoke_no_policy();
    }

    PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
  }
}

1504 1505 1506
bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  size_t addr_region_index = addr_to_region_idx(addr);
  return region_index == addr_region_index;
D
duke 已提交
1507 1508 1509 1510 1511 1512 1513 1514
}

// This method contains no policy. You should probably
// be calling invoke() instead.
void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  assert(ref_processor() != NULL, "Sanity");

1515
  if (GC_locker::check_active_before_gc()) {
D
duke 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
    return;
  }

  TimeStamp marking_start;
  TimeStamp compaction_start;
  TimeStamp collection_exit;

  ParallelScavengeHeap* heap = gc_heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSPermGen* perm_gen = heap->perm_gen();
  PSAdaptiveSizePolicy* size_policy = heap->size_policy();

1530 1531 1532 1533 1534
  if (ZapUnusedHeapArea) {
    // Save information needed to minimize mangling
    heap->record_gen_tops_before_GC();
  }

D
duke 已提交
1535 1536 1537 1538 1539 1540 1541
  _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;

  // Make sure data structures are sane, make the heap parsable, and do other
  // miscellaneous bookkeeping.
  PreGCValues pre_gc_values;
  pre_compact(&pre_gc_values);

J
jcoomes 已提交
1542 1543 1544 1545
  // Get the compaction manager reserved for the VM thread.
  ParCompactionManager* const vmthread_cm =
    ParCompactionManager::manager_array(gc_task_manager()->workers());

D
duke 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
  // Place after pre_compact() where the number of invocations is incremented.
  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());

  {
    ResourceMark rm;
    HandleMark hm;

    const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;

    // This is useful for debugging but don't change the output the
    // the customer sees.
    const char* gc_cause_str = "Full GC";
    if (is_system_gc && PrintGCDetails) {
      gc_cause_str = "Full GC (System)";
    }
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
    TraceCollectorStats tcs(counters());
    TraceMemoryManagerStats tms(true /* Full GC */);

    if (TraceGen1Time) accumulated_time()->start();

    // Let the size policy know we're starting
    size_policy->major_collection_begin();

    // When collecting the permanent generation methodOops may be moving,
    // so we either have to flush all bcp data or convert it into bci.
    CodeCache::gc_prologue();
    Threads::gc_prologue();

    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
    COMPILER2_PRESENT(DerivedPointerTable::clear());

    ref_processor()->enable_discovery();
1581
    ref_processor()->snap_policy(maximum_heap_compaction);
D
duke 已提交
1582 1583 1584 1585

    bool marked_for_unloading = false;

    marking_start.update();
J
jcoomes 已提交
1586
    marking_phase(vmthread_cm, maximum_heap_compaction);
D
duke 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

#ifndef PRODUCT
    if (TraceParallelOldGCMarkingPhase) {
      gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
        "cas_by_another %d",
        mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
        mark_bitmap()->cas_by_another());
    }
#endif  // #ifndef PRODUCT

    bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
J
jcoomes 已提交
1598
    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
D
duke 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));

    // adjust_roots() updates Universe::_intArrayKlassObj which is
    // needed by the compaction for filling holes in the dense prefix.
    adjust_roots();

    compaction_start.update();
    // Does the perm gen always have to be done serially because
    // klasses are used in the update of an object?
J
jcoomes 已提交
1610
    compact_perm(vmthread_cm);
D
duke 已提交
1611 1612 1613 1614

    if (UseParallelOldGCCompacting) {
      compact();
    } else {
J
jcoomes 已提交
1615
      compact_serial(vmthread_cm);
D
duke 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
    }

    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
    // done before resizing.
    post_compact();

    // Let the size policy know we're done
    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);

    if (UseAdaptiveSizePolicy) {
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print("AdaptiveSizeStart: ");
        gclog_or_tty->stamp();
        gclog_or_tty->print_cr(" collection: %d ",
                       heap->total_collections());
        if (Verbose) {
          gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
            " perm_gen_capacity: %d ",
            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
            perm_gen->capacity_in_bytes());
        }
      }

      // Don't check if the size_policy is ready here.  Let
      // the size_policy check that internally.
      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
          ((gc_cause != GCCause::_java_lang_system_gc) ||
            UseAdaptiveSizePolicyWithSystemGC)) {
        // Calculate optimal free space amounts
        assert(young_gen->max_size() >
          young_gen->from_space()->capacity_in_bytes() +
          young_gen->to_space()->capacity_in_bytes(),
          "Sizes of space in young gen are out-of-bounds");
        size_t max_eden_size = young_gen->max_size() -
          young_gen->from_space()->capacity_in_bytes() -
          young_gen->to_space()->capacity_in_bytes();
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        size_policy->compute_generation_free_space(
                              young_gen->used_in_bytes(),
                              young_gen->eden_space()->used_in_bytes(),
                              old_gen->used_in_bytes(),
                              perm_gen->used_in_bytes(),
                              young_gen->eden_space()->capacity_in_bytes(),
                              old_gen->max_gen_size(),
                              max_eden_size,
                              true /* full gc*/,
                              gc_cause);

        heap->resize_old_gen(
          size_policy->calculated_old_free_size_in_bytes());
D
duke 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

        // Don't resize the young generation at an major collection.  A
        // desired young generation size may have been calculated but
        // resizing the young generation complicates the code because the
        // resizing of the old generation may have moved the boundary
        // between the young generation and the old generation.  Let the
        // young generation resizing happen at the minor collections.
      }
      if (PrintAdaptiveSizePolicy) {
        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
                       heap->total_collections());
      }
    }

    if (UsePerfData) {
      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
      counters->update_counters();
      counters->update_old_capacity(old_gen->capacity_in_bytes());
      counters->update_young_capacity(young_gen->capacity_in_bytes());
    }

    heap->resize_all_tlabs();

    // We collected the perm gen, so we'll resize it here.
    perm_gen->compute_new_size(pre_gc_values.perm_gen_used());

    if (TraceGen1Time) accumulated_time()->stop();

    if (PrintGC) {
      if (PrintGCDetails) {
        // No GC timestamp here.  This is after GC so it would be confusing.
        young_gen->print_used_change(pre_gc_values.young_gen_used());
        old_gen->print_used_change(pre_gc_values.old_gen_used());
        heap->print_heap_change(pre_gc_values.heap_used());
        // Print perm gen last (print_heap_change() excludes the perm gen).
        perm_gen->print_used_change(pre_gc_values.perm_gen_used());
      } else {
        heap->print_heap_change(pre_gc_values.heap_used());
      }
    }

    // Track memory usage and detect low memory
    MemoryService::track_memory_usage();
    heap->update_counters();

    if (PrintGCDetails) {
      if (size_policy->print_gc_time_limit_would_be_exceeded()) {
        if (size_policy->gc_time_limit_exceeded()) {
          gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
            "of %d%%", GCTimeLimit);
        } else {
          gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
            "of %d%%", GCTimeLimit);
        }
      }
      size_policy->set_print_gc_time_limit_would_be_exceeded(false);
    }
  }

  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyAfterGC:");
    Universe::verify(false);
  }

  // Re-verify object start arrays
  if (VerifyObjectStartArray &&
      VerifyAfterGC) {
    old_gen->verify_object_start_array();
    perm_gen->verify_object_start_array();
  }

1737 1738 1739 1740 1741
  if (ZapUnusedHeapArea) {
    old_gen->object_space()->check_mangled_unused_area_complete();
    perm_gen->object_space()->check_mangled_unused_area_complete();
  }

D
duke 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

  collection_exit.update();

  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
  if (PrintGCTaskTimeStamps) {
    gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
                           INT64_FORMAT,
                           marking_start.ticks(), compaction_start.ticks(),
                           collection_exit.ticks());
    gc_task_manager()->print_task_time_stamps();
  }
}

bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
                                             PSYoungGen* young_gen,
                                             PSOldGen* old_gen) {
  MutableSpace* const eden_space = young_gen->eden_space();
  assert(!eden_space->is_empty(), "eden must be non-empty");
  assert(young_gen->virtual_space()->alignment() ==
         old_gen->virtual_space()->alignment(), "alignments do not match");

  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
    return false;
  }

  // Both generations must be completely committed.
  if (young_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }
  if (old_gen->virtual_space()->uncommitted_size() != 0) {
    return false;
  }

  // Figure out how much to take from eden.  Include the average amount promoted
  // in the total; otherwise the next young gen GC will simply bail out to a
  // full GC.
  const size_t alignment = old_gen->virtual_space()->alignment();
  const size_t eden_used = eden_space->used_in_bytes();
  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  const size_t eden_capacity = eden_space->capacity_in_bytes();

  if (absorb_size >= eden_capacity) {
    return false; // Must leave some space in eden.
  }

  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  if (new_young_size < young_gen->min_gen_size()) {
    return false; // Respect young gen minimum size.
  }

  if (TraceAdaptiveGCBoundary && Verbose) {
    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
                        absorb_size / K,
                        eden_capacity / K, (eden_capacity - absorb_size) / K,
                        young_gen->from_space()->used_in_bytes() / K,
                        young_gen->to_space()->used_in_bytes() / K,
                        young_gen->capacity_in_bytes() / K, new_young_size / K);
  }

  // Fill the unused part of the old gen.
  MutableSpace* const old_space = old_gen->object_space();
  MemRegion old_gen_unused(old_space->top(), old_space->end());
  if (!old_gen_unused.is_empty()) {
    SharedHeap::fill_region_with_object(old_gen_unused);
  }

  // Take the live data from eden and set both top and end in the old gen to
  // eden top.  (Need to set end because reset_after_change() mangles the region
  // from end to virtual_space->high() in debug builds).
  HeapWord* const new_top = eden_space->top();
  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
                                        absorb_size);
  young_gen->reset_after_change();
  old_space->set_top(new_top);
  old_space->set_end(new_top);
  old_gen->reset_after_change();

  // Update the object start array for the filler object and the data from eden.
  ObjectStartArray* const start_array = old_gen->start_array();
  HeapWord* const start = old_gen_unused.start();
  for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
    start_array->allocate_block(addr);
  }

  // Could update the promoted average here, but it is not typically updated at
  // full GCs and the value to use is unclear.  Something like
  //
  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.

  size_policy->set_bytes_absorbed_from_eden(absorb_size);
  return true;
}

GCTaskManager* const PSParallelCompact::gc_task_manager() {
  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
    "shouldn't return NULL");
  return ParallelScavengeHeap::gc_task_manager();
}

void PSParallelCompact::marking_phase(ParCompactionManager* cm,
                                      bool maximum_heap_compaction) {
  // Recursively traverse all live objects and mark them
  EventMark m("1 mark object");
  TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = gc_heap();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
1856
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
D
duke 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
  ParallelTaskTerminator terminator(parallel_gc_threads, qset);

  PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  PSParallelCompact::FollowStackClosure follow_stack_closure(cm);

  {
    TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);

    GCTaskQueue* q = GCTaskQueue::create();

    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
    // We scan the thread roots in parallel
    Threads::create_thread_roots_marking_tasks(q);
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));

    if (parallel_gc_threads > 1) {
      for (uint j = 0; j < parallel_gc_threads; j++) {
        q->enqueue(new StealMarkingTask(&terminator));
      }
    }

    WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
    q->enqueue(fin);

    gc_task_manager()->add_list(q);

    fin->wait_for();

    // We have to release the barrier tasks!
    WaitForBarrierGCTask::destroy(fin);
  }

  // Process reference objects found during marking
  {
    TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
    if (ref_processor()->processing_is_mt()) {
      RefProcTaskExecutor task_executor;
      ref_processor()->process_discovered_references(
1901 1902
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
        &task_executor);
D
duke 已提交
1903 1904
    } else {
      ref_processor()->process_discovered_references(
1905
        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
D
duke 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
    }
  }

  TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  // Follow system dictionary roots and unload classes.
  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());

  // Follow code cache roots.
  CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
                          purged_class);
  follow_stack(cm); // Flush marking stack.

  // Update subklass/sibling/implementor links of live klasses
  // revisit_klass_stack is used in follow_weak_klass_links().
  follow_weak_klass_links(cm);

  // Visit symbol and interned string tables and delete unmarked oops
  SymbolTable::unlink(is_alive_closure());
  StringTable::unlink(is_alive_closure());

  assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
  assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
}

// This should be moved to the shared markSweep code!
class PSAlwaysTrueClosure: public BoolObjectClosure {
public:
  void do_object(oop p) { ShouldNotReachHere(); }
  bool do_object_b(oop p) { return true; }
};
static PSAlwaysTrueClosure always_true;

void PSParallelCompact::adjust_roots() {
  // Adjust the pointers to reflect the new locations
  EventMark m("3 adjust roots");
  TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);

  // General strong roots.
  Universe::oops_do(adjust_root_pointer_closure());
  ReferenceProcessor::oops_do(adjust_root_pointer_closure());
  JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  Threads::oops_do(adjust_root_pointer_closure());
  ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  FlatProfiler::oops_do(adjust_root_pointer_closure());
  Management::oops_do(adjust_root_pointer_closure());
  JvmtiExport::oops_do(adjust_root_pointer_closure());
  // SO_AllClasses
  SystemDictionary::oops_do(adjust_root_pointer_closure());
  vmSymbols::oops_do(adjust_root_pointer_closure());

  // Now adjust pointers in remaining weak roots.  (All of which should
  // have been cleared if they pointed to non-surviving objects.)
  // Global (weak) JNI handles
  JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());

  CodeCache::oops_do(adjust_pointer_closure());
  SymbolTable::oops_do(adjust_root_pointer_closure());
  StringTable::oops_do(adjust_root_pointer_closure());
  ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  // Roots were visited so references into the young gen in roots
  // may have been scanned.  Process them also.
  // Should the reference processor have a span that excludes
  // young gen objects?
  PSScavenge::reference_processor()->weak_oops_do(
                                              adjust_root_pointer_closure());
}

void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  EventMark m("4 compact perm");
  TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  // trace("4");

  gc_heap()->perm_gen()->start_array()->reset();
  move_and_update(cm, perm_space_id);
}

1982 1983 1984
void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
                                                      uint parallel_gc_threads)
{
D
duke 已提交
1985 1986 1987 1988 1989 1990 1991
  TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);

  const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
  for (unsigned int j = 0; j < task_count; j++) {
    q->enqueue(new DrainStacksCompactionTask());
  }

1992
  // Find all regions that are available (can be filled immediately) and
D
duke 已提交
1993
  // distribute them to the thread stacks.  The iteration is done in reverse
1994
  // order (high to low) so the regions will be removed in ascending order.
D
duke 已提交
1995 1996 1997

  const ParallelCompactData& sd = PSParallelCompact::summary_data();

1998
  size_t fillable_regions = 0;   // A count for diagnostic purposes.
D
duke 已提交
1999 2000 2001 2002 2003 2004 2005
  unsigned int which = 0;       // The worker thread number.

  for (unsigned int id = to_space_id; id > perm_space_id; --id) {
    SpaceInfo* const space_info = _space_info + id;
    MutableSpace* const space = space_info->space();
    HeapWord* const new_top = space_info->new_top();

2006 2007 2008 2009
    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
    const size_t end_region =
      sd.addr_to_region_idx(sd.region_align_up(new_top));
    assert(end_region > 0, "perm gen cannot be empty");
D
duke 已提交
2010

2011 2012
    for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
      if (sd.region(cur)->claim_unsafe()) {
D
duke 已提交
2013 2014 2015 2016
        ParCompactionManager* cm = ParCompactionManager::manager_array(which);
        cm->save_for_processing(cur);

        if (TraceParallelOldGCCompactionPhase && Verbose) {
2017
          const size_t count_mod_8 = fillable_regions & 7;
D
duke 已提交
2018
          if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2019
          gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
D
duke 已提交
2020 2021 2022
          if (count_mod_8 == 7) gclog_or_tty->cr();
        }

2023
        NOT_PRODUCT(++fillable_regions;)
D
duke 已提交
2024

2025
        // Assign regions to threads in round-robin fashion.
D
duke 已提交
2026 2027 2028 2029 2030 2031 2032 2033
        if (++which == task_count) {
          which = 0;
        }
      }
    }
  }

  if (TraceParallelOldGCCompactionPhase) {
2034 2035
    if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
    gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
D
duke 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
  }
}

#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4

void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
                                                    uint parallel_gc_threads) {
  TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);

  ParallelCompactData& sd = PSParallelCompact::summary_data();

  // Iterate over all the spaces adding tasks for updating
2048
  // regions in the dense prefix.  Assume that 1 gc thread
D
duke 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
  // will work on opening the gaps and the remaining gc threads
  // will work on the dense prefix.
  SpaceId space_id = old_space_id;
  while (space_id != last_space_id) {
    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
    const MutableSpace* const space = _space_info[space_id].space();

    if (dense_prefix_end == space->bottom()) {
      // There is no dense prefix for this space.
      space_id = next_compaction_space_id(space_id);
      continue;
    }

2062 2063 2064 2065 2066
    // The dense prefix is before this region.
    size_t region_index_end_dense_prefix =
        sd.addr_to_region_idx(dense_prefix_end);
    RegionData* const dense_prefix_cp =
      sd.region(region_index_end_dense_prefix);
D
duke 已提交
2067 2068 2069
    assert(dense_prefix_end == space->end() ||
           dense_prefix_cp->available() ||
           dense_prefix_cp->claimed(),
2070
           "The region after the dense prefix should always be ready to fill");
D
duke 已提交
2071

2072
    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
D
duke 已提交
2073 2074

    // Is there dense prefix work?
2075 2076 2077
    size_t total_dense_prefix_regions =
      region_index_end_dense_prefix - region_index_start;
    // How many regions of the dense prefix should be given to
D
duke 已提交
2078
    // each thread?
2079
    if (total_dense_prefix_regions > 0) {
D
duke 已提交
2080 2081
      uint tasks_for_dense_prefix = 1;
      if (UseParallelDensePrefixUpdate) {
2082
        if (total_dense_prefix_regions <=
D
duke 已提交
2083 2084 2085
            (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
          // Don't over partition.  This assumes that
          // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2086
          // so there are not many regions to process.
D
duke 已提交
2087 2088 2089 2090 2091 2092 2093
          tasks_for_dense_prefix = parallel_gc_threads;
        } else {
          // Over partition
          tasks_for_dense_prefix = parallel_gc_threads *
            PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
        }
      }
2094
      size_t regions_per_thread = total_dense_prefix_regions /
D
duke 已提交
2095
        tasks_for_dense_prefix;
2096 2097 2098
      // Give each thread at least 1 region.
      if (regions_per_thread == 0) {
        regions_per_thread = 1;
D
duke 已提交
2099 2100 2101
      }

      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2102
        if (region_index_start >= region_index_end_dense_prefix) {
D
duke 已提交
2103 2104
          break;
        }
2105 2106 2107
        // region_index_end is not processed
        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
                                       region_index_end_dense_prefix);
D
duke 已提交
2108 2109
        q->enqueue(new UpdateDensePrefixTask(
                                 space_id,
2110 2111 2112
                                 region_index_start,
                                 region_index_end));
        region_index_start = region_index_end;
D
duke 已提交
2113 2114 2115 2116
      }
    }
    // This gets any part of the dense prefix that did not
    // fit evenly.
2117
    if (region_index_start < region_index_end_dense_prefix) {
D
duke 已提交
2118 2119
      q->enqueue(new UpdateDensePrefixTask(
                                 space_id,
2120 2121
                                 region_index_start,
                                 region_index_end_dense_prefix));
D
duke 已提交
2122 2123 2124 2125 2126
    }
    space_id = next_compaction_space_id(space_id);
  }  // End tasks for dense prefix
}

2127
void PSParallelCompact::enqueue_region_stealing_tasks(
D
duke 已提交
2128 2129 2130 2131 2132
                                     GCTaskQueue* q,
                                     ParallelTaskTerminator* terminator_ptr,
                                     uint parallel_gc_threads) {
  TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);

2133
  // Once a thread has drained it's stack, it should try to steal regions from
D
duke 已提交
2134 2135 2136
  // other threads.
  if (parallel_gc_threads > 1) {
    for (uint j = 0; j < parallel_gc_threads; j++) {
2137
      q->enqueue(new StealRegionCompactionTask(terminator_ptr));
D
duke 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
    }
  }
}

void PSParallelCompact::compact() {
  EventMark m("5 compact");
  // trace("5");
  TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  PSOldGen* old_gen = heap->old_gen();
  old_gen->start_array()->reset();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2152
  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
D
duke 已提交
2153 2154 2155
  ParallelTaskTerminator terminator(parallel_gc_threads, qset);

  GCTaskQueue* q = GCTaskQueue::create();
2156
  enqueue_region_draining_tasks(q, parallel_gc_threads);
D
duke 已提交
2157
  enqueue_dense_prefix_tasks(q, parallel_gc_threads);
2158
  enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
D
duke 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

  {
    TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);

    WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
    q->enqueue(fin);

    gc_task_manager()->add_list(q);

    fin->wait_for();

    // We have to release the barrier tasks!
    WaitForBarrierGCTask::destroy(fin);

#ifdef  ASSERT
2174
    // Verify that all regions have been processed before the deferred updates.
D
duke 已提交
2175
    // Note that perm_space_id is skipped; this type of verification is not
2176
    // valid until the perm gen is compacted by regions.
D
duke 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      verify_complete(SpaceId(id));
    }
#endif
  }

  {
    // Update the deferred objects, if any.  Any compaction manager can be used.
    TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
      update_deferred_objects(cm, SpaceId(id));
    }
  }
}

#ifdef  ASSERT
void PSParallelCompact::verify_complete(SpaceId space_id) {
2195 2196
  // All Regions between space bottom() to new_top() should be marked as filled
  // and all Regions between new_top() and top() should be available (i.e.,
D
duke 已提交
2197 2198 2199
  // should have been emptied).
  ParallelCompactData& sd = summary_data();
  SpaceInfo si = _space_info[space_id];
2200 2201 2202 2203 2204
  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
D
duke 已提交
2205 2206 2207

  bool issued_a_warning = false;

2208 2209 2210
  size_t cur_region;
  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2211
    if (!c->completed()) {
2212
      warning("region " SIZE_FORMAT " not filled:  "
D
duke 已提交
2213
              "destination_count=" SIZE_FORMAT,
2214
              cur_region, c->destination_count());
D
duke 已提交
2215 2216 2217 2218
      issued_a_warning = true;
    }
  }

2219 2220
  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
    const RegionData* const c = sd.region(cur_region);
D
duke 已提交
2221
    if (!c->available()) {
2222
      warning("region " SIZE_FORMAT " not empty:   "
D
duke 已提交
2223
              "destination_count=" SIZE_FORMAT,
2224
              cur_region, c->destination_count());
D
duke 已提交
2225 2226 2227 2228 2229
      issued_a_warning = true;
    }
  }

  if (issued_a_warning) {
2230
    print_region_ranges();
D
duke 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
  }
}
#endif  // #ifdef ASSERT

void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
  EventMark m("5 compact serial");
  TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();

  old_gen->start_array()->reset();
  old_gen->move_and_update(cm);
  young_gen->move_and_update(cm);
}


void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
  while(!cm->overflow_stack()->is_empty()) {
    oop obj = cm->overflow_stack()->pop();
    obj->follow_contents(cm);
  }

  oop obj;
  // obj is a reference!!!
  while (cm->marking_stack()->pop_local(obj)) {
    // It would be nice to assert about the type of objects we might
    // pop, but they can come from anywhere, unfortunately.
    obj->follow_contents(cm);
  }
}

void
PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
  // All klasses on the revisit stack are marked at this point.
  // Update and follow all subklass, sibling and implementor links.
  for (uint i = 0; i < ParallelGCThreads+1; i++) {
    ParCompactionManager* cm = ParCompactionManager::manager_array(i);
    KeepAliveClosure keep_alive_closure(cm);
    for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
      cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
        is_alive_closure(),
        &keep_alive_closure);
    }
    follow_stack(cm);
  }
}

void
PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  cm->revisit_klass_stack()->push(k);
}

#ifdef VALIDATE_MARK_SWEEP

2289
void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
D
duke 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
  if (!ValidateMarkSweep)
    return;

  if (!isroot) {
    if (_pointer_tracking) {
      guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
      _adjusted_pointers->remove(p);
    }
  } else {
    ptrdiff_t index = _root_refs_stack->find(p);
    if (index != -1) {
      int l = _root_refs_stack->length();
      if (l > 0 && l - 1 != index) {
2303
        void* last = _root_refs_stack->pop();
D
duke 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
        assert(last != p, "should be different");
        _root_refs_stack->at_put(index, last);
      } else {
        _root_refs_stack->remove(p);
      }
    }
  }
}


2314
void PSParallelCompact::check_adjust_pointer(void* p) {
D
duke 已提交
2315 2316 2317 2318 2319 2320 2321
  _adjusted_pointers->push(p);
}


class AdjusterTracker: public OopClosure {
 public:
  AdjusterTracker() {};
2322 2323
  void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
D
duke 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
};


void PSParallelCompact::track_interior_pointers(oop obj) {
  if (ValidateMarkSweep) {
    _adjusted_pointers->clear();
    _pointer_tracking = true;

    AdjusterTracker checker;
    obj->oop_iterate(&checker);
  }
}


void PSParallelCompact::check_interior_pointers() {
  if (ValidateMarkSweep) {
    _pointer_tracking = false;
    guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  }
}


void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  if (ValidateMarkSweep) {
    guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
    _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  }
}


void PSParallelCompact::register_live_oop(oop p, size_t size) {
  if (ValidateMarkSweep) {
    _live_oops->push(p);
    _live_oops_size->push(size);
    _live_oops_index++;
  }
}

void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  if (ValidateMarkSweep) {
    oop obj = _live_oops->at((int)_live_oops_index);
    guarantee(obj == p, "should be the same object");
    guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
    _live_oops_index++;
  }
}

void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
                                  HeapWord* compaction_top) {
  assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
         "should be moved to forwarded location");
  if (ValidateMarkSweep) {
    PSParallelCompact::validate_live_oop(oop(q), size);
    _live_oops_moved_to->push(oop(compaction_top));
  }
  if (RecordMarkSweepCompaction) {
    _cur_gc_live_oops->push(q);
    _cur_gc_live_oops_moved_to->push(compaction_top);
    _cur_gc_live_oops_size->push(size);
  }
}


void PSParallelCompact::compaction_complete() {
  if (RecordMarkSweepCompaction) {
    GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
    GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
    GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;

    _cur_gc_live_oops           = _last_gc_live_oops;
    _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
    _cur_gc_live_oops_size      = _last_gc_live_oops_size;
    _last_gc_live_oops          = _tmp_live_oops;
    _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
    _last_gc_live_oops_size     = _tmp_live_oops_size;
  }
}


void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  if (!RecordMarkSweepCompaction) {
    tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
    return;
  }

  if (_last_gc_live_oops == NULL) {
    tty->print_cr("No compaction information gathered yet");
    return;
  }

  for (int i = 0; i < _last_gc_live_oops->length(); i++) {
    HeapWord* old_oop = _last_gc_live_oops->at(i);
    size_t    sz      = _last_gc_live_oops_size->at(i);
    if (old_oop <= q && q < (old_oop + sz)) {
      HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
      size_t offset = (q - old_oop);
      tty->print_cr("Address " PTR_FORMAT, q);
      tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
      tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
      return;
    }
  }

  tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
}
#endif //VALIDATE_MARK_SWEEP

2431
// Update interior oops in the ranges of regions [beg_region, end_region).
D
duke 已提交
2432 2433 2434
void
PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
                                                       SpaceId space_id,
2435 2436
                                                       size_t beg_region,
                                                       size_t end_region) {
D
duke 已提交
2437 2438 2439
  ParallelCompactData& sd = summary_data();
  ParMarkBitMap* const mbm = mark_bitmap();

2440 2441 2442
  HeapWord* beg_addr = sd.region_to_addr(beg_region);
  HeapWord* const end_addr = sd.region_to_addr(end_region);
  assert(beg_region <= end_region, "bad region range");
D
duke 已提交
2443 2444 2445
  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");

#ifdef  ASSERT
2446
  // Claim the regions to avoid triggering an assert when they are marked as
D
duke 已提交
2447
  // filled.
2448 2449
  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
D
duke 已提交
2450 2451 2452 2453 2454
  }
#endif  // #ifdef ASSERT

  if (beg_addr != space(space_id)->bottom()) {
    // Find the first live object or block of dead space that *starts* in this
2455 2456 2457 2458 2459 2460
    // range of regions.  If a partial object crosses onto the region, skip it;
    // it will be marked for 'deferred update' when the object head is
    // processed.  If dead space crosses onto the region, it is also skipped; it
    // will be filled when the prior region is processed.  If neither of those
    // apply, the first word in the region is the start of a live object or dead
    // space.
D
duke 已提交
2461
    assert(beg_addr > space(space_id)->bottom(), "sanity");
2462
    const RegionData* const cp = sd.region(beg_region);
D
duke 已提交
2463
    if (cp->partial_obj_size() != 0) {
2464
      beg_addr = sd.partial_obj_end(beg_region);
D
duke 已提交
2465 2466 2467 2468 2469 2470
    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
    }
  }

  if (beg_addr < end_addr) {
2471
    // A live object or block of dead space starts in this range of Regions.
D
duke 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
     HeapWord* const dense_prefix_end = dense_prefix(space_id);

    // Create closures and iterate.
    UpdateOnlyClosure update_closure(mbm, cm, space_id);
    FillClosure fill_closure(cm, space_id);
    ParMarkBitMap::IterationStatus status;
    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
                          dense_prefix_end);
    if (status == ParMarkBitMap::incomplete) {
      update_closure.do_addr(update_closure.source());
    }
  }

2485 2486 2487 2488
  // Mark the regions as filled.
  RegionData* const beg_cp = sd.region(beg_region);
  RegionData* const end_cp = sd.region(end_region);
  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
D
duke 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
    cp->set_completed();
  }
}

// Return the SpaceId for the space containing addr.  If addr is not in the
// heap, last_space_id is returned.  In debug mode it expects the address to be
// in the heap and asserts such.
PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");

  for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
    if (_space_info[id].space()->contains(addr)) {
      return SpaceId(id);
    }
  }

  assert(false, "no space contains the addr");
  return last_space_id;
}

void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
                                                SpaceId id) {
  assert(id < last_space_id, "bad space id");

  ParallelCompactData& sd = summary_data();
  const SpaceInfo* const space_info = _space_info + id;
  ObjectStartArray* const start_array = space_info->start_array();

  const MutableSpace* const space = space_info->space();
  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  HeapWord* const beg_addr = space_info->dense_prefix();
2520
  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
D
duke 已提交
2521

2522 2523 2524 2525 2526
  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  const RegionData* cur_region;
  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
    HeapWord* const addr = cur_region->deferred_obj_addr();
D
duke 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
    if (addr != NULL) {
      if (start_array != NULL) {
        start_array->allocate_block(addr);
      }
      oop(addr)->update_contents(cm);
      assert(oop(addr)->is_oop_or_null(), "should be an oop now");
    }
  }
}

// Skip over count live words starting from beg, and return the address of the
// next live word.  Unless marked, the word corresponding to beg is assumed to
// be dead.  Callers must either ensure beg does not correspond to the middle of
// an object, or account for those live words in some other way.  Callers must
// also ensure that there are enough live words in the range [beg, end) to skip.
HeapWord*
PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
{
  assert(count > 0, "sanity");

  ParMarkBitMap* m = mark_bitmap();
  idx_t bits_to_skip = m->words_to_bits(count);
  idx_t cur_beg = m->addr_to_bit(beg);
  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));

  do {
    cur_beg = m->find_obj_beg(cur_beg, search_end);
    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
    const size_t obj_bits = cur_end - cur_beg + 1;
    if (obj_bits > bits_to_skip) {
      return m->bit_to_addr(cur_beg + bits_to_skip);
    }
    bits_to_skip -= obj_bits;
    cur_beg = cur_end + 1;
  } while (bits_to_skip > 0);

  // Skipping the desired number of words landed just past the end of an object.
  // Find the start of the next object.
  cur_beg = m->find_obj_beg(cur_beg, search_end);
  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  return m->bit_to_addr(cur_beg);
}

HeapWord*
PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2572
                                 size_t src_region_idx)
D
duke 已提交
2573 2574 2575
{
  ParMarkBitMap* const bitmap = mark_bitmap();
  const ParallelCompactData& sd = summary_data();
2576
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
2577

2578
  assert(sd.is_region_aligned(dest_addr), "not aligned");
D
duke 已提交
2579

2580 2581 2582
  const RegionData* const src_region_ptr = sd.region(src_region_idx);
  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  HeapWord* const src_region_destination = src_region_ptr->destination();
D
duke 已提交
2583

2584 2585
  assert(dest_addr >= src_region_destination, "wrong src region");
  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
D
duke 已提交
2586

2587 2588
  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  HeapWord* const src_region_end = src_region_beg + RegionSize;
D
duke 已提交
2589

2590 2591 2592
  HeapWord* addr = src_region_beg;
  if (dest_addr == src_region_destination) {
    // Return the first live word in the source region.
D
duke 已提交
2593
    if (partial_obj_size == 0) {
2594 2595
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "no objects start in src region");
D
duke 已提交
2596 2597 2598 2599 2600
    }
    return addr;
  }

  // Must skip some live data.
2601 2602
  size_t words_to_skip = dest_addr - src_region_destination;
  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
D
duke 已提交
2603 2604 2605 2606 2607 2608

  if (partial_obj_size >= words_to_skip) {
    // All the live words to skip are part of the partial object.
    addr += words_to_skip;
    if (partial_obj_size == words_to_skip) {
      // Find the first live word past the partial object.
2609 2610
      addr = bitmap->find_obj_beg(addr, src_region_end);
      assert(addr < src_region_end, "wrong src region");
D
duke 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
    }
    return addr;
  }

  // Skip over the partial object (if any).
  if (partial_obj_size != 0) {
    words_to_skip -= partial_obj_size;
    addr += partial_obj_size;
  }

2621 2622 2623
  // Skip over live words due to objects that start in the region.
  addr = skip_live_words(addr, src_region_end, words_to_skip);
  assert(addr < src_region_end, "wrong src region");
D
duke 已提交
2624 2625 2626 2627
  return addr;
}

void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2628
                                                     size_t beg_region,
D
duke 已提交
2629 2630 2631
                                                     HeapWord* end_addr)
{
  ParallelCompactData& sd = summary_data();
2632 2633 2634 2635 2636 2637
  RegionData* const beg = sd.region(beg_region);
  HeapWord* const end_addr_aligned_up = sd.region_align_up(end_addr);
  RegionData* const end = sd.addr_to_region_ptr(end_addr_aligned_up);
  size_t cur_idx = beg_region;
  for (RegionData* cur = beg; cur < end; ++cur, ++cur_idx) {
    assert(cur->data_size() > 0, "region must have live data");
D
duke 已提交
2638
    cur->decrement_destination_count();
2639
    if (cur_idx <= cur->source_region() && cur->available() && cur->claim()) {
D
duke 已提交
2640 2641 2642 2643 2644
      cm->save_for_processing(cur_idx);
    }
  }
}

2645 2646 2647 2648
size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
                                          SpaceId& src_space_id,
                                          HeapWord*& src_space_top,
                                          HeapWord* end_addr)
D
duke 已提交
2649
{
2650
  typedef ParallelCompactData::RegionData RegionData;
D
duke 已提交
2651 2652

  ParallelCompactData& sd = PSParallelCompact::summary_data();
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
  const size_t region_size = ParallelCompactData::RegionSize;

  size_t src_region_idx = 0;

  // Skip empty regions (if any) up to the top of the space.
  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  const RegionData* const top_region_ptr =
    sd.addr_to_region_ptr(top_aligned_up);
  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
    ++src_region_ptr;
  }

  if (src_region_ptr < top_region_ptr) {
    // The next source region is in the current space.  Update src_region_idx
    // and the source address to match src_region_ptr.
    src_region_idx = sd.region(src_region_ptr);
    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
    if (src_region_addr > closure.source()) {
      closure.set_source(src_region_addr);
D
duke 已提交
2674
    }
2675
    return src_region_idx;
D
duke 已提交
2676 2677
  }

2678
  // Switch to a new source space and find the first non-empty region.
D
duke 已提交
2679 2680 2681 2682 2683 2684 2685 2686
  unsigned int space_id = src_space_id + 1;
  assert(space_id < last_space_id, "not enough spaces");

  HeapWord* const destination = closure.destination();

  do {
    MutableSpace* space = _space_info[space_id].space();
    HeapWord* const bottom = space->bottom();
2687
    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
D
duke 已提交
2688 2689 2690

    // Iterate over the spaces that do not compact into themselves.
    if (bottom_cp->destination() != bottom) {
2691 2692
      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
D
duke 已提交
2693

2694
      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
D
duke 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703
        if (src_cp->live_obj_size() > 0) {
          // Found it.
          assert(src_cp->destination() == destination,
                 "first live obj in the space must match the destination");
          assert(src_cp->partial_obj_size() == 0,
                 "a space cannot begin with a partial obj");

          src_space_id = SpaceId(space_id);
          src_space_top = space->top();
2704 2705 2706
          const size_t src_region_idx = sd.region(src_cp);
          closure.set_source(sd.region_to_addr(src_region_idx));
          return src_region_idx;
D
duke 已提交
2707 2708 2709 2710 2711 2712 2713
        } else {
          assert(src_cp->data_size() == 0, "sanity");
        }
      }
    }
  } while (++space_id < last_space_id);

2714
  assert(false, "no source region was found");
D
duke 已提交
2715 2716 2717
  return 0;
}

2718
void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
D
duke 已提交
2719 2720
{
  typedef ParMarkBitMap::IterationStatus IterationStatus;
2721
  const size_t RegionSize = ParallelCompactData::RegionSize;
D
duke 已提交
2722 2723
  ParMarkBitMap* const bitmap = mark_bitmap();
  ParallelCompactData& sd = summary_data();
2724
  RegionData* const region_ptr = sd.region(region_idx);
D
duke 已提交
2725 2726

  // Get the items needed to construct the closure.
2727
  HeapWord* dest_addr = sd.region_to_addr(region_idx);
D
duke 已提交
2728 2729 2730 2731
  SpaceId dest_space_id = space_id(dest_addr);
  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  HeapWord* new_top = _space_info[dest_space_id].new_top();
  assert(dest_addr < new_top, "sanity");
2732
  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
D
duke 已提交
2733

2734 2735 2736
  // Get the source region and related info.
  size_t src_region_idx = region_ptr->source_region();
  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
D
duke 已提交
2737 2738 2739
  HeapWord* src_space_top = _space_info[src_space_id].space()->top();

  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2740
  closure.set_source(first_src_addr(dest_addr, src_region_idx));
D
duke 已提交
2741

2742 2743 2744 2745
  // Adjust src_region_idx to prepare for decrementing destination counts (the
  // destination count is not decremented when a region is copied to itself).
  if (src_region_idx == region_idx) {
    src_region_idx += 1;
D
duke 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754
  }

  if (bitmap->is_unmarked(closure.source())) {
    // The first source word is in the middle of an object; copy the remainder
    // of the object or as much as will fit.  The fact that pointer updates were
    // deferred will be noted when the object header is processed.
    HeapWord* const old_src_addr = closure.source();
    closure.copy_partial_obj();
    if (closure.is_full()) {
2755 2756 2757
      decrement_destination_counts(cm, src_region_idx, closure.source());
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
2758 2759 2760
      return;
    }

2761 2762 2763 2764
    HeapWord* const end_addr = sd.region_align_down(closure.source());
    if (sd.region_align_down(old_src_addr) != end_addr) {
      // The partial object was copied from more than one source region.
      decrement_destination_counts(cm, src_region_idx, end_addr);
D
duke 已提交
2765

2766
      // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
2767
      // args except end_addr may be modified.
2768 2769
      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                       end_addr);
D
duke 已提交
2770 2771 2772 2773 2774
    }
  }

  do {
    HeapWord* const cur_addr = closure.source();
2775
    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
D
duke 已提交
2776 2777 2778 2779
                                    src_space_top);
    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);

    if (status == ParMarkBitMap::incomplete) {
2780 2781
      // The last obj that starts in the source region does not end in the
      // region.
D
duke 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
      assert(closure.source() < end_addr, "sanity")
      HeapWord* const obj_beg = closure.source();
      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
                                       src_space_top);
      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
      if (obj_end < range_end) {
        // The end was found; the entire object will fit.
        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
        assert(status != ParMarkBitMap::would_overflow, "sanity");
      } else {
        // The end was not found; the object will not fit.
        assert(range_end < src_space_top, "obj cannot cross space boundary");
        status = ParMarkBitMap::would_overflow;
      }
    }

    if (status == ParMarkBitMap::would_overflow) {
      // The last object did not fit.  Note that interior oop updates were
2800 2801
      // deferred, then copy enough of the object to fill the region.
      region_ptr->set_deferred_obj_addr(closure.destination());
D
duke 已提交
2802 2803
      status = closure.copy_until_full(); // copies from closure.source()

2804 2805
      decrement_destination_counts(cm, src_region_idx, closure.source());
      region_ptr->set_completed();
D
duke 已提交
2806 2807 2808 2809
      return;
    }

    if (status == ParMarkBitMap::full) {
2810 2811 2812
      decrement_destination_counts(cm, src_region_idx, closure.source());
      region_ptr->set_deferred_obj_addr(NULL);
      region_ptr->set_completed();
D
duke 已提交
2813 2814 2815
      return;
    }

2816
    decrement_destination_counts(cm, src_region_idx, end_addr);
D
duke 已提交
2817

2818
    // Move to the next source region, possibly switching spaces as well.  All
D
duke 已提交
2819
    // args except end_addr may be modified.
2820 2821
    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
                                     end_addr);
D
duke 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
  } while (true);
}

void
PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  const MutableSpace* sp = space(space_id);
  if (sp->is_empty()) {
    return;
  }

  ParallelCompactData& sd = PSParallelCompact::summary_data();
  ParMarkBitMap* const bitmap = mark_bitmap();
  HeapWord* const dp_addr = dense_prefix(space_id);
  HeapWord* beg_addr = sp->bottom();
  HeapWord* end_addr = sp->top();

#ifdef ASSERT
  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  if (cm->should_verify_only()) {
    VerifyUpdateClosure verify_update(cm, sp);
    bitmap->iterate(&verify_update, beg_addr, end_addr);
    return;
  }

  if (cm->should_reset_only()) {
    ResetObjectsClosure reset_objects(cm);
    bitmap->iterate(&reset_objects, beg_addr, end_addr);
    return;
  }
#endif

2853 2854 2855 2856
  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  if (beg_region < dp_region) {
    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
D
duke 已提交
2857 2858
  }

2859 2860 2861
  // The destination of the first live object that starts in the region is one
  // past the end of the partial object entering the region (if any).
  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
D
duke 已提交
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
  HeapWord* const new_top = _space_info[space_id].new_top();
  assert(new_top >= dest_addr, "bad new_top value");
  const size_t words = pointer_delta(new_top, dest_addr);

  if (words > 0) {
    ObjectStartArray* start_array = _space_info[space_id].start_array();
    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);

    ParMarkBitMap::IterationStatus status;
    status = bitmap->iterate(&closure, dest_addr, end_addr);
    assert(status == ParMarkBitMap::full, "iteration not complete");
    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
           "live objects skipped because closure is full");
  }
}

jlong PSParallelCompact::millis_since_last_gc() {
  jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
  // XXX See note in genCollectedHeap::millis_since_last_gc().
  if (ret_val < 0) {
    NOT_PRODUCT(warning("time warp: %d", ret_val);)
    return 0;
  }
  return ret_val;
}

void PSParallelCompact::reset_millis_since_last_gc() {
  _time_of_last_gc = os::javaTimeMillis();
}

ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
{
  if (source() != destination()) {
    assert(source() > destination(), "must copy to the left");
    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  }
  update_state(words_remaining());
  assert(is_full(), "sanity");
  return ParMarkBitMap::full;
}

void MoveAndUpdateClosure::copy_partial_obj()
{
  size_t words = words_remaining();

  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  if (end_addr < range_end) {
    words = bitmap()->obj_size(source(), end_addr);
  }

  // This test is necessary; if omitted, the pointer updates to a partial object
  // that crosses the dense prefix boundary could be overwritten.
  if (source() != destination()) {
    assert(source() > destination(), "must copy to the left");
    Copy::aligned_conjoint_words(source(), destination(), words);
  }
  update_state(words);
}

ParMarkBitMapClosure::IterationStatus
MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  assert(destination() != NULL, "sanity");
  assert(bitmap()->obj_size(addr) == words, "bad size");

  _source = addr;
  assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
         destination(), "wrong destination");

  if (words > words_remaining()) {
    return ParMarkBitMap::would_overflow;
  }

  // The start_array must be updated even if the object is not moving.
  if (_start_array != NULL) {
    _start_array->allocate_block(destination());
  }

  if (destination() != source()) {
    assert(destination() < source(), "must copy to the left");
    Copy::aligned_conjoint_words(source(), destination(), words);
  }

  oop moved_oop = (oop) destination();
  moved_oop->update_contents(compaction_manager());
  assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");

  update_state(words);
  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
}

UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
                                     ParCompactionManager* cm,
                                     PSParallelCompact::SpaceId space_id) :
  ParMarkBitMapClosure(mbm, cm),
  _space_id(space_id),
  _start_array(PSParallelCompact::start_array(space_id))
{
}

// Updates the references in the object to their new values.
ParMarkBitMapClosure::IterationStatus
UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  do_addr(addr);
  return ParMarkBitMap::incomplete;
}

// Verify the new location using the forwarding pointer
// from MarkSweep::mark_sweep_phase2().  Set the mark_word
// to the initial value.
ParMarkBitMapClosure::IterationStatus
PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  // The second arg (words) is not used.
  oop obj = (oop) addr;
  HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
  HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
  if (forwarding_ptr == NULL) {
    // The object is dead or not moving.
    assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
           "Object liveness is wrong.");
    return ParMarkBitMap::incomplete;
  }
  assert(UseParallelOldGCDensePrefix ||
         (HeapMaximumCompactionInterval > 1) ||
         (MarkSweepAlwaysCompactCount > 1) ||
         (forwarding_ptr == new_pointer),
    "Calculation of new location is incorrect");
  return ParMarkBitMap::incomplete;
}

// Reset objects modified for debug checking.
ParMarkBitMapClosure::IterationStatus
PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
  // The second arg (words) is not used.
  oop obj = (oop) addr;
  obj->init_mark();
  return ParMarkBitMap::incomplete;
}

// Prepare for compaction.  This method is executed once
// (i.e., by a single thread) before compaction.
// Save the updated location of the intArrayKlassObj for
// filling holes in the dense prefix.
void PSParallelCompact::compact_prologue() {
  _updated_int_array_klass_obj = (klassOop)
    summary_data().calc_new_pointer(Universe::intArrayKlassObj());
}

// The initial implementation of this method created a field
// _next_compaction_space_id in SpaceInfo and initialized
// that field in SpaceInfo::initialize_space_info().  That
// required that _next_compaction_space_id be declared a
// SpaceId in SpaceInfo and that would have required that
// either SpaceId be declared in a separate class or that
// it be declared in SpaceInfo.  It didn't seem consistent
// to declare it in SpaceInfo (didn't really fit logically).
// Alternatively, defining a separate class to define SpaceId
// seem excessive.  This implementation is simple and localizes
// the knowledge.

PSParallelCompact::SpaceId
PSParallelCompact::next_compaction_space_id(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  switch (id) {
    case perm_space_id :
      return last_space_id;
    case old_space_id :
      return eden_space_id;
    case eden_space_id :
      return from_space_id;
    case from_space_id :
      return to_space_id;
    case to_space_id :
      return last_space_id;
    default:
      assert(false, "Bad space id");
      return last_space_id;
  }
}