node.hpp 55.8 KB
Newer Older
D
duke 已提交
1
/*
N
never 已提交
2
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32
#ifndef SHARE_VM_OPTO_NODE_HPP
#define SHARE_VM_OPTO_NODE_HPP

#include "libadt/port.hpp"
#include "libadt/vectset.hpp"
#include "opto/compile.hpp"
#include "opto/type.hpp"

D
duke 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
// Portions of code courtesy of Clifford Click

// Optimization - Graph Style


class AbstractLockNode;
class AddNode;
class AddPNode;
class AliasInfo;
class AllocateArrayNode;
class AllocateNode;
class Block;
class Block_Array;
class BoolNode;
class BoxLockNode;
class CMoveNode;
class CallDynamicJavaNode;
class CallJavaNode;
class CallLeafNode;
class CallNode;
class CallRuntimeNode;
class CallStaticJavaNode;
class CatchNode;
class CatchProjNode;
class CheckCastPPNode;
58
class ClearArrayNode;
D
duke 已提交
59 60 61 62 63 64
class CmpNode;
class CodeBuffer;
class ConstraintCastNode;
class ConNode;
class CountedLoopNode;
class CountedLoopEndNode;
65 66
class DecodeNNode;
class EncodePNode;
D
duke 已提交
67 68 69
class FastLockNode;
class FastUnlockNode;
class IfNode;
K
kvn 已提交
70 71
class IfFalseNode;
class IfTrueNode;
D
duke 已提交
72 73 74 75 76 77 78 79
class InitializeNode;
class JVMState;
class JumpNode;
class JumpProjNode;
class LoadNode;
class LoadStoreNode;
class LockNode;
class LoopNode;
80
class MachBranchNode;
D
duke 已提交
81 82 83 84 85 86
class MachCallDynamicJavaNode;
class MachCallJavaNode;
class MachCallLeafNode;
class MachCallNode;
class MachCallRuntimeNode;
class MachCallStaticJavaNode;
87 88
class MachConstantBaseNode;
class MachConstantNode;
K
kvn 已提交
89
class MachGotoNode;
D
duke 已提交
90 91 92
class MachIfNode;
class MachNode;
class MachNullCheckNode;
K
kvn 已提交
93
class MachProjNode;
D
duke 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
class MachReturnNode;
class MachSafePointNode;
class MachSpillCopyNode;
class MachTempNode;
class Matcher;
class MemBarNode;
class MemNode;
class MergeMemNode;
class MultiNode;
class MultiBranchNode;
class NeverBranchNode;
class Node;
class Node_Array;
class Node_List;
class Node_Stack;
class NullCheckNode;
class OopMap;
K
kvn 已提交
111
class ParmNode;
D
duke 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125
class PCTableNode;
class PhaseCCP;
class PhaseGVN;
class PhaseIterGVN;
class PhaseRegAlloc;
class PhaseTransform;
class PhaseValues;
class PhiNode;
class Pipeline;
class ProjNode;
class RegMask;
class RegionNode;
class RootNode;
class SafePointNode;
126
class SafePointScalarObjectNode;
D
duke 已提交
127 128 129 130 131 132 133
class StartNode;
class State;
class StoreNode;
class SubNode;
class Type;
class TypeNode;
class UnlockNode;
K
kvn 已提交
134 135 136
class VectorNode;
class VectorLoadNode;
class VectorStoreNode;
D
duke 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
class VectorSet;
typedef void (*NFunc)(Node&,void*);
extern "C" {
  typedef int (*C_sort_func_t)(const void *, const void *);
}

// The type of all node counts and indexes.
// It must hold at least 16 bits, but must also be fast to load and store.
// This type, if less than 32 bits, could limit the number of possible nodes.
// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
typedef unsigned int node_idx_t;


#ifndef OPTO_DU_ITERATOR_ASSERT
#ifdef ASSERT
#define OPTO_DU_ITERATOR_ASSERT 1
#else
#define OPTO_DU_ITERATOR_ASSERT 0
#endif
#endif //OPTO_DU_ITERATOR_ASSERT

#if OPTO_DU_ITERATOR_ASSERT
class DUIterator;
class DUIterator_Fast;
class DUIterator_Last;
#else
typedef uint   DUIterator;
typedef Node** DUIterator_Fast;
typedef Node** DUIterator_Last;
#endif

// Node Sentinel
#define NodeSentinel (Node*)-1

// Unknown count frequency
#define COUNT_UNKNOWN (-1.0f)

//------------------------------Node-------------------------------------------
// Nodes define actions in the program.  They create values, which have types.
// They are both vertices in a directed graph and program primitives.  Nodes
// are labeled; the label is the "opcode", the primitive function in the lambda
// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
// the Node's function.  These inputs also define a Type equation for the Node.
// Solving these Type equations amounts to doing dataflow analysis.
// Control and data are uniformly represented in the graph.  Finally, Nodes
// have a unique dense integer index which is used to index into side arrays
// whenever I have phase-specific information.

class Node {
N
never 已提交
187 188
  friend class VMStructs;

D
duke 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  // Lots of restrictions on cloning Nodes
  Node(const Node&);            // not defined; linker error to use these
  Node &operator=(const Node &rhs);

public:
  friend class Compile;
  #if OPTO_DU_ITERATOR_ASSERT
  friend class DUIterator_Common;
  friend class DUIterator;
  friend class DUIterator_Fast;
  friend class DUIterator_Last;
  #endif

  // Because Nodes come and go, I define an Arena of Node structures to pull
  // from.  This should allow fast access to node creation & deletion.  This
  // field is a local cache of a value defined in some "program fragment" for
  // which these Nodes are just a part of.

  // New Operator that takes a Compile pointer, this will eventually
  // be the "new" New operator.
  inline void* operator new( size_t x, Compile* C) {
    Node* n = (Node*)C->node_arena()->Amalloc_D(x);
#ifdef ASSERT
    n->_in = (Node**)n; // magic cookie for assertion check
#endif
    n->_out = (Node**)C;
    return (void*)n;
  }

  // New Operator that takes a Compile pointer, this will eventually
  // be the "new" New operator.
  inline void* operator new( size_t x, Compile* C, int y) {
    Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
    n->_in = (Node**)(((char*)n) + x);
#ifdef ASSERT
    n->_in[y-1] = n; // magic cookie for assertion check
#endif
    n->_out = (Node**)C;
    return (void*)n;
  }

  // Delete is a NOP
  void operator delete( void *ptr ) {}
  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
  void destruct();

  // Create a new Node.  Required is the number is of inputs required for
  // semantic correctness.
  Node( uint required );

  // Create a new Node with given input edges.
  // This version requires use of the "edge-count" new.
  // E.g.  new (C,3) FooNode( C, NULL, left, right );
  Node( Node *n0 );
  Node( Node *n0, Node *n1 );
  Node( Node *n0, Node *n1, Node *n2 );
  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
  Node( Node *n0, Node *n1, Node *n2, Node *n3,
            Node *n4, Node *n5, Node *n6 );

  // Clone an inherited Node given only the base Node type.
  Node* clone() const;

  // Clone a Node, immediately supplying one or two new edges.
  // The first and second arguments, if non-null, replace in(1) and in(2),
  // respectively.
  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
    Node* nn = clone();
    if (in1 != NULL)  nn->set_req(1, in1);
    if (in2 != NULL)  nn->set_req(2, in2);
    return nn;
  }

private:
  // Shared setup for the above constructors.
  // Handles all interactions with Compile::current.
  // Puts initial values in all Node fields except _idx.
  // Returns the initial value for _idx, which cannot
  // be initialized by assignment.
  inline int Init(int req, Compile* C);

//----------------- input edge handling
protected:
  friend class PhaseCFG;        // Access to address of _in array elements
  Node **_in;                   // Array of use-def references to Nodes
  Node **_out;                  // Array of def-use references to Nodes

T
twisti 已提交
278
  // Input edges are split into two categories.  Required edges are required
D
duke 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
  // for semantic correctness; order is important and NULLs are allowed.
  // Precedence edges are used to help determine execution order and are
  // added, e.g., for scheduling purposes.  They are unordered and not
  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
  // are required, from _cnt to _max-1 are precedence edges.
  node_idx_t _cnt;              // Total number of required Node inputs.

  node_idx_t _max;              // Actual length of input array.

  // Output edges are an unordered list of def-use edges which exactly
  // correspond to required input edges which point from other nodes
  // to this one.  Thus the count of the output edges is the number of
  // users of this node.
  node_idx_t _outcnt;           // Total number of Node outputs.

  node_idx_t _outmax;           // Actual length of output array.

  // Grow the actual input array to the next larger power-of-2 bigger than len.
  void grow( uint len );
  // Grow the output array to the next larger power-of-2 bigger than len.
  void out_grow( uint len );

 public:
  // Each Node is assigned a unique small/dense number.  This number is used
  // to index into auxiliary arrays of data and bitvectors.
  // It is declared const to defend against inadvertant assignment,
  // since it is used by clients as a naked field.
  const node_idx_t _idx;

  // Get the (read-only) number of input edges
  uint req() const { return _cnt; }
  uint len() const { return _max; }
  // Get the (read-only) number of output edges
  uint outcnt() const { return _outcnt; }

#if OPTO_DU_ITERATOR_ASSERT
  // Iterate over the out-edges of this node.  Deletions are illegal.
  inline DUIterator outs() const;
  // Use this when the out array might have changed to suppress asserts.
  inline DUIterator& refresh_out_pos(DUIterator& i) const;
  // Does the node have an out at this position?  (Used for iteration.)
  inline bool has_out(DUIterator& i) const;
  inline Node*    out(DUIterator& i) const;
  // Iterate over the out-edges of this node.  All changes are illegal.
  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
  inline Node*    fast_out(DUIterator_Fast& i) const;
  // Iterate over the out-edges of this node, deleting one at a time.
  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
  inline Node*    last_out(DUIterator_Last& i) const;
  // The inline bodies of all these methods are after the iterator definitions.
#else
  // Iterate over the out-edges of this node.  Deletions are illegal.
  // This iteration uses integral indexes, to decouple from array reallocations.
  DUIterator outs() const  { return 0; }
  // Use this when the out array might have changed to suppress asserts.
  DUIterator refresh_out_pos(DUIterator i) const { return i; }

  // Reference to the i'th output Node.  Error if out of bounds.
  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
  // Does the node have an out at this position?  (Used for iteration.)
  bool has_out(DUIterator i) const { return i < _outcnt; }

  // Iterate over the out-edges of this node.  All changes are illegal.
  // This iteration uses a pointer internal to the out array.
  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
    Node** out = _out;
    // Assign a limit pointer to the reference argument:
    max = out + (ptrdiff_t)_outcnt;
    // Return the base pointer:
    return out;
  }
  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
  // Iterate over the out-edges of this node, deleting one at a time.
  // This iteration uses a pointer internal to the out array.
  DUIterator_Last last_outs(DUIterator_Last& min) const {
    Node** out = _out;
    // Assign a limit pointer to the reference argument:
    min = out;
    // Return the pointer to the start of the iteration:
    return out + (ptrdiff_t)_outcnt - 1;
  }
  Node*    last_out(DUIterator_Last i) const  { return *i; }
#endif

  // Reference to the i'th input Node.  Error if out of bounds.
  Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
  // Reference to the i'th output Node.  Error if out of bounds.
  // Use this accessor sparingly.  We are going trying to use iterators instead.
  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
  // Return the unique out edge.
  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
  // Delete out edge at position 'i' by moving last out edge to position 'i'
  void  raw_del_out(uint i) {
    assert(i < _outcnt,"oob");
    assert(_outcnt > 0,"oob");
    #if OPTO_DU_ITERATOR_ASSERT
    // Record that a change happened here.
    debug_only(_last_del = _out[i]; ++_del_tick);
    #endif
    _out[i] = _out[--_outcnt];
    // Smash the old edge so it can't be used accidentally.
    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
  }

#ifdef ASSERT
  bool is_dead() const;
#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
#endif

  // Set a required input edge, also updates corresponding output edge
  void add_req( Node *n ); // Append a NEW required input
  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
  void del_req( uint idx ); // Delete required edge & compact
  void ins_req( uint i, Node *n ); // Insert a NEW required input
  void set_req( uint i, Node *n ) {
    assert( is_not_dead(n), "can not use dead node");
    assert( i < _cnt, "oob");
    assert( !VerifyHashTableKeys || _hash_lock == 0,
            "remove node from hash table before modifying it");
    Node** p = &_in[i];    // cache this._in, across the del_out call
    if (*p != NULL)  (*p)->del_out((Node *)this);
    (*p) = n;
    if (n != NULL)      n->add_out((Node *)this);
  }
  // Light version of set_req() to init inputs after node creation.
  void init_req( uint i, Node *n ) {
    assert( i == 0 && this == n ||
            is_not_dead(n), "can not use dead node");
    assert( i < _cnt, "oob");
    assert( !VerifyHashTableKeys || _hash_lock == 0,
            "remove node from hash table before modifying it");
    assert( _in[i] == NULL, "sanity");
    _in[i] = n;
    if (n != NULL)      n->add_out((Node *)this);
  }
  // Find first occurrence of n among my edges:
  int find_edge(Node* n);
  int replace_edge(Node* old, Node* neww);
  // NULL out all inputs to eliminate incoming Def-Use edges.
  // Return the number of edges between 'n' and 'this'
  int  disconnect_inputs(Node *n);

  // Quickly, return true if and only if I am Compile::current()->top().
  bool is_top() const {
    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
    return (_out == NULL);
  }
  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
  void setup_is_top();

  // Strip away casting.  (It is depth-limited.)
  Node* uncast() const;

private:
  static Node* uncast_helper(const Node* n);

  // Add an output edge to the end of the list
  void add_out( Node *n ) {
    if (is_top())  return;
    if( _outcnt == _outmax ) out_grow(_outcnt);
    _out[_outcnt++] = n;
  }
  // Delete an output edge
  void del_out( Node *n ) {
    if (is_top())  return;
    Node** outp = &_out[_outcnt];
    // Find and remove n
    do {
      assert(outp > _out, "Missing Def-Use edge");
    } while (*--outp != n);
    *outp = _out[--_outcnt];
    // Smash the old edge so it can't be used accidentally.
    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
    // Record that a change happened here.
    #if OPTO_DU_ITERATOR_ASSERT
    debug_only(_last_del = n; ++_del_tick);
    #endif
  }

public:
  // Globally replace this node by a given new node, updating all uses.
  void replace_by(Node* new_node);
461 462 463 464 465 466
  // Globally replace this node by a given new node, updating all uses
  // and cutting input edges of old node.
  void subsume_by(Node* new_node) {
    replace_by(new_node);
    disconnect_inputs(NULL);
  }
D
duke 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
  // Find the one non-null required input.  RegionNode only
  Node *nonnull_req() const;
  // Add or remove precedence edges
  void add_prec( Node *n );
  void rm_prec( uint i );
  void set_prec( uint i, Node *n ) {
    assert( is_not_dead(n), "can not use dead node");
    assert( i >= _cnt, "not a precedence edge");
    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
    _in[i] = n;
    if (n != NULL) n->add_out((Node *)this);
  }
  // Set this node's index, used by cisc_version to replace current node
  void set_idx(uint new_idx) {
    const node_idx_t* ref = &_idx;
    *(node_idx_t*)ref = new_idx;
  }
  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
  void swap_edges(uint i1, uint i2) {
    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
    // Def-Use info is unchanged
    Node* n1 = in(i1);
    Node* n2 = in(i2);
    _in[i1] = n2;
    _in[i2] = n1;
    // If this node is in the hash table, make sure it doesn't need a rehash.
    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
  }

  // Iterators over input Nodes for a Node X are written as:
  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
  // NOTE: Required edges can contain embedded NULL pointers.

//----------------- Other Node Properties

  // Generate class id for some ideal nodes to avoid virtual query
  // methods is_<Node>().
  // Class id is the set of bits corresponded to the node class and all its
  // super classes so that queries for super classes are also valid.
  // Subclasses of the same super class have different assigned bit
  // (the third parameter in the macro DEFINE_CLASS_ID).
  // Classes with deeper hierarchy are declared first.
  // Classes with the same hierarchy depth are sorted by usage frequency.
  //
  // The query method masks the bits to cut off bits of subclasses
  // and then compare the result with the class id
  // (see the macro DEFINE_CLASS_QUERY below).
  //
  //  Class_MachCall=30, ClassMask_MachCall=31
  // 12               8               4               0
  //  0   0   0   0   0   0   0   0   1   1   1   1   0
  //                                  |   |   |   |
  //                                  |   |   |   Bit_Mach=2
  //                                  |   |   Bit_MachReturn=4
  //                                  |   Bit_MachSafePoint=8
  //                                  Bit_MachCall=16
  //
  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
  // 12               8               4               0
  //  0   0   0   0   0   0   0   1   1   1   0   0   0
  //                              |   |   |
  //                              |   |   Bit_Region=8
  //                              |   Bit_Loop=16
  //                              Bit_CountedLoop=32

  #define DEFINE_CLASS_ID(cl, supcl, subn) \
  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
  Class_##cl = Class_##supcl + Bit_##cl , \
  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,

  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
  // so that it's values fits into 16 bits.
  enum NodeClasses {
    Bit_Node   = 0x0000,
    Class_Node = 0x0000,
    ClassMask_Node = 0xFFFF,

    DEFINE_CLASS_ID(Multi, Node, 0)
      DEFINE_CLASS_ID(SafePoint, Multi, 0)
        DEFINE_CLASS_ID(Call,      SafePoint, 0)
          DEFINE_CLASS_ID(CallJava,         Call, 0)
            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
          DEFINE_CLASS_ID(Allocate,         Call, 2)
            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
          DEFINE_CLASS_ID(Catch,       PCTable, 0)
          DEFINE_CLASS_ID(Jump,        PCTable, 1)
        DEFINE_CLASS_ID(If,          MultiBranch, 1)
          DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
      DEFINE_CLASS_ID(Start,       Multi, 2)
      DEFINE_CLASS_ID(MemBar,      Multi, 3)
        DEFINE_CLASS_ID(Initialize,    MemBar, 0)

    DEFINE_CLASS_ID(Mach,  Node, 1)
      DEFINE_CLASS_ID(MachReturn, Mach, 0)
        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
578 579 580 581 582 583 584 585
      DEFINE_CLASS_ID(MachBranch, Mach, 1)
        DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
        DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
        DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
      DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
      DEFINE_CLASS_ID(MachTemp,         Mach, 3)
      DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
      DEFINE_CLASS_ID(MachConstant,     Mach, 5)
K
kvn 已提交
586 587 588 589 590 591 592 593 594

    DEFINE_CLASS_ID(Type,  Node, 2)
      DEFINE_CLASS_ID(Phi,   Type, 0)
      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
      DEFINE_CLASS_ID(CheckCastPP, Type, 2)
      DEFINE_CLASS_ID(CMove, Type, 3)
      DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
      DEFINE_CLASS_ID(DecodeN, Type, 5)
      DEFINE_CLASS_ID(EncodeP, Type, 6)
D
duke 已提交
595

K
kvn 已提交
596
    DEFINE_CLASS_ID(Proj,  Node, 3)
D
duke 已提交
597 598 599 600
      DEFINE_CLASS_ID(CatchProj, Proj, 0)
      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
      DEFINE_CLASS_ID(IfTrue,    Proj, 2)
      DEFINE_CLASS_ID(IfFalse,   Proj, 3)
K
kvn 已提交
601
      DEFINE_CLASS_ID(Parm,      Proj, 4)
K
kvn 已提交
602
      DEFINE_CLASS_ID(MachProj,  Proj, 5)
D
duke 已提交
603

K
kvn 已提交
604 605 606 607 608 609 610 611
    DEFINE_CLASS_ID(Mem,   Node, 4)
      DEFINE_CLASS_ID(Load,  Mem, 0)
        DEFINE_CLASS_ID(VectorLoad,  Load, 0)
      DEFINE_CLASS_ID(Store, Mem, 1)
        DEFINE_CLASS_ID(VectorStore, Store, 0)
      DEFINE_CLASS_ID(LoadStore, Mem, 2)

    DEFINE_CLASS_ID(Region, Node, 5)
D
duke 已提交
612 613 614 615
      DEFINE_CLASS_ID(Loop, Region, 0)
        DEFINE_CLASS_ID(Root,        Loop, 0)
        DEFINE_CLASS_ID(CountedLoop, Loop, 1)

K
kvn 已提交
616
    DEFINE_CLASS_ID(Sub,   Node, 6)
D
duke 已提交
617 618 619 620 621 622 623 624 625
      DEFINE_CLASS_ID(Cmp,   Sub, 0)
        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)

    DEFINE_CLASS_ID(MergeMem, Node, 7)
    DEFINE_CLASS_ID(Bool,     Node, 8)
    DEFINE_CLASS_ID(AddP,     Node, 9)
    DEFINE_CLASS_ID(BoxLock,  Node, 10)
    DEFINE_CLASS_ID(Add,      Node, 11)
K
kvn 已提交
626
    DEFINE_CLASS_ID(Vector,   Node, 12)
627
    DEFINE_CLASS_ID(ClearArray, Node, 13)
D
duke 已提交
628

629
    _max_classes  = ClassMask_ClearArray
D
duke 已提交
630 631 632 633 634 635
  };
  #undef DEFINE_CLASS_ID

  // Flags are sorted by usage frequency.
  enum NodeFlags {
    Flag_is_Copy             = 0x01, // should be first bit to avoid shift
K
kvn 已提交
636
    Flag_rematerialize       = Flag_is_Copy << 1,
D
duke 已提交
637 638 639 640
    Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
    Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
    Flag_is_Con              = Flag_is_macro << 1,
    Flag_is_cisc_alternate   = Flag_is_Con << 1,
641
    Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
D
duke 已提交
642
    Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
643
    Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
644 645
    Flag_has_call            = Flag_avoid_back_to_back << 1,
    _max_flags = (Flag_has_call << 1) - 1 // allow flags combination
D
duke 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
  };

private:
  jushort _class_id;
  jushort _flags;

protected:
  // These methods should be called from constructors only.
  void init_class_id(jushort c) {
    assert(c <= _max_classes, "invalid node class");
    _class_id = c; // cast out const
  }
  void init_flags(jushort fl) {
    assert(fl <= _max_flags, "invalid node flag");
    _flags |= fl;
  }
  void clear_flag(jushort fl) {
    assert(fl <= _max_flags, "invalid node flag");
    _flags &= ~fl;
  }

public:
  const jushort class_id() const { return _class_id; }

  const jushort flags() const { return _flags; }

  // Return a dense integer opcode number
  virtual int Opcode() const;

  // Virtual inherited Node size
  virtual uint size_of() const;

  // Other interesting Node properties
679 680
  #define DEFINE_CLASS_QUERY(type)                           \
  bool is_##type() const {                                   \
D
duke 已提交
681
    return ((_class_id & ClassMask_##type) == Class_##type); \
682 683 684 685 686 687 688
  }                                                          \
  type##Node *as_##type() const {                            \
    assert(is_##type(), "invalid node class");               \
    return (type##Node*)this;                                \
  }                                                          \
  type##Node* isa_##type() const {                           \
    return (is_##type()) ? as_##type() : NULL;               \
D
duke 已提交
689 690 691 692 693 694 695 696 697
  }

  DEFINE_CLASS_QUERY(AbstractLock)
  DEFINE_CLASS_QUERY(Add)
  DEFINE_CLASS_QUERY(AddP)
  DEFINE_CLASS_QUERY(Allocate)
  DEFINE_CLASS_QUERY(AllocateArray)
  DEFINE_CLASS_QUERY(Bool)
  DEFINE_CLASS_QUERY(BoxLock)
K
kvn 已提交
698
  DEFINE_CLASS_QUERY(Call)
D
duke 已提交
699 700 701 702 703 704 705 706 707
  DEFINE_CLASS_QUERY(CallDynamicJava)
  DEFINE_CLASS_QUERY(CallJava)
  DEFINE_CLASS_QUERY(CallLeaf)
  DEFINE_CLASS_QUERY(CallRuntime)
  DEFINE_CLASS_QUERY(CallStaticJava)
  DEFINE_CLASS_QUERY(Catch)
  DEFINE_CLASS_QUERY(CatchProj)
  DEFINE_CLASS_QUERY(CheckCastPP)
  DEFINE_CLASS_QUERY(ConstraintCast)
708
  DEFINE_CLASS_QUERY(ClearArray)
D
duke 已提交
709 710 711 712
  DEFINE_CLASS_QUERY(CMove)
  DEFINE_CLASS_QUERY(Cmp)
  DEFINE_CLASS_QUERY(CountedLoop)
  DEFINE_CLASS_QUERY(CountedLoopEnd)
713 714
  DEFINE_CLASS_QUERY(DecodeN)
  DEFINE_CLASS_QUERY(EncodeP)
D
duke 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727
  DEFINE_CLASS_QUERY(FastLock)
  DEFINE_CLASS_QUERY(FastUnlock)
  DEFINE_CLASS_QUERY(If)
  DEFINE_CLASS_QUERY(IfFalse)
  DEFINE_CLASS_QUERY(IfTrue)
  DEFINE_CLASS_QUERY(Initialize)
  DEFINE_CLASS_QUERY(Jump)
  DEFINE_CLASS_QUERY(JumpProj)
  DEFINE_CLASS_QUERY(Load)
  DEFINE_CLASS_QUERY(LoadStore)
  DEFINE_CLASS_QUERY(Lock)
  DEFINE_CLASS_QUERY(Loop)
  DEFINE_CLASS_QUERY(Mach)
728
  DEFINE_CLASS_QUERY(MachBranch)
D
duke 已提交
729 730 731 732 733 734
  DEFINE_CLASS_QUERY(MachCall)
  DEFINE_CLASS_QUERY(MachCallDynamicJava)
  DEFINE_CLASS_QUERY(MachCallJava)
  DEFINE_CLASS_QUERY(MachCallLeaf)
  DEFINE_CLASS_QUERY(MachCallRuntime)
  DEFINE_CLASS_QUERY(MachCallStaticJava)
735 736
  DEFINE_CLASS_QUERY(MachConstantBase)
  DEFINE_CLASS_QUERY(MachConstant)
K
kvn 已提交
737
  DEFINE_CLASS_QUERY(MachGoto)
D
duke 已提交
738 739
  DEFINE_CLASS_QUERY(MachIf)
  DEFINE_CLASS_QUERY(MachNullCheck)
K
kvn 已提交
740
  DEFINE_CLASS_QUERY(MachProj)
D
duke 已提交
741 742 743 744 745 746 747 748 749
  DEFINE_CLASS_QUERY(MachReturn)
  DEFINE_CLASS_QUERY(MachSafePoint)
  DEFINE_CLASS_QUERY(MachSpillCopy)
  DEFINE_CLASS_QUERY(MachTemp)
  DEFINE_CLASS_QUERY(Mem)
  DEFINE_CLASS_QUERY(MemBar)
  DEFINE_CLASS_QUERY(MergeMem)
  DEFINE_CLASS_QUERY(Multi)
  DEFINE_CLASS_QUERY(MultiBranch)
K
kvn 已提交
750
  DEFINE_CLASS_QUERY(Parm)
D
duke 已提交
751 752 753 754 755 756
  DEFINE_CLASS_QUERY(PCTable)
  DEFINE_CLASS_QUERY(Phi)
  DEFINE_CLASS_QUERY(Proj)
  DEFINE_CLASS_QUERY(Region)
  DEFINE_CLASS_QUERY(Root)
  DEFINE_CLASS_QUERY(SafePoint)
757
  DEFINE_CLASS_QUERY(SafePointScalarObject)
D
duke 已提交
758 759 760 761
  DEFINE_CLASS_QUERY(Start)
  DEFINE_CLASS_QUERY(Store)
  DEFINE_CLASS_QUERY(Sub)
  DEFINE_CLASS_QUERY(Type)
K
kvn 已提交
762 763 764
  DEFINE_CLASS_QUERY(Vector)
  DEFINE_CLASS_QUERY(VectorLoad)
  DEFINE_CLASS_QUERY(VectorStore)
D
duke 已提交
765 766 767 768 769 770 771 772 773 774 775 776
  DEFINE_CLASS_QUERY(Unlock)

  #undef DEFINE_CLASS_QUERY

  // duplicate of is_MachSpillCopy()
  bool is_SpillCopy () const {
    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
  }

  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
  // The data node which is safe to leave in dead loop during IGVN optimization.
  bool is_dead_loop_safe() const {
777 778 779
    return is_Phi() || (is_Proj() && in(0) == NULL) ||
           ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
            (!is_Proj() || !in(0)->is_Allocate()));
D
duke 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
  }

  // is_Copy() returns copied edge index (0 or 1)
  uint is_Copy() const { return (_flags & Flag_is_Copy); }

  virtual bool is_CFG() const { return false; }

  // If this node is control-dependent on a test, can it be
  // rerouted to a dominating equivalent test?  This is usually
  // true of non-CFG nodes, but can be false for operations which
  // depend for their correct sequencing on more than one test.
  // (In that case, hoisting to a dominating test may silently
  // skip some other important test.)
  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };

  // When building basic blocks, I need to have a notion of block beginning
  // Nodes, next block selector Nodes (block enders), and next block
  // projections.  These calls need to work on their machine equivalents.  The
  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
  bool is_block_start() const {
    if ( is_Region() )
      return this == (const Node*)in(0);
    else
K
kvn 已提交
803
      return is_Start();
D
duke 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
  }

  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
  // Goto and Return.  This call also returns the block ending Node.
  virtual const Node *is_block_proj() const;

  // The node is a "macro" node which needs to be expanded before matching
  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }

//----------------- Optimization

  // Get the worst-case Type output for this Node.
  virtual const class Type *bottom_type() const;

  // If we find a better type for a node, try to record it permanently.
  // Return true if this node actually changed.
  // Be sure to do the hash_delete game in the "rehash" variant.
  void raise_bottom_type(const Type* new_type);

  // Get the address type with which this node uses and/or defs memory,
  // or NULL if none.  The address type is conservatively wide.
  // Returns non-null for calls, membars, loads, stores, etc.
  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
  virtual const class TypePtr *adr_type() const { return NULL; }

  // Return an existing node which computes the same function as this node.
  // The optimistic combined algorithm requires this to return a Node which
  // is a small number of steps away (e.g., one of my inputs).
  virtual Node *Identity( PhaseTransform *phase );

  // Return the set of values this Node can take on at runtime.
  virtual const Type *Value( PhaseTransform *phase ) const;

  // Return a node which is more "ideal" than the current node.
  // The invariants on this call are subtle.  If in doubt, read the
  // treatise in node.cpp above the default implemention AND TEST WITH
  // +VerifyIterativeGVN!
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

  // Some nodes have specific Ideal subgraph transformations only if they are
  // unique users of specific nodes. Such nodes should be put on IGVN worklist
  // for the transformations to happen.
  bool has_special_unique_user() const;

848 849 850 851 852 853
  // Skip Proj and CatchProj nodes chains. Check for Null and Top.
  Node* find_exact_control(Node* ctrl);

  // Check if 'this' node dominates or equal to 'sub'.
  bool dominates(Node* sub, Node_List &nlist);

D
duke 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
protected:
  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
public:

  // Idealize graph, using DU info.  Done after constant propagation
  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );

  // See if there is valid pipeline info
  static  const Pipeline *pipeline_class();
  virtual const Pipeline *pipeline() const;

  // Compute the latency from the def to this instruction of the ith input node
  uint latency(uint i);

  // Hash & compare functions, for pessimistic value numbering

  // If the hash function returns the special sentinel value NO_HASH,
  // the node is guaranteed never to compare equal to any other node.
T
twisti 已提交
872
  // If we accidentally generate a hash with value NO_HASH the node
D
duke 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
  // won't go into the table and we'll lose a little optimization.
  enum { NO_HASH = 0 };
  virtual uint hash() const;
  virtual uint cmp( const Node &n ) const;

  // Operation appears to be iteratively computed (such as an induction variable)
  // It is possible for this operation to return false for a loop-varying
  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  bool is_iteratively_computed();

  // Determine if a node is Counted loop induction variable.
  // The method is defined in loopnode.cpp.
  const Node* is_loop_iv() const;

  // Return a node with opcode "opc" and same inputs as "this" if one can
  // be found; Otherwise return NULL;
  Node* find_similar(int opc);

  // Return the unique control out if only one. Null if none or more than one.
  Node* unique_ctrl_out();

//----------------- Code Generation

  // Ideal register class for Matching.  Zero means unmatched instruction
  // (these are cloned instead of converted to machine nodes).
  virtual uint ideal_reg() const;

  static const uint NotAMachineReg;   // must be > max. machine register

  // Do we Match on this edge index or not?  Generally false for Control
  // and true for everything else.  Weird for calls & returns.
  virtual uint match_edge(uint idx) const;

  // Register class output is returned in
  virtual const RegMask &out_RegMask() const;
  // Register class input is expected in
  virtual const RegMask &in_RegMask(uint) const;
  // Should we clone rather than spill this instruction?
  bool rematerialize() const;

  // Return JVM State Object if this Node carries debug info, or NULL otherwise
  virtual JVMState* jvms() const;

  // Print as assembly
  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
  // Emit bytes starting at parameter 'ptr'
  // Bump 'ptr' by the number of output bytes
  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  // Size of instruction in bytes
  virtual uint size(PhaseRegAlloc *ra_) const;

  // Convenience function to extract an integer constant from a node.
  // If it is not an integer constant (either Con, CastII, or Mach),
  // return value_if_unknown.
  jint find_int_con(jint value_if_unknown) const {
    const TypeInt* t = find_int_type();
    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
  }
  // Return the constant, knowing it is an integer constant already
  jint get_int() const {
    const TypeInt* t = find_int_type();
    guarantee(t != NULL, "must be con");
    return t->get_con();
  }
  // Here's where the work is done.  Can produce non-constant int types too.
  const TypeInt* find_int_type() const;

  // Same thing for long (and intptr_t, via type.hpp):
  jlong get_long() const {
    const TypeLong* t = find_long_type();
    guarantee(t != NULL, "must be con");
    return t->get_con();
  }
  jlong find_long_con(jint value_if_unknown) const {
    const TypeLong* t = find_long_type();
    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
  }
  const TypeLong* find_long_type() const;

  // These guys are called by code generated by ADLC:
  intptr_t get_ptr() const;
954
  intptr_t get_narrowcon() const;
D
duke 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
  jdouble getd() const;
  jfloat getf() const;

  // Nodes which are pinned into basic blocks
  virtual bool pinned() const { return false; }

  // Nodes which use memory without consuming it, hence need antidependences
  // More specifically, needs_anti_dependence_check returns true iff the node
  // (a) does a load, and (b) does not perform a store (except perhaps to a
  // stack slot or some other unaliased location).
  bool needs_anti_dependence_check() const;

  // Return which operand this instruction may cisc-spill. In other words,
  // return operand position that can convert from reg to memory access
  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }

//----------------- Graph walking
public:
  // Walk and apply member functions recursively.
  // Supplied (this) pointer is root.
  void walk(NFunc pre, NFunc post, void *env);
  static void nop(Node &, void*); // Dummy empty function
  static void packregion( Node &n, void* );
private:
  void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);

//----------------- Printing, etc
public:
#ifndef PRODUCT
  Node* find(int idx) const;         // Search the graph for the given idx.
  Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
  void dump() const;                 // Print this node,
  void dump(int depth) const;        // Print this node, recursively to depth d
  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
  virtual void dump_req() const;     // Print required-edge info
  virtual void dump_prec() const;    // Print precedence-edge info
  virtual void dump_out() const;     // Print the output edge info
  virtual void dump_spec(outputStream *st) const {}; // Print per-node info
  void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
  void verify() const;               // Check Def-Use info for my subgraph
  static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);

  // This call defines a class-unique string used to identify class instances
  virtual const char *Name() const;

  void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  // RegMask Print Functions
  void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  void dump_out_regmask() { out_RegMask().dump(); }
  static int _in_dump_cnt;
  static bool in_dump() { return _in_dump_cnt > 0; }
  void fast_dump() const {
    tty->print("%4d: %-17s", _idx, Name());
    for (uint i = 0; i < len(); i++)
      if (in(i))
        tty->print(" %4d", in(i)->_idx);
      else
        tty->print(" NULL");
    tty->print("\n");
  }
#endif
#ifdef ASSERT
  void verify_construction();
  bool verify_jvms(const JVMState* jvms) const;
  int  _debug_idx;                     // Unique value assigned to every node.
  int   debug_idx() const              { return _debug_idx; }
  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }

  Node* _debug_orig;                   // Original version of this, if any.
  Node*  debug_orig() const            { return _debug_orig; }
  void   set_debug_orig(Node* orig);   // _debug_orig = orig

  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }

  static void init_NodeProperty();

  #if OPTO_DU_ITERATOR_ASSERT
  const Node* _last_del;               // The last deleted node.
  uint        _del_tick;               // Bumped when a deletion happens..
  #endif
#endif
};

//-----------------------------------------------------------------------------
// Iterators over DU info, and associated Node functions.

#if OPTO_DU_ITERATOR_ASSERT

// Common code for assertion checking on DU iterators.
class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
#ifdef ASSERT
 protected:
  bool         _vdui;               // cached value of VerifyDUIterators
  const Node*  _node;               // the node containing the _out array
  uint         _outcnt;             // cached node->_outcnt
  uint         _del_tick;           // cached node->_del_tick
  Node*        _last;               // last value produced by the iterator

  void sample(const Node* node);    // used by c'tor to set up for verifies
  void verify(const Node* node, bool at_end_ok = false);
  void verify_resync();
  void reset(const DUIterator_Common& that);

// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
#else
  #define I_VDUI_ONLY(i,x) { }
#endif //ASSERT
};

#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)

// Default DU iterator.  Allows appends onto the out array.
// Allows deletion from the out array only at the current point.
// Usage:
//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
//    Node* y = x->out(i);
//    ...
//  }
// Compiles in product mode to a unsigned integer index, which indexes
// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
// also reloads x->_outcnt.  If you delete, you must perform "--i" just
// before continuing the loop.  You must delete only the last-produced
// edge.  You must delete only a single copy of the last-produced edge,
// or else you must delete all copies at once (the first time the edge
// is produced by the iterator).
class DUIterator : public DUIterator_Common {
  friend class Node;

  // This is the index which provides the product-mode behavior.
  // Whatever the product-mode version of the system does to the
  // DUI index is done to this index.  All other fields in
  // this class are used only for assertion checking.
  uint         _idx;

  #ifdef ASSERT
  uint         _refresh_tick;    // Records the refresh activity.

  void sample(const Node* node); // Initialize _refresh_tick etc.
  void verify(const Node* node, bool at_end_ok = false);
  void verify_increment();       // Verify an increment operation.
  void verify_resync();          // Verify that we can back up over a deletion.
  void verify_finish();          // Verify that the loop terminated properly.
  void refresh();                // Resample verification info.
  void reset(const DUIterator& that);  // Resample after assignment.
  #endif

  DUIterator(const Node* node, int dummy_to_avoid_conversion)
    { _idx = 0;                         debug_only(sample(node)); }

 public:
  // initialize to garbage; clear _vdui to disable asserts
  DUIterator()
    { /*initialize to garbage*/         debug_only(_vdui = false); }

  void operator++(int dummy_to_specify_postfix_op)
    { _idx++;                           VDUI_ONLY(verify_increment()); }

  void operator--()
    { VDUI_ONLY(verify_resync());       --_idx; }

  ~DUIterator()
    { VDUI_ONLY(verify_finish()); }

  void operator=(const DUIterator& that)
    { _idx = that._idx;                 debug_only(reset(that)); }
};

DUIterator Node::outs() const
  { return DUIterator(this, 0); }
DUIterator& Node::refresh_out_pos(DUIterator& i) const
  { I_VDUI_ONLY(i, i.refresh());        return i; }
bool Node::has_out(DUIterator& i) const
  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
Node*    Node::out(DUIterator& i) const
  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }


// Faster DU iterator.  Disallows insertions into the out array.
// Allows deletion from the out array only at the current point.
// Usage:
//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
//    Node* y = x->fast_out(i);
//    ...
//  }
// Compiles in product mode to raw Node** pointer arithmetic, with
// no reloading of pointers from the original node x.  If you delete,
// you must perform "--i; --imax" just before continuing the loop.
// If you delete multiple copies of the same edge, you must decrement
// imax, but not i, multiple times:  "--i, imax -= num_edges".
class DUIterator_Fast : public DUIterator_Common {
  friend class Node;
  friend class DUIterator_Last;

  // This is the pointer which provides the product-mode behavior.
  // Whatever the product-mode version of the system does to the
  // DUI pointer is done to this pointer.  All other fields in
  // this class are used only for assertion checking.
  Node**       _outp;

  #ifdef ASSERT
  void verify(const Node* node, bool at_end_ok = false);
  void verify_limit();
  void verify_resync();
  void verify_relimit(uint n);
  void reset(const DUIterator_Fast& that);
  #endif

  // Note:  offset must be signed, since -1 is sometimes passed
  DUIterator_Fast(const Node* node, ptrdiff_t offset)
    { _outp = node->_out + offset;      debug_only(sample(node)); }

 public:
  // initialize to garbage; clear _vdui to disable asserts
  DUIterator_Fast()
    { /*initialize to garbage*/         debug_only(_vdui = false); }

  void operator++(int dummy_to_specify_postfix_op)
    { _outp++;                          VDUI_ONLY(verify(_node, true)); }

  void operator--()
    { VDUI_ONLY(verify_resync());       --_outp; }

  void operator-=(uint n)   // applied to the limit only
    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }

  bool operator<(DUIterator_Fast& limit) {
    I_VDUI_ONLY(*this, this->verify(_node, true));
    I_VDUI_ONLY(limit, limit.verify_limit());
    return _outp < limit._outp;
  }

  void operator=(const DUIterator_Fast& that)
    { _outp = that._outp;               debug_only(reset(that)); }
};

DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  // Assign a limit pointer to the reference argument:
  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  // Return the base pointer:
  return DUIterator_Fast(this, 0);
}
Node* Node::fast_out(DUIterator_Fast& i) const {
  I_VDUI_ONLY(i, i.verify(this));
  return debug_only(i._last=) *i._outp;
}


// Faster DU iterator.  Requires each successive edge to be removed.
// Does not allow insertion of any edges.
// Usage:
//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
//    Node* y = x->last_out(i);
//    ...
//  }
// Compiles in product mode to raw Node** pointer arithmetic, with
// no reloading of pointers from the original node x.
class DUIterator_Last : private DUIterator_Fast {
  friend class Node;

  #ifdef ASSERT
  void verify(const Node* node, bool at_end_ok = false);
  void verify_limit();
  void verify_step(uint num_edges);
  #endif

  // Note:  offset must be signed, since -1 is sometimes passed
  DUIterator_Last(const Node* node, ptrdiff_t offset)
    : DUIterator_Fast(node, offset) { }

  void operator++(int dummy_to_specify_postfix_op) {} // do not use
  void operator<(int)                              {} // do not use

 public:
  DUIterator_Last() { }
  // initialize to garbage

  void operator--()
    { _outp--;              VDUI_ONLY(verify_step(1));  }

  void operator-=(uint n)
    { _outp -= n;           VDUI_ONLY(verify_step(n));  }

  bool operator>=(DUIterator_Last& limit) {
    I_VDUI_ONLY(*this, this->verify(_node, true));
    I_VDUI_ONLY(limit, limit.verify_limit());
    return _outp >= limit._outp;
  }

  void operator=(const DUIterator_Last& that)
    { DUIterator_Fast::operator=(that); }
};

DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  // Assign a limit pointer to the reference argument:
  imin = DUIterator_Last(this, 0);
  // Return the initial pointer:
  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
}
Node* Node::last_out(DUIterator_Last& i) const {
  I_VDUI_ONLY(i, i.verify(this));
  return debug_only(i._last=) *i._outp;
}

#endif //OPTO_DU_ITERATOR_ASSERT

#undef I_VDUI_ONLY
#undef VDUI_ONLY

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
// An Iterator that truly follows the iterator pattern.  Doesn't
// support deletion but could be made to.
//
//   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
//     Node* m = i.get();
//
class SimpleDUIterator : public StackObj {
 private:
  Node* node;
  DUIterator_Fast i;
  DUIterator_Fast imax;
 public:
  SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  bool has_next() { return i < imax; }
  void next() { i++; }
  Node* get() { return node->fast_out(i); }
};

D
duke 已提交
1285 1286 1287 1288 1289 1290 1291

//-----------------------------------------------------------------------------
// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
// Abstractly provides an infinite array of Node*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
class Node_Array : public ResourceObj {
N
never 已提交
1292
  friend class VMStructs;
D
duke 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
protected:
  Arena *_a;                    // Arena to allocate in
  uint   _max;
  Node **_nodes;
  void   grow( uint i );        // Grow array node to fit
public:
  Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
    _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
    for( int i = 0; i < OptoNodeListSize; i++ ) {
      _nodes[i] = NULL;
    }
  }

  Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  Node **adr() { return _nodes; }
  // Extend the mapping: index i maps to Node *n.
  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  void insert( uint i, Node *n );
  void remove( uint i );        // Remove, preserving order
  void sort( C_sort_func_t func);
  void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  void clear();                 // Set all entries to NULL, keep storage
  uint Size() const { return _max; }
  void dump() const;
};

class Node_List : public Node_Array {
N
never 已提交
1323
  friend class VMStructs;
D
duke 已提交
1324 1325 1326 1327
  uint _cnt;
public:
  Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1328 1329 1330 1331 1332 1333
  bool contains(Node* n) {
    for (uint e = 0; e < size(); e++) {
      if (at(e) == n) return true;
    }
    return false;
  }
D
duke 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  void push( Node *b ) { map(_cnt++,b); }
  void yank( Node *n );         // Find and remove
  Node *pop() { return _nodes[--_cnt]; }
  Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  uint size() const { return _cnt; }
  void dump() const;
};

//------------------------------Unique_Node_List-------------------------------
class Unique_Node_List : public Node_List {
N
never 已提交
1347
  friend class VMStructs;
D
duke 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
  VectorSet _in_worklist;
  uint _clock_index;            // Index in list where to pop from next
public:
  Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}

  void remove( Node *n );
  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  VectorSet &member_set(){ return _in_worklist; }

  void push( Node *b ) {
    if( !_in_worklist.test_set(b->_idx) )
      Node_List::push(b);
  }
  Node *pop() {
    if( _clock_index >= size() ) _clock_index = 0;
    Node *b = at(_clock_index);
1365 1366
    map( _clock_index, Node_List::pop());
    if (size() != 0) _clock_index++; // Always start from 0
D
duke 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    _in_worklist >>= b->_idx;
    return b;
  }
  Node *remove( uint i ) {
    Node *b = Node_List::at(i);
    _in_worklist >>= b->_idx;
    map(i,Node_List::pop());
    return b;
  }
  void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  void  clear() {
    _in_worklist.Clear();        // Discards storage but grows automatically
    Node_List::clear();
    _clock_index = 0;
  }

  // Used after parsing to remove useless nodes before Iterative GVN
  void remove_useless_nodes(VectorSet &useful);

#ifndef PRODUCT
  void print_set() const { _in_worklist.print(); }
#endif
};

// Inline definition of Compile::record_for_igvn must be deferred to this point.
inline void Compile::record_for_igvn(Node* n) {
  _for_igvn->push(n);
}

//------------------------------Node_Stack-------------------------------------
class Node_Stack {
N
never 已提交
1398
  friend class VMStructs;
D
duke 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
protected:
  struct INode {
    Node *node; // Processed node
    uint  indx; // Index of next node's child
  };
  INode *_inode_top; // tos, stack grows up
  INode *_inode_max; // End of _inodes == _inodes + _max
  INode *_inodes;    // Array storage for the stack
  Arena *_a;         // Arena to allocate in
  void grow();
public:
  Node_Stack(int size) {
    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
    _a = Thread::current()->resource_area();
    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
    _inode_max = _inodes + max;
    _inode_top = _inodes - 1; // stack is empty
  }

  Node_Stack(Arena *a, int size) : _a(a) {
    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
    _inode_max = _inodes + max;
    _inode_top = _inodes - 1; // stack is empty
  }

  void pop() {
    assert(_inode_top >= _inodes, "node stack underflow");
    --_inode_top;
  }
  void push(Node *n, uint i) {
    ++_inode_top;
    if (_inode_top >= _inode_max) grow();
    INode *top = _inode_top; // optimization
    top->node = n;
    top->indx = i;
  }
  Node *node() const {
    return _inode_top->node;
  }
  Node* node_at(uint i) const {
    assert(_inodes + i <= _inode_top, "in range");
    return _inodes[i].node;
  }
  uint index() const {
    return _inode_top->indx;
  }
1446 1447 1448 1449
  uint index_at(uint i) const {
    assert(_inodes + i <= _inode_top, "in range");
    return _inodes[i].indx;
  }
D
duke 已提交
1450 1451 1452 1453 1454 1455 1456
  void set_node(Node *n) {
    _inode_top->node = n;
  }
  void set_index(uint i) {
    _inode_top->indx = i;
  }
  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
K
kvn 已提交
1457
  uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
D
duke 已提交
1458 1459 1460
  bool is_nonempty() const { return (_inode_top >= _inodes); }
  bool is_empty() const { return (_inode_top < _inodes); }
  void clear() { _inode_top = _inodes - 1; } // retain storage
1461 1462 1463

  // Node_Stack is used to map nodes.
  Node* find(uint idx) const;
D
duke 已提交
1464 1465 1466 1467 1468 1469 1470
};


//-----------------------------Node_Notes--------------------------------------
// Debugging or profiling annotations loosely and sparsely associated
// with some nodes.  See Compile::node_notes_at for the accessor.
class Node_Notes VALUE_OBJ_CLASS_SPEC {
N
never 已提交
1471
  friend class VMStructs;
D
duke 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
  JVMState* _jvms;

public:
  Node_Notes(JVMState* jvms = NULL) {
    _jvms = jvms;
  }

  JVMState* jvms()            { return _jvms; }
  void  set_jvms(JVMState* x) {        _jvms = x; }

  // True if there is nothing here.
  bool is_clear() {
    return (_jvms == NULL);
  }

  // Make there be nothing here.
  void clear() {
    _jvms = NULL;
  }

  // Make a new, clean node notes.
  static Node_Notes* make(Compile* C) {
    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
    nn->clear();
    return nn;
  }

  Node_Notes* clone(Compile* C) {
    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
    (*nn) = (*this);
    return nn;
  }

  // Absorb any information from source.
  bool update_from(Node_Notes* source) {
    bool changed = false;
    if (source != NULL) {
      if (source->jvms() != NULL) {
        set_jvms(source->jvms());
        changed = true;
      }
    }
    return changed;
  }
};

// Inlined accessors for Compile::node_nodes that require the preceding class:
inline Node_Notes*
Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
                           int idx, bool can_grow) {
  assert(idx >= 0, "oob");
  int block_idx = (idx >> _log2_node_notes_block_size);
  int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  if (grow_by >= 0) {
    if (!can_grow)  return NULL;
    grow_node_notes(arr, grow_by + 1);
  }
  // (Every element of arr is a sub-array of length _node_notes_block_size.)
  return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
}

inline bool
Compile::set_node_notes_at(int idx, Node_Notes* value) {
  if (value == NULL || value->is_clear())
    return false;  // nothing to write => write nothing
  Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  assert(loc != NULL, "");
  return loc->update_from(value);
}


//------------------------------TypeNode---------------------------------------
// Node with a Type constant.
class TypeNode : public Node {
protected:
  virtual uint hash() const;    // Check the type
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
  const Type* const _type;
public:
  void set_type(const Type* t) {
    assert(t != NULL, "sanity");
    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
    *(const Type**)&_type = t;   // cast away const-ness
    // If this node is in the hash table, make sure it doesn't need a rehash.
    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  }
  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
    init_class_id(Class_Type);
  }
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual const Type *bottom_type() const;
  virtual       uint  ideal_reg() const;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};
1570 1571

#endif // SHARE_VM_OPTO_NODE_HPP