assembler_x86.hpp 105.2 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27
#ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
#define CPU_X86_VM_ASSEMBLER_X86_HPP

D
duke 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class BiasedLockingCounters;

// Contains all the definitions needed for x86 assembly code generation.

// Calling convention
class Argument VALUE_OBJ_CLASS_SPEC {
 public:
  enum {
#ifdef _LP64
#ifdef _WIN64
    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
#else
    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
#endif // _WIN64
    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
#else
    n_register_parameters = 0   // 0 registers used to pass arguments
#endif // _LP64
  };
};


#ifdef _LP64
// Symbolically name the register arguments used by the c calling convention.
// Windows is different from linux/solaris. So much for standards...

#ifdef _WIN64

REGISTER_DECLARATION(Register, c_rarg0, rcx);
REGISTER_DECLARATION(Register, c_rarg1, rdx);
REGISTER_DECLARATION(Register, c_rarg2, r8);
REGISTER_DECLARATION(Register, c_rarg3, r9);

64 65 66 67
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
D
duke 已提交
68 69 70 71 72 73 74 75 76 77

#else

REGISTER_DECLARATION(Register, c_rarg0, rdi);
REGISTER_DECLARATION(Register, c_rarg1, rsi);
REGISTER_DECLARATION(Register, c_rarg2, rdx);
REGISTER_DECLARATION(Register, c_rarg3, rcx);
REGISTER_DECLARATION(Register, c_rarg4, r8);
REGISTER_DECLARATION(Register, c_rarg5, r9);

78 79 80 81 82 83 84 85
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
D
duke 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

#endif // _WIN64

// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do little shuffling. A suitable jni method is non-static and a
// small number of arguments (two fewer args on windows)
//
//        |-------------------------------------------------------|
//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
//        |-------------------------------------------------------|
//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
//        |-------------------------------------------------------|
//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
//        |-------------------------------------------------------|

REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
// Windows runs out of register args here
#ifdef _WIN64
REGISTER_DECLARATION(Register, j_rarg3, rdi);
REGISTER_DECLARATION(Register, j_rarg4, rsi);
#else
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
#endif /* _WIN64 */
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);

118 119 120 121 122 123 124 125
REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
D
duke 已提交
126 127 128 129

REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile

130
REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
D
duke 已提交
131 132
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved

133 134 135 136 137
#else
// rscratch1 will apear in 32bit code that is dead but of course must compile
// Using noreg ensures if the dead code is incorrectly live and executed it
// will cause an assertion failure
#define rscratch1 noreg
138
#define rscratch2 noreg
139

D
duke 已提交
140 141
#endif // _LP64

142 143 144
// JSR 292 fixed register usages:
REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);

D
duke 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
// Address is an abstraction used to represent a memory location
// using any of the amd64 addressing modes with one object.
//
// Note: A register location is represented via a Register, not
//       via an address for efficiency & simplicity reasons.

class ArrayAddress;

class Address VALUE_OBJ_CLASS_SPEC {
 public:
  enum ScaleFactor {
    no_scale = -1,
    times_1  =  0,
    times_2  =  1,
    times_4  =  2,
160 161
    times_8  =  3,
    times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
D
duke 已提交
162
  };
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  static ScaleFactor times(int size) {
    assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
    if (size == 8)  return times_8;
    if (size == 4)  return times_4;
    if (size == 2)  return times_2;
    return times_1;
  }
  static int scale_size(ScaleFactor scale) {
    assert(scale != no_scale, "");
    assert(((1 << (int)times_1) == 1 &&
            (1 << (int)times_2) == 2 &&
            (1 << (int)times_4) == 4 &&
            (1 << (int)times_8) == 8), "");
    return (1 << (int)scale);
  }
D
duke 已提交
178 179 180 181 182 183 184 185

 private:
  Register         _base;
  Register         _index;
  ScaleFactor      _scale;
  int              _disp;
  RelocationHolder _rspec;

186 187 188 189 190
  // Easily misused constructors make them private
  // %%% can we make these go away?
  NOT_LP64(Address(address loc, RelocationHolder spec);)
  Address(int disp, address loc, relocInfo::relocType rtype);
  Address(int disp, address loc, RelocationHolder spec);
D
duke 已提交
191 192

 public:
193 194

 int disp() { return _disp; }
D
duke 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  // creation
  Address()
    : _base(noreg),
      _index(noreg),
      _scale(no_scale),
      _disp(0) {
  }

  // No default displacement otherwise Register can be implicitly
  // converted to 0(Register) which is quite a different animal.

  Address(Register base, int disp)
    : _base(base),
      _index(noreg),
      _scale(no_scale),
      _disp(disp) {
  }

  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
    : _base (base),
      _index(index),
      _scale(scale),
      _disp (disp) {
    assert(!index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

222
  Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
223 224 225 226 227 228 229 230 231 232 233 234 235 236
    : _base (base),
      _index(index.register_or_noreg()),
      _scale(scale),
      _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
    if (!index.is_register())  scale = Address::no_scale;
    assert(!_index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

  Address plus_disp(int disp) const {
    Address a = (*this);
    a._disp += disp;
    return a;
  }
237 238 239 240 241 242 243 244 245 246 247 248 249 250
  Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
    Address a = (*this);
    a._disp += disp.constant_or_zero() * scale_size(scale);
    if (disp.is_register()) {
      assert(!a.index()->is_valid(), "competing indexes");
      a._index = disp.as_register();
      a._scale = scale;
    }
    return a;
  }
  bool is_same_address(Address a) const {
    // disregard _rspec
    return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
  }
251

D
duke 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  // The following two overloads are used in connection with the
  // ByteSize type (see sizes.hpp).  They simplify the use of
  // ByteSize'd arguments in assembly code. Note that their equivalent
  // for the optimized build are the member functions with int disp
  // argument since ByteSize is mapped to an int type in that case.
  //
  // Note: DO NOT introduce similar overloaded functions for WordSize
  // arguments as in the optimized mode, both ByteSize and WordSize
  // are mapped to the same type and thus the compiler cannot make a
  // distinction anymore (=> compiler errors).

#ifdef ASSERT
  Address(Register base, ByteSize disp)
    : _base(base),
      _index(noreg),
      _scale(no_scale),
      _disp(in_bytes(disp)) {
  }

  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
    : _base(base),
      _index(index),
      _scale(scale),
      _disp(in_bytes(disp)) {
    assert(!index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }
279

280
  Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
281 282 283 284 285 286 287 288 289
    : _base (base),
      _index(index.register_or_noreg()),
      _scale(scale),
      _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
    if (!index.is_register())  scale = Address::no_scale;
    assert(!_index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

D
duke 已提交
290 291 292
#endif // ASSERT

  // accessors
293 294 295 296 297
  bool        uses(Register reg) const { return _base == reg || _index == reg; }
  Register    base()             const { return _base;  }
  Register    index()            const { return _index; }
  ScaleFactor scale()            const { return _scale; }
  int         disp()             const { return _disp;  }
D
duke 已提交
298 299 300 301

  // Convert the raw encoding form into the form expected by the constructor for
  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
  // that to noreg for the Address constructor.
302
  static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
D
duke 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

  static Address make_array(ArrayAddress);

 private:
  bool base_needs_rex() const {
    return _base != noreg && _base->encoding() >= 8;
  }

  bool index_needs_rex() const {
    return _index != noreg &&_index->encoding() >= 8;
  }

  relocInfo::relocType reloc() const { return _rspec.type(); }

  friend class Assembler;
  friend class MacroAssembler;
  friend class LIR_Assembler; // base/index/scale/disp
};

//
// AddressLiteral has been split out from Address because operands of this type
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
// the few instructions that need to deal with address literals are unique and the
// MacroAssembler does not have to implement every instruction in the Assembler
// in order to search for address literals that may need special handling depending
// on the instruction and the platform. As small step on the way to merging i486/amd64
// directories.
//
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
  friend class ArrayAddress;
  RelocationHolder _rspec;
  // Typically we use AddressLiterals we want to use their rval
  // However in some situations we want the lval (effect address) of the item.
  // We provide a special factory for making those lvals.
  bool _is_lval;

  // If the target is far we'll need to load the ea of this to
  // a register to reach it. Otherwise if near we can do rip
  // relative addressing.

  address          _target;

 protected:
  // creation
  AddressLiteral()
    : _is_lval(false),
      _target(NULL)
  {}

  public:


  AddressLiteral(address target, relocInfo::relocType rtype);

  AddressLiteral(address target, RelocationHolder const& rspec)
    : _rspec(rspec),
      _is_lval(false),
      _target(target)
  {}

  AddressLiteral addr() {
    AddressLiteral ret = *this;
    ret._is_lval = true;
    return ret;
  }


 private:

  address target() { return _target; }
  bool is_lval() { return _is_lval; }

  relocInfo::relocType reloc() const { return _rspec.type(); }
  const RelocationHolder& rspec() const { return _rspec; }

  friend class Assembler;
  friend class MacroAssembler;
  friend class Address;
  friend class LIR_Assembler;
};

// Convience classes
class RuntimeAddress: public AddressLiteral {

  public:

  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}

};

class ExternalAddress: public AddressLiteral {
394 395 396 397 398 399 400 401
 private:
  static relocInfo::relocType reloc_for_target(address target) {
    // Sometimes ExternalAddress is used for values which aren't
    // exactly addresses, like the card table base.
    // external_word_type can't be used for values in the first page
    // so just skip the reloc in that case.
    return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
  }
D
duke 已提交
402

403
 public:
D
duke 已提交
404

405
  ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
D
duke 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

};

class InternalAddress: public AddressLiteral {

  public:

  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}

};

// x86 can do array addressing as a single operation since disp can be an absolute
// address amd64 can't. We create a class that expresses the concept but does extra
// magic on amd64 to get the final result

class ArrayAddress VALUE_OBJ_CLASS_SPEC {
  private:

  AddressLiteral _base;
  Address        _index;

  public:

  ArrayAddress() {};
  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
  AddressLiteral base() { return _base; }
  Address index() { return _index; }

};

436
const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
D
duke 已提交
437 438 439 440 441 442 443 444

// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.

class Assembler : public AbstractAssembler  {
  friend class AbstractAssembler; // for the non-virtual hack
  friend class LIR_Assembler; // as_Address()
445
  friend class StubGenerator;
D
duke 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

 public:
  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
    zero          = 0x4,
    notZero       = 0x5,
    equal         = 0x4,
    notEqual      = 0x5,
    less          = 0xc,
    lessEqual     = 0xe,
    greater       = 0xf,
    greaterEqual  = 0xd,
    below         = 0x2,
    belowEqual    = 0x6,
    above         = 0x7,
    aboveEqual    = 0x3,
    overflow      = 0x0,
    noOverflow    = 0x1,
    carrySet      = 0x2,
    carryClear    = 0x3,
    negative      = 0x8,
    positive      = 0x9,
    parity        = 0xa,
    noParity      = 0xb
  };

  enum Prefix {
    // segment overrides
    CS_segment = 0x2e,
    SS_segment = 0x36,
    DS_segment = 0x3e,
    ES_segment = 0x26,
    FS_segment = 0x64,
    GS_segment = 0x65,

    REX        = 0x40,

    REX_B      = 0x41,
    REX_X      = 0x42,
    REX_XB     = 0x43,
    REX_R      = 0x44,
    REX_RB     = 0x45,
    REX_RX     = 0x46,
    REX_RXB    = 0x47,

    REX_W      = 0x48,

    REX_WB     = 0x49,
    REX_WX     = 0x4A,
    REX_WXB    = 0x4B,
    REX_WR     = 0x4C,
    REX_WRB    = 0x4D,
    REX_WRX    = 0x4E,
K
kvn 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    REX_WRXB   = 0x4F,

    VEX_3bytes = 0xC4,
    VEX_2bytes = 0xC5
  };

  enum VexPrefix {
    VEX_B = 0x20,
    VEX_X = 0x40,
    VEX_R = 0x80,
    VEX_W = 0x80
  };

  enum VexSimdPrefix {
    VEX_SIMD_NONE = 0x0,
    VEX_SIMD_66   = 0x1,
    VEX_SIMD_F3   = 0x2,
    VEX_SIMD_F2   = 0x3
  };

  enum VexOpcode {
    VEX_OPCODE_NONE  = 0x0,
    VEX_OPCODE_0F    = 0x1,
    VEX_OPCODE_0F_38 = 0x2,
    VEX_OPCODE_0F_3A = 0x3
D
duke 已提交
523 524 525 526
  };

  enum WhichOperand {
    // input to locate_operand, and format code for relocations
527
    imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
D
duke 已提交
528 529
    disp32_operand = 1,          // embedded 32-bit displacement or address
    call32_operand = 2,          // embedded 32-bit self-relative displacement
530
#ifndef _LP64
D
duke 已提交
531
    _WhichOperand_limit = 3
532 533 534 535
#else
     narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
    _WhichOperand_limit = 4
#endif
D
duke 已提交
536 537 538 539
  };



540 541 542 543 544 545 546 547 548
  // NOTE: The general philopsophy of the declarations here is that 64bit versions
  // of instructions are freely declared without the need for wrapping them an ifdef.
  // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
  // In the .cpp file the implementations are wrapped so that they are dropped out
  // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
  // to the size it was prior to merging up the 32bit and 64bit assemblers.
  //
  // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
  // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
D
duke 已提交
549

550
private:
D
duke 已提交
551 552


553 554 555
  // 64bit prefixes
  int prefix_and_encode(int reg_enc, bool byteinst = false);
  int prefixq_and_encode(int reg_enc);
D
duke 已提交
556

557 558
  int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
  int prefixq_and_encode(int dst_enc, int src_enc);
D
duke 已提交
559

560 561 562
  void prefix(Register reg);
  void prefix(Address adr);
  void prefixq(Address adr);
D
duke 已提交
563

564 565
  void prefix(Address adr, Register reg,  bool byteinst = false);
  void prefix(Address adr, XMMRegister reg);
K
kvn 已提交
566 567
  void prefixq(Address adr, Register reg);
  void prefixq(Address adr, XMMRegister reg);
D
duke 已提交
568

569
  void prefetch_prefix(Address src);
D
duke 已提交
570

K
kvn 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583
  void rex_prefix(Address adr, XMMRegister xreg,
                  VexSimdPrefix pre, VexOpcode opc, bool rex_w);
  int  rex_prefix_and_encode(int dst_enc, int src_enc,
                             VexSimdPrefix pre, VexOpcode opc, bool rex_w);

  void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
                  int nds_enc, VexSimdPrefix pre, VexOpcode opc,
                  bool vector256);

  void vex_prefix(Address adr, int nds_enc, int xreg_enc,
                  VexSimdPrefix pre, VexOpcode opc,
                  bool vex_w, bool vector256);

584 585
  void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
                  VexSimdPrefix pre, bool vector256 = false) {
586 587 588
    int dst_enc = dst->encoding();
    int nds_enc = nds->is_valid() ? nds->encoding() : 0;
    vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
589 590
  }

K
kvn 已提交
591 592 593 594
  int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
                             VexSimdPrefix pre, VexOpcode opc,
                             bool vex_w, bool vector256);

595
  int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
596 597 598 599 600 601
                             VexSimdPrefix pre, bool vector256 = false,
                             VexOpcode opc = VEX_OPCODE_0F) {
    int src_enc = src->encoding();
    int dst_enc = dst->encoding();
    int nds_enc = nds->is_valid() ? nds->encoding() : 0;
    return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
602
  }
K
kvn 已提交
603 604 605 606 607 608 609 610 611

  void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
                   VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
                   bool rex_w = false, bool vector256 = false);

  void simd_prefix(XMMRegister dst, Address src,
                   VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
    simd_prefix(dst, xnoreg, src, pre, opc);
  }
612

K
kvn 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
  void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
    simd_prefix(src, dst, pre);
  }
  void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
                     VexSimdPrefix pre) {
    bool rex_w = true;
    simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
  }

  int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
                             VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
                             bool rex_w = false, bool vector256 = false);

  // Move/convert 32-bit integer value.
  int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
                             VexSimdPrefix pre) {
    // It is OK to cast from Register to XMMRegister to pass argument here
    // since only encoding is used in simd_prefix_and_encode() and number of
    // Gen and Xmm registers are the same.
    return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
  }
  int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
    return simd_prefix_and_encode(dst, xnoreg, src, pre);
  }
  int simd_prefix_and_encode(Register dst, XMMRegister src,
                             VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
    return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
  }

  // Move/convert 64-bit integer value.
  int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
                               VexSimdPrefix pre) {
    bool rex_w = true;
    return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
  }
  int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
    return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
  }
  int simd_prefix_and_encode_q(Register dst, XMMRegister src,
                             VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
    bool rex_w = true;
    return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
  }

657 658
  // Helper functions for groups of instructions
  void emit_arith_b(int op1, int op2, Register dst, int imm8);
D
duke 已提交
659

660
  void emit_arith(int op1, int op2, Register dst, int32_t imm32);
661 662
  // Force generation of a 4 byte immediate value even if it fits into 8bit
  void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
663
  void emit_arith(int op1, int op2, Register dst, Register src);
D
duke 已提交
664

665 666 667 668 669 670 671 672 673
  void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
  void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
  void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
  void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
  void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                      Address src, VexSimdPrefix pre, bool vector256);
  void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                      XMMRegister src, VexSimdPrefix pre, bool vector256);

674 675 676 677 678
  void emit_operand(Register reg,
                    Register base, Register index, Address::ScaleFactor scale,
                    int disp,
                    RelocationHolder const& rspec,
                    int rip_relative_correction = 0);
D
duke 已提交
679

680
  void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
D
duke 已提交
681

682 683
  // operands that only take the original 32bit registers
  void emit_operand32(Register reg, Address adr);
D
duke 已提交
684

685 686 687 688
  void emit_operand(XMMRegister reg,
                    Register base, Register index, Address::ScaleFactor scale,
                    int disp,
                    RelocationHolder const& rspec);
D
duke 已提交
689

690
  void emit_operand(XMMRegister reg, Address adr);
D
duke 已提交
691

692
  void emit_operand(MMXRegister reg, Address adr);
D
duke 已提交
693

694 695
  // workaround gcc (3.2.1-7) bug
  void emit_operand(Address adr, MMXRegister reg);
D
duke 已提交
696 697


698 699
  // Immediate-to-memory forms
  void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
D
duke 已提交
700

701
  void emit_farith(int b1, int b2, int i);
D
duke 已提交
702 703 704


 protected:
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
  #ifdef ASSERT
  void check_relocation(RelocationHolder const& rspec, int format);
  #endif

  inline void emit_long64(jlong x);

  void emit_data(jint data, relocInfo::relocType    rtype, int format);
  void emit_data(jint data, RelocationHolder const& rspec, int format);
  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);

  bool reachable(AddressLiteral adr) NOT_LP64({ return true;});

  // These are all easily abused and hence protected

  // 32BIT ONLY SECTION
#ifndef _LP64
  // Make these disappear in 64bit mode since they would never be correct
  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY

726
  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
727 728 729 730 731 732
  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY

  void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
#else
  // 64BIT ONLY SECTION
  void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
733 734 735 736 737 738

  void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
  void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);

  void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
  void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
#endif // _LP64

  // These are unique in that we are ensured by the caller that the 32bit
  // relative in these instructions will always be able to reach the potentially
  // 64bit address described by entry. Since they can take a 64bit address they
  // don't have the 32 suffix like the other instructions in this class.

  void call_literal(address entry, RelocationHolder const& rspec);
  void jmp_literal(address entry, RelocationHolder const& rspec);

  // Avoid using directly section
  // Instructions in this section are actually usable by anyone without danger
  // of failure but have performance issues that are addressed my enhanced
  // instructions which will do the proper thing base on the particular cpu.
  // We protect them because we don't trust you...

D
duke 已提交
755 756 757 758 759 760 761 762
  // Don't use next inc() and dec() methods directly. INC & DEC instructions
  // could cause a partial flag stall since they don't set CF flag.
  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
  // which call inc() & dec() or add() & sub() in accordance with
  // the product flag UseIncDec value.

  void decl(Register dst);
  void decl(Address dst);
763 764
  void decq(Register dst);
  void decq(Address dst);
D
duke 已提交
765 766 767

  void incl(Register dst);
  void incl(Address dst);
768 769
  void incq(Register dst);
  void incq(Address dst);
D
duke 已提交
770

771 772 773
  // New cpus require use of movsd and movss to avoid partial register stall
  // when loading from memory. But for old Opteron use movlpd instead of movsd.
  // The selection is done in MacroAssembler::movdbl() and movflt().
D
duke 已提交
774

775 776 777 778
  // Move Scalar Single-Precision Floating-Point Values
  void movss(XMMRegister dst, Address src);
  void movss(XMMRegister dst, XMMRegister src);
  void movss(Address dst, XMMRegister src);
D
duke 已提交
779

780 781 782 783 784
  // Move Scalar Double-Precision Floating-Point Values
  void movsd(XMMRegister dst, Address src);
  void movsd(XMMRegister dst, XMMRegister src);
  void movsd(Address dst, XMMRegister src);
  void movlpd(XMMRegister dst, Address src);
D
duke 已提交
785

786 787 788 789
  // New cpus require use of movaps and movapd to avoid partial register stall
  // when moving between registers.
  void movaps(XMMRegister dst, XMMRegister src);
  void movapd(XMMRegister dst, XMMRegister src);
D
duke 已提交
790

791
  // End avoid using directly
D
duke 已提交
792 793


794 795
  // Instruction prefixes
  void prefix(Prefix p);
D
duke 已提交
796

797
  public:
D
duke 已提交
798

799 800
  // Creation
  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
D
duke 已提交
801

802 803 804
  // Decoding
  static address locate_operand(address inst, WhichOperand which);
  static address locate_next_instruction(address inst);
D
duke 已提交
805

806
  // Utilities
807 808
  static bool is_polling_page_far() NOT_LP64({ return false;});

809 810 811
  // Generic instructions
  // Does 32bit or 64bit as needed for the platform. In some sense these
  // belong in macro assembler but there is no need for both varieties to exist
D
duke 已提交
812

813
  void lea(Register dst, Address src);
D
duke 已提交
814

815
  void mov(Register dst, Register src);
D
duke 已提交
816

817 818
  void pusha();
  void popa();
D
duke 已提交
819

820 821
  void pushf();
  void popf();
D
duke 已提交
822

823
  void push(int32_t imm32);
D
duke 已提交
824

825
  void push(Register src);
D
duke 已提交
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
  void pop(Register dst);

  // These are dummies to prevent surprise implicit conversions to Register
  void push(void* v);
  void pop(void* v);

  // These do register sized moves/scans
  void rep_mov();
  void rep_set();
  void repne_scan();
#ifdef _LP64
  void repne_scanl();
#endif

  // Vanilla instructions in lexical order

843 844
  void adcl(Address dst, int32_t imm32);
  void adcl(Address dst, Register src);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
  void adcl(Register dst, int32_t imm32);
  void adcl(Register dst, Address src);
  void adcl(Register dst, Register src);

  void adcq(Register dst, int32_t imm32);
  void adcq(Register dst, Address src);
  void adcq(Register dst, Register src);

  void addl(Address dst, int32_t imm32);
  void addl(Address dst, Register src);
  void addl(Register dst, int32_t imm32);
  void addl(Register dst, Address src);
  void addl(Register dst, Register src);

  void addq(Address dst, int32_t imm32);
  void addq(Address dst, Register src);
  void addq(Register dst, int32_t imm32);
  void addq(Register dst, Address src);
  void addq(Register dst, Register src);
D
duke 已提交
864 865 866 867 868 869

  void addr_nop_4();
  void addr_nop_5();
  void addr_nop_7();
  void addr_nop_8();

870 871 872
  // Add Scalar Double-Precision Floating-Point Values
  void addsd(XMMRegister dst, Address src);
  void addsd(XMMRegister dst, XMMRegister src);
D
duke 已提交
873

874 875 876 877
  // Add Scalar Single-Precision Floating-Point Values
  void addss(XMMRegister dst, Address src);
  void addss(XMMRegister dst, XMMRegister src);

K
kvn 已提交
878
  void andl(Address  dst, int32_t imm32);
879 880 881 882
  void andl(Register dst, int32_t imm32);
  void andl(Register dst, Address src);
  void andl(Register dst, Register src);

883
  void andq(Address  dst, int32_t imm32);
884 885 886 887
  void andq(Register dst, int32_t imm32);
  void andq(Register dst, Address src);
  void andq(Register dst, Register src);

888 889 890 891 892 893 894 895
  void bsfl(Register dst, Register src);
  void bsrl(Register dst, Register src);

#ifdef _LP64
  void bsfq(Register dst, Register src);
  void bsrq(Register dst, Register src);
#endif

896 897 898
  void bswapl(Register reg);

  void bswapq(Register reg);
D
duke 已提交
899 900 901 902 903

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register reg);  // push pc; pc <- reg
  void call(Address adr);   // push pc; pc <- adr

904
  void cdql();
D
duke 已提交
905

906
  void cdqq();
D
duke 已提交
907

908
  void cld() { emit_byte(0xfc); }
D
duke 已提交
909

910
  void clflush(Address adr);
D
duke 已提交
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
  void cmovl(Condition cc, Register dst, Register src);
  void cmovl(Condition cc, Register dst, Address src);

  void cmovq(Condition cc, Register dst, Register src);
  void cmovq(Condition cc, Register dst, Address src);


  void cmpb(Address dst, int imm8);

  void cmpl(Address dst, int32_t imm32);

  void cmpl(Register dst, int32_t imm32);
  void cmpl(Register dst, Register src);
  void cmpl(Register dst, Address src);

  void cmpq(Address dst, int32_t imm32);
  void cmpq(Address dst, Register src);

  void cmpq(Register dst, int32_t imm32);
  void cmpq(Register dst, Register src);
  void cmpq(Register dst, Address src);

  // these are dummies used to catch attempting to convert NULL to Register
  void cmpl(Register dst, void* junk); // dummy
  void cmpq(Register dst, void* junk); // dummy

  void cmpw(Address dst, int imm16);

  void cmpxchg8 (Address adr);

  void cmpxchgl(Register reg, Address adr);

  void cmpxchgq(Register reg, Address adr);

  // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  void comisd(XMMRegister dst, Address src);
K
kvn 已提交
948
  void comisd(XMMRegister dst, XMMRegister src);
949 950 951

  // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  void comiss(XMMRegister dst, Address src);
K
kvn 已提交
952
  void comiss(XMMRegister dst, XMMRegister src);
953 954 955 956 957 958 959 960 961

  // Identify processor type and features
  void cpuid() {
    emit_byte(0x0F);
    emit_byte(0xA2);
  }

  // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
  void cvtsd2ss(XMMRegister dst, XMMRegister src);
K
kvn 已提交
962
  void cvtsd2ss(XMMRegister dst, Address src);
963 964 965

  // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
  void cvtsi2sdl(XMMRegister dst, Register src);
K
kvn 已提交
966
  void cvtsi2sdl(XMMRegister dst, Address src);
967
  void cvtsi2sdq(XMMRegister dst, Register src);
K
kvn 已提交
968
  void cvtsi2sdq(XMMRegister dst, Address src);
969 970 971

  // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
  void cvtsi2ssl(XMMRegister dst, Register src);
K
kvn 已提交
972
  void cvtsi2ssl(XMMRegister dst, Address src);
973
  void cvtsi2ssq(XMMRegister dst, Register src);
K
kvn 已提交
974
  void cvtsi2ssq(XMMRegister dst, Address src);
975 976 977 978 979 980 981 982 983

  // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
  void cvtdq2pd(XMMRegister dst, XMMRegister src);

  // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
  void cvtdq2ps(XMMRegister dst, XMMRegister src);

  // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
  void cvtss2sd(XMMRegister dst, XMMRegister src);
K
kvn 已提交
984
  void cvtss2sd(XMMRegister dst, Address src);
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

  // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
  void cvttsd2sil(Register dst, Address src);
  void cvttsd2sil(Register dst, XMMRegister src);
  void cvttsd2siq(Register dst, XMMRegister src);

  // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
  void cvttss2sil(Register dst, XMMRegister src);
  void cvttss2siq(Register dst, XMMRegister src);

  // Divide Scalar Double-Precision Floating-Point Values
  void divsd(XMMRegister dst, Address src);
  void divsd(XMMRegister dst, XMMRegister src);

  // Divide Scalar Single-Precision Floating-Point Values
  void divss(XMMRegister dst, Address src);
  void divss(XMMRegister dst, XMMRegister src);

  void emms();

  void fabs();

  void fadd(int i);

  void fadd_d(Address src);
  void fadd_s(Address src);

  // "Alternate" versions of x87 instructions place result down in FPU
  // stack instead of on TOS

  void fadda(int i); // "alternate" fadd
  void faddp(int i = 1);

  void fchs();

  void fcom(int i);

  void fcomp(int i = 1);
  void fcomp_d(Address src);
  void fcomp_s(Address src);

  void fcompp();

  void fcos();

  void fdecstp();

  void fdiv(int i);
  void fdiv_d(Address src);
  void fdivr_s(Address src);
  void fdiva(int i);  // "alternate" fdiv
  void fdivp(int i = 1);

  void fdivr(int i);
  void fdivr_d(Address src);
  void fdiv_s(Address src);

  void fdivra(int i); // "alternate" reversed fdiv

  void fdivrp(int i = 1);

  void ffree(int i = 0);

  void fild_d(Address adr);
  void fild_s(Address adr);

  void fincstp();

  void finit();

  void fist_s (Address adr);
  void fistp_d(Address adr);
  void fistp_s(Address adr);

  void fld1();

  void fld_d(Address adr);
  void fld_s(Address adr);
  void fld_s(int index);
  void fld_x(Address adr);  // extended-precision (80-bit) format

  void fldcw(Address src);

  void fldenv(Address src);

  void fldlg2();

  void fldln2();

  void fldz();

  void flog();
  void flog10();

  void fmul(int i);

  void fmul_d(Address src);
  void fmul_s(Address src);

  void fmula(int i);  // "alternate" fmul

  void fmulp(int i = 1);

  void fnsave(Address dst);

  void fnstcw(Address src);

  void fnstsw_ax();

  void fprem();
  void fprem1();

  void frstor(Address src);

  void fsin();

  void fsqrt();

  void fst_d(Address adr);
  void fst_s(Address adr);

  void fstp_d(Address adr);
  void fstp_d(int index);
  void fstp_s(Address adr);
  void fstp_x(Address adr); // extended-precision (80-bit) format

  void fsub(int i);
  void fsub_d(Address src);
  void fsub_s(Address src);

  void fsuba(int i);  // "alternate" fsub

  void fsubp(int i = 1);

  void fsubr(int i);
  void fsubr_d(Address src);
  void fsubr_s(Address src);

  void fsubra(int i); // "alternate" reversed fsub

  void fsubrp(int i = 1);

  void ftan();

  void ftst();

  void fucomi(int i = 1);
  void fucomip(int i = 1);

  void fwait();

  void fxch(int i = 1);

  void fxrstor(Address src);

  void fxsave(Address dst);

  void fyl2x();
1143 1144 1145
  void frndint();
  void f2xm1();
  void fldl2e();
1146 1147 1148 1149

  void hlt();

  void idivl(Register src);
1150
  void divl(Register src); // Unsigned division
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

  void idivq(Register src);

  void imull(Register dst, Register src);
  void imull(Register dst, Register src, int value);

  void imulq(Register dst, Register src);
  void imulq(Register dst, Register src, int value);


  // jcc is the generic conditional branch generator to run-
  // time routines, jcc is used for branches to labels. jcc
  // takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;      // unbound label
  // jcc(cc, L);   // forward branch to unbound label
D
duke 已提交
1169 1170 1171 1172 1173 1174 1175
  // bind(L);      // bind label to the current pc
  // jcc(cc, L);   // backward branch to bound label
  // bind(L);      // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

1176
  void jcc(Condition cc, Label& L, bool maybe_short = true);
D
duke 已提交
1177 1178 1179 1180 1181 1182 1183

  // Conditional jump to a 8-bit offset to L.
  // WARNING: be very careful using this for forward jumps.  If the label is
  // not bound within an 8-bit offset of this instruction, a run-time error
  // will occur.
  void jccb(Condition cc, Label& L);

1184
  void jmp(Address entry);    // pc <- entry
D
duke 已提交
1185

1186
  // Label operations & relative jumps (PPUM Appendix D)
1187
  void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
D
duke 已提交
1188

1189
  void jmp(Register entry); // pc <- entry
D
duke 已提交
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
  // Unconditional 8-bit offset jump to L.
  // WARNING: be very careful using this for forward jumps.  If the label is
  // not bound within an 8-bit offset of this instruction, a run-time error
  // will occur.
  void jmpb(Label& L);

  void ldmxcsr( Address src );

  void leal(Register dst, Address src);

  void leaq(Register dst, Address src);

  void lfence() {
    emit_byte(0x0F);
    emit_byte(0xAE);
    emit_byte(0xE8);
  }

  void lock();

1211 1212 1213 1214 1215 1216
  void lzcntl(Register dst, Register src);

#ifdef _LP64
  void lzcntq(Register dst, Register src);
#endif

1217 1218 1219 1220 1221 1222 1223
  enum Membar_mask_bits {
    StoreStore = 1 << 3,
    LoadStore  = 1 << 2,
    StoreLoad  = 1 << 1,
    LoadLoad   = 1 << 0
  };

1224
  // Serializes memory and blows flags
1225
  void membar(Membar_mask_bits order_constraint) {
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    if (os::is_MP()) {
      // We only have to handle StoreLoad
      if (order_constraint & StoreLoad) {
        // All usable chips support "locked" instructions which suffice
        // as barriers, and are much faster than the alternative of
        // using cpuid instruction. We use here a locked add [esp],0.
        // This is conveniently otherwise a no-op except for blowing
        // flags.
        // Any change to this code may need to revisit other places in
        // the code where this idiom is used, in particular the
        // orderAccess code.
        lock();
        addl(Address(rsp, 0), 0);// Assert the lock# signal here
      }
    }
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
  }

  void mfence();

  // Moves

  void mov64(Register dst, int64_t imm64);

  void movb(Address dst, Register src);
  void movb(Address dst, int imm8);
  void movb(Register dst, Address src);

  void movdl(XMMRegister dst, Register src);
  void movdl(Register dst, XMMRegister src);
1255
  void movdl(XMMRegister dst, Address src);
1256
  void movdl(Address dst, XMMRegister src);
1257 1258 1259 1260 1261 1262 1263 1264

  // Move Double Quadword
  void movdq(XMMRegister dst, Register src);
  void movdq(Register dst, XMMRegister src);

  // Move Aligned Double Quadword
  void movdqa(XMMRegister dst, XMMRegister src);

1265 1266 1267 1268 1269
  // Move Unaligned Double Quadword
  void movdqu(Address     dst, XMMRegister src);
  void movdqu(XMMRegister dst, Address src);
  void movdqu(XMMRegister dst, XMMRegister src);

1270 1271 1272 1273 1274 1275 1276 1277
  // Move Unaligned 256bit Vector
  void vmovdqu(Address dst, XMMRegister src);
  void vmovdqu(XMMRegister dst, Address src);
  void vmovdqu(XMMRegister dst, XMMRegister src);

  // Move lower 64bit to high 64bit in 128bit register
  void movlhps(XMMRegister dst, XMMRegister src);

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
  void movl(Register dst, int32_t imm32);
  void movl(Address dst, int32_t imm32);
  void movl(Register dst, Register src);
  void movl(Register dst, Address src);
  void movl(Address dst, Register src);

  // These dummies prevent using movl from converting a zero (like NULL) into Register
  // by giving the compiler two choices it can't resolve

  void movl(Address  dst, void* junk);
  void movl(Register dst, void* junk);

#ifdef _LP64
  void movq(Register dst, Register src);
  void movq(Register dst, Address src);
1293
  void movq(Address  dst, Register src);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#endif

  void movq(Address     dst, MMXRegister src );
  void movq(MMXRegister dst, Address src );

#ifdef _LP64
  // These dummies prevent using movq from converting a zero (like NULL) into Register
  // by giving the compiler two choices it can't resolve

  void movq(Address  dst, void* dummy);
  void movq(Register dst, void* dummy);
#endif

  // Move Quadword
  void movq(Address     dst, XMMRegister src);
  void movq(XMMRegister dst, Address src);

  void movsbl(Register dst, Address src);
  void movsbl(Register dst, Register src);

#ifdef _LP64
1315 1316 1317
  void movsbq(Register dst, Address src);
  void movsbq(Register dst, Register src);

1318
  // Move signed 32bit immediate to 64bit extending sign
1319
  void movslq(Address  dst, int32_t imm64);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
  void movslq(Register dst, int32_t imm64);

  void movslq(Register dst, Address src);
  void movslq(Register dst, Register src);
  void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
#endif

  void movswl(Register dst, Address src);
  void movswl(Register dst, Register src);

1330 1331 1332 1333 1334
#ifdef _LP64
  void movswq(Register dst, Address src);
  void movswq(Register dst, Register src);
#endif

1335 1336 1337 1338 1339 1340 1341
  void movw(Address dst, int imm16);
  void movw(Register dst, Address src);
  void movw(Address dst, Register src);

  void movzbl(Register dst, Address src);
  void movzbl(Register dst, Register src);

1342 1343 1344 1345 1346
#ifdef _LP64
  void movzbq(Register dst, Address src);
  void movzbq(Register dst, Register src);
#endif

1347 1348 1349
  void movzwl(Register dst, Address src);
  void movzwl(Register dst, Register src);

1350 1351 1352 1353 1354
#ifdef _LP64
  void movzwq(Register dst, Address src);
  void movzwq(Register dst, Register src);
#endif

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
  void mull(Address src);
  void mull(Register src);

  // Multiply Scalar Double-Precision Floating-Point Values
  void mulsd(XMMRegister dst, Address src);
  void mulsd(XMMRegister dst, XMMRegister src);

  // Multiply Scalar Single-Precision Floating-Point Values
  void mulss(XMMRegister dst, Address src);
  void mulss(XMMRegister dst, XMMRegister src);

  void negl(Register dst);

#ifdef _LP64
  void negq(Register dst);
#endif

  void nop(int i = 1);

  void notl(Register dst);

#ifdef _LP64
  void notq(Register dst);
#endif

  void orl(Address dst, int32_t imm32);
  void orl(Register dst, int32_t imm32);
  void orl(Register dst, Address src);
  void orl(Register dst, Register src);

  void orq(Address dst, int32_t imm32);
  void orq(Register dst, int32_t imm32);
  void orq(Register dst, Address src);
  void orq(Register dst, Register src);

K
kvn 已提交
1390 1391 1392 1393
  // Pack with unsigned saturation
  void packuswb(XMMRegister dst, XMMRegister src);
  void packuswb(XMMRegister dst, Address src);

C
cfang 已提交
1394 1395 1396 1397
  // SSE4.2 string instructions
  void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  void pcmpestri(XMMRegister xmm1, Address src, int imm8);

K
kvn 已提交
1398 1399 1400 1401
  // SSE4.1 packed move
  void pmovzxbw(XMMRegister dst, XMMRegister src);
  void pmovzxbw(XMMRegister dst, Address src);

R
roland 已提交
1402
#ifndef _LP64 // no 32bit push/pop on amd64
1403
  void popl(Address dst);
R
roland 已提交
1404
#endif
1405 1406 1407 1408

#ifdef _LP64
  void popq(Address dst);
#endif
D
duke 已提交
1409

1410 1411 1412 1413 1414 1415 1416 1417
  void popcntl(Register dst, Address src);
  void popcntl(Register dst, Register src);

#ifdef _LP64
  void popcntq(Register dst, Address src);
  void popcntq(Register dst, Register src);
#endif

1418
  // Prefetches (SSE, SSE2, 3DNOW only)
D
duke 已提交
1419

1420 1421 1422 1423 1424 1425
  void prefetchnta(Address src);
  void prefetchr(Address src);
  void prefetcht0(Address src);
  void prefetcht1(Address src);
  void prefetcht2(Address src);
  void prefetchw(Address src);
D
duke 已提交
1426

1427 1428 1429
  // Shuffle Packed Doublewords
  void pshufd(XMMRegister dst, XMMRegister src, int mode);
  void pshufd(XMMRegister dst, Address src,     int mode);
D
duke 已提交
1430

1431 1432 1433
  // Shuffle Packed Low Words
  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  void pshuflw(XMMRegister dst, Address src,     int mode);
D
duke 已提交
1434

1435 1436 1437
  // Shift Right by bytes Logical DoubleQuadword Immediate
  void psrldq(XMMRegister dst, int shift);

C
cfang 已提交
1438 1439 1440 1441
  // Logical Compare Double Quadword
  void ptest(XMMRegister dst, XMMRegister src);
  void ptest(XMMRegister dst, Address src);

1442 1443
  // Interleave Low Bytes
  void punpcklbw(XMMRegister dst, XMMRegister src);
K
kvn 已提交
1444 1445 1446 1447 1448
  void punpcklbw(XMMRegister dst, Address src);

  // Interleave Low Doublewords
  void punpckldq(XMMRegister dst, XMMRegister src);
  void punpckldq(XMMRegister dst, Address src);
D
duke 已提交
1449

K
kvn 已提交
1450 1451 1452
  // Interleave Low Quadwords
  void punpcklqdq(XMMRegister dst, XMMRegister src);

R
roland 已提交
1453
#ifndef _LP64 // no 32bit push/pop on amd64
1454
  void pushl(Address src);
R
roland 已提交
1455
#endif
D
duke 已提交
1456

1457
  void pushq(Address src);
D
duke 已提交
1458

1459
  void rcll(Register dst, int imm8);
D
duke 已提交
1460

1461
  void rclq(Register dst, int imm8);
D
duke 已提交
1462

1463
  void ret(int imm16);
D
duke 已提交
1464

1465
  void sahf();
D
duke 已提交
1466

1467 1468
  void sarl(Register dst, int imm8);
  void sarl(Register dst);
D
duke 已提交
1469

1470 1471
  void sarq(Register dst, int imm8);
  void sarq(Register dst);
D
duke 已提交
1472

1473 1474 1475 1476
  void sbbl(Address dst, int32_t imm32);
  void sbbl(Register dst, int32_t imm32);
  void sbbl(Register dst, Address src);
  void sbbl(Register dst, Register src);
D
duke 已提交
1477

1478 1479 1480 1481
  void sbbq(Address dst, int32_t imm32);
  void sbbq(Register dst, int32_t imm32);
  void sbbq(Register dst, Address src);
  void sbbq(Register dst, Register src);
D
duke 已提交
1482

1483
  void setb(Condition cc, Register dst);
D
duke 已提交
1484

1485
  void shldl(Register dst, Register src);
D
duke 已提交
1486

1487 1488
  void shll(Register dst, int imm8);
  void shll(Register dst);
D
duke 已提交
1489

1490 1491
  void shlq(Register dst, int imm8);
  void shlq(Register dst);
D
duke 已提交
1492

1493
  void shrdl(Register dst, Register src);
D
duke 已提交
1494

1495 1496
  void shrl(Register dst, int imm8);
  void shrl(Register dst);
D
duke 已提交
1497

1498 1499
  void shrq(Register dst, int imm8);
  void shrq(Register dst);
D
duke 已提交
1500

1501
  void smovl(); // QQQ generic?
D
duke 已提交
1502

1503 1504
  // Compute Square Root of Scalar Double-Precision Floating-Point Value
  void sqrtsd(XMMRegister dst, Address src);
D
duke 已提交
1505 1506
  void sqrtsd(XMMRegister dst, XMMRegister src);

1507 1508 1509 1510
  // Compute Square Root of Scalar Single-Precision Floating-Point Value
  void sqrtss(XMMRegister dst, Address src);
  void sqrtss(XMMRegister dst, XMMRegister src);

1511
  void std() { emit_byte(0xfd); }
D
duke 已提交
1512

1513
  void stmxcsr( Address dst );
D
duke 已提交
1514

1515 1516 1517 1518 1519
  void subl(Address dst, int32_t imm32);
  void subl(Address dst, Register src);
  void subl(Register dst, int32_t imm32);
  void subl(Register dst, Address src);
  void subl(Register dst, Register src);
D
duke 已提交
1520

1521 1522 1523 1524 1525
  void subq(Address dst, int32_t imm32);
  void subq(Address dst, Register src);
  void subq(Register dst, int32_t imm32);
  void subq(Register dst, Address src);
  void subq(Register dst, Register src);
D
duke 已提交
1526

1527 1528 1529
  // Force generation of a 4 byte immediate value even if it fits into 8bit
  void subl_imm32(Register dst, int32_t imm32);
  void subq_imm32(Register dst, int32_t imm32);
D
duke 已提交
1530

1531 1532 1533
  // Subtract Scalar Double-Precision Floating-Point Values
  void subsd(XMMRegister dst, Address src);
  void subsd(XMMRegister dst, XMMRegister src);
D
duke 已提交
1534

1535 1536 1537
  // Subtract Scalar Single-Precision Floating-Point Values
  void subss(XMMRegister dst, Address src);
  void subss(XMMRegister dst, XMMRegister src);
D
duke 已提交
1538

1539
  void testb(Register dst, int imm8);
D
duke 已提交
1540

1541 1542 1543
  void testl(Register dst, int32_t imm32);
  void testl(Register dst, Register src);
  void testl(Register dst, Address src);
D
duke 已提交
1544

1545 1546
  void testq(Register dst, int32_t imm32);
  void testq(Register dst, Register src);
D
duke 已提交
1547 1548


1549 1550 1551
  // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  void ucomisd(XMMRegister dst, Address src);
  void ucomisd(XMMRegister dst, XMMRegister src);
D
duke 已提交
1552

1553 1554 1555
  // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  void ucomiss(XMMRegister dst, Address src);
  void ucomiss(XMMRegister dst, XMMRegister src);
D
duke 已提交
1556

1557
  void xaddl(Address dst, Register src);
D
duke 已提交
1558

1559
  void xaddq(Address dst, Register src);
D
duke 已提交
1560

1561 1562 1563 1564 1565
  void xchgl(Register reg, Address adr);
  void xchgl(Register dst, Register src);

  void xchgq(Register reg, Address adr);
  void xchgq(Register dst, Register src);
D
duke 已提交
1566

K
kvn 已提交
1567 1568 1569 1570 1571 1572 1573
  // Get Value of Extended Control Register
  void xgetbv() {
    emit_byte(0x0F);
    emit_byte(0x01);
    emit_byte(0xD0);
  }

1574 1575 1576
  void xorl(Register dst, int32_t imm32);
  void xorl(Register dst, Address src);
  void xorl(Register dst, Register src);
D
duke 已提交
1577

1578 1579
  void xorq(Register dst, Address src);
  void xorq(Register dst, Register src);
D
duke 已提交
1580

1581
  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
K
kvn 已提交
1582

K
kvn 已提交
1583
  // AVX 3-operands scalar instructions (encoded with VEX prefix)
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
  void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vaddss(XMMRegister dst, XMMRegister nds, Address src);
  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vdivss(XMMRegister dst, XMMRegister nds, Address src);
  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vmulss(XMMRegister dst, XMMRegister nds, Address src);
  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vsubss(XMMRegister dst, XMMRegister nds, Address src);
  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

  //====================VECTOR ARITHMETIC=====================================

  // Add Packed Floating-Point Values
  void addpd(XMMRegister dst, XMMRegister src);
  void addps(XMMRegister dst, XMMRegister src);
  void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Subtract Packed Floating-Point Values
  void subpd(XMMRegister dst, XMMRegister src);
  void subps(XMMRegister dst, XMMRegister src);
  void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Multiply Packed Floating-Point Values
  void mulpd(XMMRegister dst, XMMRegister src);
  void mulps(XMMRegister dst, XMMRegister src);
  void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Divide Packed Floating-Point Values
  void divpd(XMMRegister dst, XMMRegister src);
  void divps(XMMRegister dst, XMMRegister src);
  void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Bitwise Logical AND of Packed Floating-Point Values
  void andpd(XMMRegister dst, XMMRegister src);
  void andps(XMMRegister dst, XMMRegister src);
  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Bitwise Logical XOR of Packed Floating-Point Values
  void xorpd(XMMRegister dst, XMMRegister src);
  void xorps(XMMRegister dst, XMMRegister src);
1648 1649
  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Add packed integers
  void paddb(XMMRegister dst, XMMRegister src);
  void paddw(XMMRegister dst, XMMRegister src);
  void paddd(XMMRegister dst, XMMRegister src);
  void paddq(XMMRegister dst, XMMRegister src);
  void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Sub packed integers
  void psubb(XMMRegister dst, XMMRegister src);
  void psubw(XMMRegister dst, XMMRegister src);
  void psubd(XMMRegister dst, XMMRegister src);
  void psubq(XMMRegister dst, XMMRegister src);
  void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Multiply packed integers (only shorts and ints)
  void pmullw(XMMRegister dst, XMMRegister src);
  void pmulld(XMMRegister dst, XMMRegister src);
  void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Shift left packed integers
  void psllw(XMMRegister dst, int shift);
  void pslld(XMMRegister dst, int shift);
  void psllq(XMMRegister dst, int shift);
  void psllw(XMMRegister dst, XMMRegister shift);
  void pslld(XMMRegister dst, XMMRegister shift);
  void psllq(XMMRegister dst, XMMRegister shift);
  void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);

  // Logical shift right packed integers
  void psrlw(XMMRegister dst, int shift);
  void psrld(XMMRegister dst, int shift);
  void psrlq(XMMRegister dst, int shift);
  void psrlw(XMMRegister dst, XMMRegister shift);
  void psrld(XMMRegister dst, XMMRegister shift);
  void psrlq(XMMRegister dst, XMMRegister shift);
  void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);

  // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
  void psraw(XMMRegister dst, int shift);
  void psrad(XMMRegister dst, int shift);
  void psraw(XMMRegister dst, XMMRegister shift);
  void psrad(XMMRegister dst, XMMRegister shift);
  void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);

  // And packed integers
  void pand(XMMRegister dst, XMMRegister src);
  void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Or packed integers
  void por(XMMRegister dst, XMMRegister src);
  void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Xor packed integers
  void pxor(XMMRegister dst, XMMRegister src);
K
kvn 已提交
1739
  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1740 1741 1742
  void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Copy low 128bit into high 128bit of YMM registers.
1743
  void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
K
kvn 已提交
1744
  void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1745

1746 1747 1748 1749 1750 1751
  // Load/store high 128bit of YMM registers which does not destroy other half.
  void vinsertf128h(XMMRegister dst, Address src);
  void vinserti128h(XMMRegister dst, Address src);
  void vextractf128h(Address dst, XMMRegister src);
  void vextracti128h(Address dst, XMMRegister src);

1752 1753 1754 1755 1756 1757
  // AVX instruction which is used to clear upper 128 bits of YMM registers and
  // to avoid transaction penalty between AVX and SSE states. There is no
  // penalty if legacy SSE instructions are encoded using VEX prefix because
  // they always clear upper 128 bits. It should be used before calling
  // runtime code and native libraries.
  void vzeroupper();
1758

K
kvn 已提交
1759 1760 1761 1762 1763 1764 1765 1766
 protected:
  // Next instructions require address alignment 16 bytes SSE mode.
  // They should be called only from corresponding MacroAssembler instructions.
  void andpd(XMMRegister dst, Address src);
  void andps(XMMRegister dst, Address src);
  void xorpd(XMMRegister dst, Address src);
  void xorps(XMMRegister dst, Address src);

D
duke 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775
};


// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.

class MacroAssembler: public Assembler {
1776 1777
  friend class LIR_Assembler;
  friend class Runtime1;      // as_Address()
1778

D
duke 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
 protected:

  Address as_Address(AddressLiteral adr);
  Address as_Address(ArrayAddress adr);

  // Support for VM calls
  //
  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
#ifdef CC_INTERP
  // c++ interpreter never wants to use interp_masm version of call_VM
  #define VIRTUAL
#else
  #define VIRTUAL virtual
#endif

  VIRTUAL void call_VM_leaf_base(
    address entry_point,               // the entry point
    int     number_of_arguments        // the number of arguments to pop after the call
  );

  // This is the base routine called by the different versions of call_VM. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
  //
  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  // returns the register which contains the thread upon return. If a thread register has been
  // specified, the return value will correspond to that register. If no last_java_sp is specified
  // (noreg) than rsp will be used instead.
  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    Register java_thread,              // the thread if computed before     ; use noreg otherwise
    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    address  entry_point,              // the entry point
    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    bool     check_exceptions          // whether to check for pending exceptions after return
  );

  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  // The implementation is only non-empty for the InterpreterMacroAssembler,
  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  virtual void check_and_handle_popframe(Register java_thread);
  virtual void check_and_handle_earlyret(Register java_thread);

  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);

  // helpers for FPU flag access
  // tmp is a temporary register, if none is available use noreg
  void save_rax   (Register tmp);
  void restore_rax(Register tmp);

 public:
  MacroAssembler(CodeBuffer* code) : Assembler(code) {}

  // Support for NULL-checks
  //
  // Generates code that causes a NULL OS exception if the content of reg is NULL.
  // If the accessed location is M[reg + offset] and the offset is known, provide the
  // offset. No explicit code generation is needed if the offset is within a certain
  // range (0 <= offset <= page_size).

  void null_check(Register reg, int offset = -1);
1842
  static bool needs_explicit_null_check(intptr_t offset);
D
duke 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

  // Required platform-specific helpers for Label::patch_instructions.
  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  void pd_patch_instruction(address branch, address target);
#ifndef PRODUCT
  static void pd_print_patched_instruction(address branch);
#endif

  // The following 4 methods return the offset of the appropriate move instruction

1853
  // Support for fast byte/short loading with zero extension (depending on particular CPU)
D
duke 已提交
1854
  int load_unsigned_byte(Register dst, Address src);
1855
  int load_unsigned_short(Register dst, Address src);
D
duke 已提交
1856

1857
  // Support for fast byte/short loading with sign extension (depending on particular CPU)
D
duke 已提交
1858
  int load_signed_byte(Register dst, Address src);
1859
  int load_signed_short(Register dst, Address src);
D
duke 已提交
1860 1861 1862 1863

  // Support for sign-extension (hi:lo = extend_sign(lo))
  void extend_sign(Register hi, Register lo);

1864 1865 1866
  // Load and store values by size and signed-ness
  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
1867

D
duke 已提交
1868
  // Support for inc/dec with optimal instruction selection depending on value
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }

  void decrementl(Address dst, int value = 1);
  void decrementl(Register reg, int value = 1);

  void decrementq(Register reg, int value = 1);
  void decrementq(Address dst, int value = 1);

  void incrementl(Address dst, int value = 1);
  void incrementl(Register reg, int value = 1);

  void incrementq(Register reg, int value = 1);
  void incrementq(Address dst, int value = 1);

D
duke 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

  // Support optimal SSE move instructions.
  void movflt(XMMRegister dst, XMMRegister src) {
    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
    else                       { movss (dst, src); return; }
  }
  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  void movflt(XMMRegister dst, AddressLiteral src);
  void movflt(Address dst, XMMRegister src) { movss(dst, src); }

  void movdbl(XMMRegister dst, XMMRegister src) {
    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
    else                       { movsd (dst, src); return; }
  }

  void movdbl(XMMRegister dst, AddressLiteral src);

  void movdbl(XMMRegister dst, Address src) {
    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
    else                         { movlpd(dst, src); return; }
  }
  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }

1908 1909
  void incrementl(AddressLiteral dst);
  void incrementl(ArrayAddress dst);
D
duke 已提交
1910 1911 1912 1913

  // Alignment
  void align(int modulus);

1914 1915
  // A 5 byte nop that is safe for patching (see patch_verified_entry)
  void fat_nop();
D
duke 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924

  // Stack frame creation/removal
  void enter();
  void leave();

  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  // The pointer will be loaded into the thread register.
  void get_thread(Register thread);

A
Merge  
apetrusenko 已提交
1925

D
duke 已提交
1926 1927 1928 1929 1930 1931 1932
  // Support for VM calls
  //
  // It is imperative that all calls into the VM are handled via the call_VM macros.
  // They make sure that the stack linkage is setup correctly. call_VM's correspond
  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.


1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
  void call_VM(Register oop_result,
               address entry_point,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  // Overloadings with last_Java_sp
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               int number_of_arguments = 0,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, bool
               check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

1971 1972 1973
  void get_vm_result  (Register oop_result, Register thread);
  void get_vm_result_2(Register metadata_result, Register thread);

1974 1975 1976 1977 1978 1979 1980 1981
  // These always tightly bind to MacroAssembler::call_VM_base
  // bypassing the virtual implementation
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);

1982 1983 1984 1985 1986 1987 1988 1989
  void call_VM_leaf(address entry_point,
                    int number_of_arguments = 0);
  void call_VM_leaf(address entry_point,
                    Register arg_1);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2, Register arg_3);
D
duke 已提交
1990

1991 1992 1993 1994 1995 1996 1997 1998
  // These always tightly bind to MacroAssembler::call_VM_leaf_base
  // bypassing the virtual implementation
  void super_call_VM_leaf(address entry_point);
  void super_call_VM_leaf(address entry_point, Register arg_1);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);

D
duke 已提交
1999
  // last Java Frame (fills frame anchor)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
  void set_last_Java_frame(Register thread,
                           Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

  // thread in the default location (r15_thread on 64bit)
  void set_last_Java_frame(Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

D
duke 已提交
2010 2011
  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);

2012 2013 2014
  // thread in the default location (r15_thread on 64bit)
  void reset_last_Java_frame(bool clear_fp, bool clear_pc);

D
duke 已提交
2015 2016 2017 2018
  // Stores
  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)

2019 2020
#ifndef SERIALGC

A
Merge  
apetrusenko 已提交
2021
  void g1_write_barrier_pre(Register obj,
2022
                            Register pre_val,
A
Merge  
apetrusenko 已提交
2023 2024
                            Register thread,
                            Register tmp,
2025 2026 2027
                            bool tosca_live,
                            bool expand_call);

A
Merge  
apetrusenko 已提交
2028 2029 2030 2031 2032
  void g1_write_barrier_post(Register store_addr,
                             Register new_val,
                             Register thread,
                             Register tmp,
                             Register tmp2);
2033

2034
#endif // SERIALGC
2035

D
duke 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
  // split store_check(Register obj) to enhance instruction interleaving
  void store_check_part_1(Register obj);
  void store_check_part_2(Register obj);

  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  void c2bool(Register x);

  // C++ bool manipulation

  void movbool(Register dst, Address src);
  void movbool(Address dst, bool boolconst);
  void movbool(Address dst, Register src);
  void testbool(Register dst);

2050 2051 2052 2053
  // oop manipulations
  void load_klass(Register dst, Register src);
  void store_klass(Register dst, Register src);

2054
  void load_heap_oop(Register dst, Address src);
2055
  void load_heap_oop_not_null(Register dst, Address src);
2056
  void store_heap_oop(Address dst, Register src);
2057
  void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
2058 2059 2060 2061 2062

  // Used for storing NULL. All other oop constants should be
  // stored using routines that take a jobject.
  void store_heap_oop_null(Address dst);

2063 2064 2065 2066 2067
  void load_prototype_header(Register dst, Register src);

#ifdef _LP64
  void store_klass_gap(Register dst, Register src);

2068 2069 2070 2071 2072 2073
  // This dummy is to prevent a call to store_heap_oop from
  // converting a zero (like NULL) into a Register by giving
  // the compiler two choices it can't resolve

  void store_heap_oop(Address dst, void* dummy);

2074 2075 2076 2077 2078 2079 2080 2081
  void encode_heap_oop(Register r);
  void decode_heap_oop(Register r);
  void encode_heap_oop_not_null(Register r);
  void decode_heap_oop_not_null(Register r);
  void encode_heap_oop_not_null(Register dst, Register src);
  void decode_heap_oop_not_null(Register dst, Register src);

  void set_narrow_oop(Register dst, jobject obj);
2082 2083 2084
  void set_narrow_oop(Address dst, jobject obj);
  void cmp_narrow_oop(Register dst, jobject obj);
  void cmp_narrow_oop(Address dst, jobject obj);
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094
  void encode_klass_not_null(Register r);
  void decode_klass_not_null(Register r);
  void encode_klass_not_null(Register dst, Register src);
  void decode_klass_not_null(Register dst, Register src);
  void set_narrow_klass(Register dst, Klass* k);
  void set_narrow_klass(Address dst, Klass* k);
  void cmp_narrow_klass(Register dst, Klass* k);
  void cmp_narrow_klass(Address dst, Klass* k);

2095 2096
  // if heap base register is used - reinit it with the correct value
  void reinit_heapbase();
2097 2098 2099

  DEBUG_ONLY(void verify_heapbase(const char* msg);)

2100 2101 2102
#endif // _LP64

  // Int division/remainder for Java
D
duke 已提交
2103 2104 2105 2106
  // (as idivl, but checks for special case as described in JVM spec.)
  // returns idivl instruction offset for implicit exception handling
  int corrected_idivl(Register reg);

2107 2108 2109 2110 2111
  // Long division/remainder for Java
  // (as idivq, but checks for special case as described in JVM spec.)
  // returns idivq instruction offset for implicit exception handling
  int corrected_idivq(Register reg);

D
duke 已提交
2112 2113
  void int3();

2114
  // Long operation macros for a 32bit cpu
D
duke 已提交
2115 2116 2117 2118
  // Long negation for Java
  void lneg(Register hi, Register lo);

  // Long multiplication for Java
2119
  // (destroys contents of eax, ebx, ecx and edx)
D
duke 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y

  // Long shifts for Java
  // (semantics as described in JVM spec.)
  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)

  // Long compare for Java
  // (semantics as described in JVM spec.)
  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

  // misc

  // Sign extension
  void sign_extend_short(Register reg);
  void sign_extend_byte(Register reg);

  // Division by power of 2, rounding towards 0
  void division_with_shift(Register reg, int shift_value);

D
duke 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  //
  // CF (corresponds to C0) if x < y
  // PF (corresponds to C2) if unordered
  // ZF (corresponds to C3) if x = y
  //
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  void fcmp(Register tmp);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);

  // Floating-point comparison for Java
  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // (semantics as described in JVM spec.)
  void fcmp2int(Register dst, bool unordered_is_less);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);

  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  // tmp is a temporary register, if none is available use noreg
  void fremr(Register tmp);


  // same as fcmp2int, but using SSE2
  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);

  // Inlined sin/cos generator for Java; must not use CPU instruction
  // directly on Intel as it does not have high enough precision
  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  // number of FPU stack slots in use; all but the topmost will
  // require saving if a slow case is necessary. Assumes argument is
  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  // this code.
  void trigfunc(char trig, int num_fpu_regs_in_use = 1);

  // branch to L if FPU flag C2 is set/not set
  // tmp is a temporary register, if none is available use noreg
  void jC2 (Register tmp, Label& L);
  void jnC2(Register tmp, Label& L);

  // Pop ST (ffree & fincstp combined)
  void fpop();

  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  void push_fTOS();

  // pops double TOS element from CPU stack and pushes on FPU stack
  void pop_fTOS();

  void empty_FPU_stack();

  void push_IU_state();
  void pop_IU_state();

  void push_FPU_state();
  void pop_FPU_state();

  void push_CPU_state();
  void pop_CPU_state();

  // Round up to a power of two
  void round_to(Register reg, int modulus);

  // Callee saved registers handling
  void push_callee_saved_registers();
  void pop_callee_saved_registers();

  // allocation
  void eden_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Register t2,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
2231 2232 2233 2234
  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
  void incr_allocated_bytes(Register thread,
                            Register var_size_in_bytes, int con_size_in_bytes,
                            Register t1 = noreg);
D
duke 已提交
2235

2236 2237 2238
  // interface method calling
  void lookup_interface_method(Register recv_klass,
                               Register intf_klass,
2239
                               RegisterOrConstant itable_index,
2240 2241 2242 2243
                               Register method_result,
                               Register scan_temp,
                               Label& no_such_interface);

2244 2245 2246 2247 2248
  // virtual method calling
  void lookup_virtual_method(Register recv_klass,
                             RegisterOrConstant vtable_index,
                             Register method_result);

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
  // Test sub_klass against super_klass, with fast and slow paths.

  // The fast path produces a tri-state answer: yes / no / maybe-slow.
  // One of the three labels can be NULL, meaning take the fall-through.
  // If super_check_offset is -1, the value is loaded up from super_klass.
  // No registers are killed, except temp_reg.
  void check_klass_subtype_fast_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     Label* L_slow_path,
2261
                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

  // The rest of the type check; must be wired to a corresponding fast path.
  // It does not repeat the fast path logic, so don't use it standalone.
  // The temp_reg and temp2_reg can be noreg, if no temps are available.
  // Updates the sub's secondary super cache as necessary.
  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  void check_klass_subtype_slow_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Register temp2_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     bool set_cond_codes = false);

  // Simplified, combined version, good for typical uses.
  // Falls through on failure.
  void check_klass_subtype(Register sub_klass,
                           Register super_klass,
                           Register temp_reg,
                           Label& L_success);

2283 2284 2285
  // method handles (JSR 292)
  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);

D
duke 已提交
2286 2287 2288 2289
  //----
  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0

  // Debugging
2290 2291

  // only if +VerifyOops
2292
  // TODO: Make these macros with file and line like sparc version!
2293
  void verify_oop(Register reg, const char* s = "broken oop");
D
duke 已提交
2294 2295
  void verify_oop_addr(Address addr, const char * s = "broken oop addr");

2296 2297 2298 2299 2300 2301 2302
  // TODO: verify method and klass metadata (compare against vptr?)
  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}

#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)

2303 2304 2305 2306 2307 2308 2309 2310 2311
  // only if +VerifyFPU
  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");

  // prints msg, dumps registers and stops execution
  void stop(const char* msg);

  // prints msg and continues
  void warn(const char* msg);

2312 2313 2314
  // dumps registers and other state
  void print_state();

2315 2316
  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  static void debug64(char* msg, int64_t pc, int64_t regs[]);
2317 2318
  static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
  static void print_state64(int64_t pc, int64_t regs[]);
2319

D
duke 已提交
2320
  void os_breakpoint();
2321

D
duke 已提交
2322
  void untested()                                { stop("untested"); }
2323

2324
  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
2325

D
duke 已提交
2326
  void should_not_reach_here()                   { stop("should not reach here"); }
2327

D
duke 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
  void print_CPU_state();

  // Stack overflow checking
  void bang_stack_with_offset(int offset) {
    // stack grows down, caller passes positive offset
    assert(offset > 0, "must bang with negative offset");
    movl(Address(rsp, (-offset)), rax);
  }

  // Writes to stack successive pages until offset reached to check for
  // stack overflow + shadow pages.  Also, clobbers tmp
  void bang_stack_size(Register size, Register tmp);

2341 2342 2343
  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
                                                Register tmp,
                                                int offset);
2344

D
duke 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
  // Support for serializing memory accesses between threads
  void serialize_memory(Register thread, Register tmp);

  void verify_tlab();

  // Biased locking support
  // lock_reg and obj_reg must be loaded up with the appropriate values.
  // swap_reg must be rax, and is killed.
  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  // be killed; if not supplied, push/pop will be used internally to
  // allocate a temporary (inefficient, avoid if possible).
  // Optional slow case is for implementations (interpreter and C1) which branch to
  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  // Returns offset of first potentially-faulting instruction for null
  // check info (currently consumed only by C1). If
  // swap_reg_contains_mark is true then returns -1 as it is assumed
  // the calling code has already passed any potential faults.
2362 2363
  int biased_locking_enter(Register lock_reg, Register obj_reg,
                           Register swap_reg, Register tmp_reg,
D
duke 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
                           bool swap_reg_contains_mark,
                           Label& done, Label* slow_case = NULL,
                           BiasedLockingCounters* counters = NULL);
  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);


  Condition negate_condition(Condition cond);

  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  // operands. In general the names are modified to avoid hiding the instruction in Assembler
  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  // here in MacroAssembler. The major exception to this rule is call

  // Arithmetics


2380 2381 2382 2383 2384 2385
  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  void addptr(Address dst, Register src);

  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  void addptr(Register dst, int32_t src);
  void addptr(Register dst, Register src);
2386 2387 2388 2389
  void addptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) addptr(dst, (int) src.as_constant());
    else                   addptr(dst,       src.as_register());
  }
2390 2391 2392 2393 2394 2395 2396

  void andptr(Register dst, int32_t src);
  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }

  void cmp8(AddressLiteral src1, int imm);

  // renamed to drag out the casting of address to int32_t/intptr_t
D
duke 已提交
2397 2398 2399 2400 2401 2402 2403 2404
  void cmp32(Register src1, int32_t imm);

  void cmp32(AddressLiteral src1, int32_t imm);
  // compare reg - mem, or reg - &mem
  void cmp32(Register src1, AddressLiteral src2);

  void cmp32(Register src1, Address src2);

2405
#ifndef _LP64
2406 2407
  void cmpklass(Address dst, Metadata* obj);
  void cmpklass(Register dst, Metadata* obj);
2408 2409 2410 2411
  void cmpoop(Address dst, jobject obj);
  void cmpoop(Register dst, jobject obj);
#endif // _LP64

D
duke 已提交
2412 2413 2414 2415 2416
  // NOTE src2 must be the lval. This is NOT an mem-mem compare
  void cmpptr(Address src1, AddressLiteral src2);

  void cmpptr(Register src1, AddressLiteral src2);

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  // cmp64 to avoild hiding cmpq
  void cmp64(Register src1, AddressLiteral src);

  void cmpxchgptr(Register reg, Address adr);

  void locked_cmpxchgptr(Register reg, AddressLiteral adr);


  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }


  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }

  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }

  void shlptr(Register dst, int32_t shift);
  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }

  void shrptr(Register dst, int32_t shift);
  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }

  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }

  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }

  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  void subptr(Register dst, int32_t src);
2452 2453
  // Force generation of a 4 byte immediate value even if it fits into 8bit
  void subptr_imm32(Register dst, int32_t src);
2454
  void subptr(Register dst, Register src);
2455 2456 2457 2458
  void subptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) subptr(dst, (int) src.as_constant());
    else                   subptr(dst,       src.as_register());
  }
2459 2460 2461 2462 2463 2464 2465 2466

  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }

  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }

  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
D
duke 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477



  // Helper functions for statistics gathering.
  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  void cond_inc32(Condition cond, AddressLiteral counter_addr);
  // Unconditional atomic increment.
  void atomic_incl(AddressLiteral counter_addr);

  void lea(Register dst, AddressLiteral adr);
  void lea(Address dst, AddressLiteral adr);
2478 2479 2480 2481
  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }

  void leal32(Register dst, Address src) { leal(dst, src); }

2482 2483 2484 2485
  // Import other testl() methods from the parent class or else
  // they will be hidden by the following overriding declaration.
  using Assembler::testl;
  void testl(Register dst, AddressLiteral src);
2486 2487 2488 2489

  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
D
duke 已提交
2490

2491 2492 2493 2494 2495
  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  void testptr(Register src1, Register src2);

  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
D
duke 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

  // Calls

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register entry);

  // NOTE: this call tranfers to the effective address of entry NOT
  // the address contained by entry. This is because this is more natural
  // for jumps/calls.
  void call(AddressLiteral entry);

2507 2508 2509
  // Emit the CompiledIC call idiom
  void ic_call(address entry);

D
duke 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
  // Jumps

  // NOTE: these jumps tranfer to the effective address of dst NOT
  // the address contained by dst. This is because this is more natural
  // for jumps/calls.
  void jump(AddressLiteral dst);
  void jump_cc(Condition cc, AddressLiteral dst);

  // 32bit can do a case table jump in one instruction but we no longer allow the base
  // to be installed in the Address class. This jump will tranfers to the address
  // contained in the location described by entry (not the address of entry)
  void jump(ArrayAddress entry);

  // Floating

  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  void andpd(XMMRegister dst, AddressLiteral src);

K
kvn 已提交
2528 2529 2530 2531 2532
  void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
  void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
  void andps(XMMRegister dst, AddressLiteral src);

  void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
D
duke 已提交
2533 2534 2535
  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  void comiss(XMMRegister dst, AddressLiteral src);

K
kvn 已提交
2536
  void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
D
duke 已提交
2537 2538 2539
  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  void comisd(XMMRegister dst, AddressLiteral src);

2540 2541 2542
  void fadd_s(Address src)        { Assembler::fadd_s(src); }
  void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }

D
duke 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
  void fldcw(Address src) { Assembler::fldcw(src); }
  void fldcw(AddressLiteral src);

  void fld_s(int index)   { Assembler::fld_s(index); }
  void fld_s(Address src) { Assembler::fld_s(src); }
  void fld_s(AddressLiteral src);

  void fld_d(Address src) { Assembler::fld_d(src); }
  void fld_d(AddressLiteral src);

  void fld_x(Address src) { Assembler::fld_x(src); }
  void fld_x(AddressLiteral src);

2556 2557 2558
  void fmul_s(Address src)        { Assembler::fmul_s(src); }
  void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }

D
duke 已提交
2559 2560 2561
  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  void ldmxcsr(AddressLiteral src);

2562 2563 2564 2565 2566
  // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
  // all corner cases and may result in NaN and require fallback to a
  // runtime call.
  void fast_pow();
  void fast_exp();
2567 2568
  void increase_precision();
  void restore_precision();
2569 2570 2571 2572 2573 2574

  // computes exp(x). Fallback to runtime call included.
  void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
  // computes pow(x,y). Fallback to runtime call included.
  void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }

2575
private:
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585

  // call runtime as a fallback for trig functions and pow/exp.
  void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);

  // computes 2^(Ylog2X); Ylog2X in ST(0)
  void pow_exp_core_encoding();

  // computes pow(x,y) or exp(x). Fallback to runtime call included.
  void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);

2586 2587
  // these are private because users should be doing movflt/movdbl

D
duke 已提交
2588 2589 2590 2591 2592
  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, AddressLiteral src);

K
kvn 已提交
2593
  void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
2594 2595 2596 2597
  void movlpd(XMMRegister dst, AddressLiteral src);

public:

2598 2599
  void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
  void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
K
kvn 已提交
2600
  void addsd(XMMRegister dst, AddressLiteral src);
2601 2602 2603

  void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
  void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
K
kvn 已提交
2604
  void addss(XMMRegister dst, AddressLiteral src);
2605 2606 2607

  void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
  void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
K
kvn 已提交
2608
  void divsd(XMMRegister dst, AddressLiteral src);
2609 2610 2611

  void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
  void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
K
kvn 已提交
2612
  void divss(XMMRegister dst, AddressLiteral src);
2613

2614 2615 2616
  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
K
kvn 已提交
2617
  void movsd(XMMRegister dst, AddressLiteral src);
2618 2619 2620

  void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
  void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
K
kvn 已提交
2621
  void mulsd(XMMRegister dst, AddressLiteral src);
2622 2623 2624

  void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
  void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
K
kvn 已提交
2625
  void mulss(XMMRegister dst, AddressLiteral src);
2626 2627 2628

  void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
  void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
K
kvn 已提交
2629
  void sqrtsd(XMMRegister dst, AddressLiteral src);
2630 2631 2632

  void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
  void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
K
kvn 已提交
2633
  void sqrtss(XMMRegister dst, AddressLiteral src);
2634 2635 2636

  void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
  void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
K
kvn 已提交
2637
  void subsd(XMMRegister dst, AddressLiteral src);
2638 2639 2640

  void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
  void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
K
kvn 已提交
2641
  void subss(XMMRegister dst, AddressLiteral src);
D
duke 已提交
2642 2643

  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
K
kvn 已提交
2644
  void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
D
duke 已提交
2645 2646 2647
  void ucomiss(XMMRegister dst, AddressLiteral src);

  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
K
kvn 已提交
2648
  void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
D
duke 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
  void ucomisd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, AddressLiteral src);

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
  // AVX 3-operands instructions

  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
  void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
  void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
  void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
  void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

2671 2672 2673
  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
  void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
  void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2674

2675 2676 2677
  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
  void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
  void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
  void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
  void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
  void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
  void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
  void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
  void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
  void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
  void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
  void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
  void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
  void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
  void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

2703 2704 2705
  // AVX Vector instructions

  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
2706 2707
  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2708

2709
  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
2710 2711
  void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2712

K
kvn 已提交
2713 2714
  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
    if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
2715 2716 2717 2718 2719 2720
      Assembler::vpxor(dst, nds, src, vector256);
    else
      Assembler::vxorpd(dst, nds, src, vector256);
  }
  void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
    if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
K
kvn 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
      Assembler::vpxor(dst, nds, src, vector256);
    else
      Assembler::vxorpd(dst, nds, src, vector256);
  }

  // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
    if (UseAVX > 1) // vinserti128h is available only in AVX2
      Assembler::vinserti128h(dst, nds, src);
    else
      Assembler::vinsertf128h(dst, nds, src);
  }
2733

D
duke 已提交
2734 2735
  // Data

2736 2737
  void cmov32( Condition cc, Register dst, Address  src);
  void cmov32( Condition cc, Register dst, Register src);
2738

2739 2740 2741 2742
  void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }

  void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2743

D
duke 已提交
2744 2745 2746
  void movoop(Register dst, jobject obj);
  void movoop(Address dst, jobject obj);

2747 2748 2749
  void mov_metadata(Register dst, Metadata* obj);
  void mov_metadata(Address dst, Metadata* obj);

D
duke 已提交
2750 2751 2752 2753
  void movptr(ArrayAddress dst, Register src);
  // can this do an lea?
  void movptr(Register dst, ArrayAddress src);

2754 2755
  void movptr(Register dst, Address src);

D
duke 已提交
2756 2757
  void movptr(Register dst, AddressLiteral src);

2758 2759 2760 2761 2762 2763
  void movptr(Register dst, intptr_t src);
  void movptr(Register dst, Register src);
  void movptr(Address dst, intptr_t src);

  void movptr(Address dst, Register src);

2764 2765 2766 2767 2768
  void movptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) movptr(dst, src.as_constant());
    else                   movptr(dst, src.as_register());
  }

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
#ifdef _LP64
  // Generally the next two are only used for moving NULL
  // Although there are situations in initializing the mark word where
  // they could be used. They are dangerous.

  // They only exist on LP64 so that int32_t and intptr_t are not the same
  // and we have ambiguous declarations.

  void movptr(Address dst, int32_t imm32);
  void movptr(Register dst, int32_t imm32);
#endif // _LP64

D
duke 已提交
2781 2782 2783
  // to avoid hiding movl
  void mov32(AddressLiteral dst, Register src);
  void mov32(Register dst, AddressLiteral src);
2784

D
duke 已提交
2785 2786 2787
  // to avoid hiding movb
  void movbyte(ArrayAddress dst, int src);

K
kvn 已提交
2788 2789 2790 2791 2792 2793 2794
  // Import other mov() methods from the parent class or else
  // they will be hidden by the following overriding declaration.
  using Assembler::movdl;
  using Assembler::movq;
  void movdl(XMMRegister dst, AddressLiteral src);
  void movq(XMMRegister dst, AddressLiteral src);

D
duke 已提交
2795 2796 2797
  // Can push value or effective address
  void pushptr(AddressLiteral src);

2798 2799 2800 2801
  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }

  void pushoop(jobject obj);
2802
  void pushklass(Metadata* obj);
2803 2804 2805 2806 2807

  // sign extend as need a l to ptr sized element
  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }

2808 2809 2810
  // C2 compiled method's prolog code.
  void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);

2811
  // IndexOf strings.
2812
  // Small strings are loaded through stack if they cross page boundary.
2813
  void string_indexof(Register str1, Register str2,
2814 2815
                      Register cnt1, Register cnt2,
                      int int_cnt2,  Register result,
2816 2817
                      XMMRegister vec, Register tmp);

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
  // IndexOf for constant substrings with size >= 8 elements
  // which don't need to be loaded through stack.
  void string_indexofC8(Register str1, Register str2,
                      Register cnt1, Register cnt2,
                      int int_cnt2,  Register result,
                      XMMRegister vec, Register tmp);

    // Smallest code: we don't need to load through stack,
    // check string tail.

2828 2829 2830
  // Compare strings.
  void string_compare(Register str1, Register str2,
                      Register cnt1, Register cnt2, Register result,
2831
                      XMMRegister vec1);
2832 2833 2834 2835 2836

  // Compare char[] arrays.
  void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
                          Register limit, Register result, Register chr,
                          XMMRegister vec1, XMMRegister vec2);
2837

N
never 已提交
2838 2839 2840 2841 2842
  // Fill primitive arrays
  void generate_fill(BasicType t, bool aligned,
                     Register to, Register value, Register count,
                     Register rtmp, XMMRegister xtmp);

D
duke 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
#undef VIRTUAL

};

/**
 * class SkipIfEqual:
 *
 * Instantiating this class will result in assembly code being output that will
 * jump around any code emitted between the creation of the instance and it's
 * automatic destruction at the end of a scope block, depending on the value of
 * the flag passed to the constructor, which will be checked at run-time.
 */
class SkipIfEqual {
 private:
  MacroAssembler* _masm;
  Label _label;

 public:
   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
   ~SkipIfEqual();
};

#ifdef ASSERT
inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
#endif
2868 2869

#endif // CPU_X86_VM_ASSEMBLER_X86_HPP