assembler.cpp 11.4 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25
#include "precompiled.hpp"
26 27
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
28
#include "asm/codeBuffer.hpp"
29 30
#include "runtime/atomic.hpp"
#include "runtime/atomic.inline.hpp"
31 32
#include "runtime/icache.hpp"
#include "runtime/os.hpp"
D
duke 已提交
33 34 35 36 37 38 39


// Implementation of AbstractAssembler
//
// The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
// the assembler keeps a copy of the code buffers boundaries & modifies them when
// emitting bytes rather than using the code buffers accessor functions all the time.
T
twisti 已提交
40
// The code buffer is updated via set_code_end(...) after emitting a whole instruction.
D
duke 已提交
41 42 43 44 45

AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
  if (code == NULL)  return;
  CodeSection* cs = code->insts();
  cs->clear_mark();   // new assembler kills old mark
46
  if (cs->start() == NULL)  {
47 48
    vm_exit_out_of_memory(0, err_msg("CodeCache: no room for %s",
                                     code->name()));
D
duke 已提交
49
  }
50 51 52
  _code_section = cs;
  _oop_recorder= code->oop_recorder();
  DEBUG_ONLY( _short_branch_delta = 0; )
D
duke 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
}

void AbstractAssembler::set_code_section(CodeSection* cs) {
  assert(cs->outer() == code_section()->outer(), "sanity");
  assert(cs->is_allocated(), "need to pre-allocate this section");
  cs->clear_mark();  // new assembly into this section kills old mark
  _code_section = cs;
}

// Inform CodeBuffer that incoming code and relocation will be for stubs
address AbstractAssembler::start_a_stub(int required_space) {
  CodeBuffer*  cb = code();
  CodeSection* cs = cb->stubs();
  assert(_code_section == cb->insts(), "not in insts?");
  if (cs->maybe_expand_to_ensure_remaining(required_space)
      && cb->blob() == NULL) {
    return NULL;
  }
  set_code_section(cs);
  return pc();
}

// Inform CodeBuffer that incoming code and relocation will be code
// Should not be called if start_a_stub() returned NULL
void AbstractAssembler::end_a_stub() {
  assert(_code_section == code()->stubs(), "not in stubs?");
  set_code_section(code()->insts());
}

// Inform CodeBuffer that incoming code and relocation will be for stubs
address AbstractAssembler::start_a_const(int required_space, int required_align) {
  CodeBuffer*  cb = code();
  CodeSection* cs = cb->consts();
86
  assert(_code_section == cb->insts() || _code_section == cb->stubs(), "not in insts/stubs?");
D
duke 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  address end = cs->end();
  int pad = -(intptr_t)end & (required_align-1);
  if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
    if (cb->blob() == NULL)  return NULL;
    end = cs->end();  // refresh pointer
  }
  if (pad > 0) {
    while (--pad >= 0) { *end++ = 0; }
    cs->set_end(end);
  }
  set_code_section(cs);
  return end;
}

// Inform CodeBuffer that incoming code and relocation will be code
102 103
// in section cs (insts or stubs).
void AbstractAssembler::end_a_const(CodeSection* cs) {
D
duke 已提交
104
  assert(_code_section == code()->consts(), "not in consts?");
105
  set_code_section(cs);
D
duke 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
}

void AbstractAssembler::flush() {
  ICache::invalidate_range(addr_at(0), offset());
}

void AbstractAssembler::bind(Label& L) {
  if (L.is_bound()) {
    // Assembler can bind a label more than once to the same place.
    guarantee(L.loc() == locator(), "attempt to redefine label");
    return;
  }
  L.bind_loc(locator());
  L.patch_instructions((MacroAssembler*)this);
}

void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
  if (UseStackBanging) {
    // Each code entry causes one stack bang n pages down the stack where n
    // is configurable by StackBangPages.  The setting depends on the maximum
    // depth of VM call stack or native before going back into java code,
    // since only java code can raise a stack overflow exception using the
    // stack banging mechanism.  The VM and native code does not detect stack
    // overflow.
    // The code in JavaCalls::call() checks that there is at least n pages
    // available, so all entry code needs to do is bang once for the end of
    // this shadow zone.
    // The entry code may need to bang additional pages if the framesize
    // is greater than a page.

    const int page_size = os::vm_page_size();
    int bang_end = StackShadowPages*page_size;

    // This is how far the previous frame's stack banging extended.
    const int bang_end_safe = bang_end;

    if (frame_size_in_bytes > page_size) {
      bang_end += frame_size_in_bytes;
    }

    int bang_offset = bang_end_safe;
    while (bang_offset <= bang_end) {
      // Need at least one stack bang at end of shadow zone.
      bang_stack_with_offset(bang_offset);
      bang_offset += page_size;
    }
  } // end (UseStackBanging)
}

void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
  assert(_loc == -1, "Label is unbound");
  if (_patch_index < PatchCacheSize) {
    _patches[_patch_index] = branch_loc;
  } else {
    if (_patch_overflow == NULL) {
      _patch_overflow = cb->create_patch_overflow();
    }
    _patch_overflow->push(branch_loc);
  }
  ++_patch_index;
}

void Label::patch_instructions(MacroAssembler* masm) {
  assert(is_bound(), "Label is bound");
  CodeBuffer* cb = masm->code();
  int target_sect = CodeBuffer::locator_sect(loc());
  address target = cb->locator_address(loc());
  while (_patch_index > 0) {
    --_patch_index;
    int branch_loc;
    if (_patch_index >= PatchCacheSize) {
      branch_loc = _patch_overflow->pop();
    } else {
      branch_loc = _patches[_patch_index];
    }
    int branch_sect = CodeBuffer::locator_sect(branch_loc);
    address branch = cb->locator_address(branch_loc);
    if (branch_sect == CodeBuffer::SECT_CONSTS) {
      // The thing to patch is a constant word.
      *(address*)branch = target;
      continue;
    }

#ifdef ASSERT
    // Cross-section branches only work if the
    // intermediate section boundaries are frozen.
    if (target_sect != branch_sect) {
      for (int n = MIN2(target_sect, branch_sect),
               nlimit = (target_sect + branch_sect) - n;
           n < nlimit; n++) {
        CodeSection* cs = cb->code_section(n);
        assert(cs->is_frozen(), "cross-section branch needs stable offsets");
      }
    }
#endif //ASSERT

    // Push the target offset into the branch instruction.
    masm->pd_patch_instruction(branch, target);
  }
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
struct DelayedConstant {
  typedef void (*value_fn_t)();
  BasicType type;
  intptr_t value;
  value_fn_t value_fn;
  // This limit of 20 is generous for initial uses.
  // The limit needs to be large enough to store the field offsets
  // into classes which do not have statically fixed layouts.
  // (Initial use is for method handle object offsets.)
  // Look for uses of "delayed_value" in the source code
  // and make sure this number is generous enough to handle all of them.
  enum { DC_LIMIT = 20 };
  static DelayedConstant delayed_constants[DC_LIMIT];
  static DelayedConstant* add(BasicType type, value_fn_t value_fn);
  bool match(BasicType t, value_fn_t cfn) {
    return type == t && value_fn == cfn;
  }
  static void update_all();
};

DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
// Default C structure initialization rules have the following effect here:
// = { { (BasicType)0, (intptr_t)NULL }, ... };

DelayedConstant* DelayedConstant::add(BasicType type,
                                      DelayedConstant::value_fn_t cfn) {
  for (int i = 0; i < DC_LIMIT; i++) {
    DelayedConstant* dcon = &delayed_constants[i];
    if (dcon->match(type, cfn))
      return dcon;
    if (dcon->value_fn == NULL) {
      // (cmpxchg not because this is multi-threaded but because I'm paranoid)
      if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
        dcon->type = type;
        return dcon;
      }
    }
  }
  // If this assert is hit (in pre-integration testing!) then re-evaluate
  // the comment on the definition of DC_LIMIT.
  guarantee(false, "too many delayed constants");
  return NULL;
}

void DelayedConstant::update_all() {
  for (int i = 0; i < DC_LIMIT; i++) {
    DelayedConstant* dcon = &delayed_constants[i];
    if (dcon->value_fn != NULL && dcon->value == 0) {
      typedef int     (*int_fn_t)();
      typedef address (*address_fn_t)();
      switch (dcon->type) {
      case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
      case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
      }
    }
  }
}

265 266 267 268 269 270 271 272 273 274
RegisterOrConstant AbstractAssembler::delayed_value(int(*value_fn)(), Register tmp, int offset) {
  intptr_t val = (intptr_t) (*value_fn)();
  if (val != 0)  return val + offset;
  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
}
RegisterOrConstant AbstractAssembler::delayed_value(address(*value_fn)(), Register tmp, int offset) {
  intptr_t val = (intptr_t) (*value_fn)();
  if (val != 0)  return val + offset;
  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
}
275 276 277 278 279 280 281 282 283 284 285 286
intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
  DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
  return &dcon->value;
}
intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
  DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
  return &dcon->value;
}
void AbstractAssembler::update_delayed_values() {
  DelayedConstant::update_all();
}

D
duke 已提交
287 288 289 290 291 292
void AbstractAssembler::block_comment(const char* comment) {
  if (sect() == CodeBuffer::SECT_INSTS) {
    code_section()->outer()->block_comment(offset(), comment);
  }
}

293 294 295 296 297 298 299
const char* AbstractAssembler::code_string(const char* str) {
  if (sect() == CodeBuffer::SECT_INSTS || sect() == CodeBuffer::SECT_STUBS) {
    return code_section()->outer()->code_string(str);
  }
  return NULL;
}

300 301 302
bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
  // Exception handler checks the nmethod's implicit null checks table
  // only when this method returns false.
303 304 305
#ifdef _LP64
  if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
    assert (Universe::heap() != NULL, "java heap should be initialized");
306 307 308
    // The first page after heap_base is unmapped and
    // the 'offset' is equal to [heap_base + offset] for
    // narrow oop implicit null checks.
309 310
    uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
    if ((uintptr_t)offset >= base) {
311
      // Normalize offset for the next check.
312
      offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
313 314
    }
  }
315
#endif
316 317
  return offset < 0 || os::vm_page_size() <= offset;
}