concurrentG1Refine.cpp 16.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "memory/space.inline.hpp"
#include "runtime/atomic.hpp"
#include "utilities/copy.hpp"
35

36 37 38 39 40 41 42 43
// Possible sizes for the card counts cache: odd primes that roughly double in size.
// (See jvmtiTagMap.cpp).
int ConcurrentG1Refine::_cc_cache_sizes[] = {
        16381,    32771,    76831,    150001,   307261,
       614563,  1228891,  2457733,   4915219,  9830479,
     19660831, 39321619, 78643219, 157286461,       -1
  };

44
ConcurrentG1Refine::ConcurrentG1Refine() :
45 46 47
  _card_counts(NULL), _card_epochs(NULL),
  _n_card_counts(0), _max_n_card_counts(0),
  _cache_size_index(0), _expand_card_counts(false),
48 49
  _hot_cache(NULL),
  _def_use_cache(false), _use_cache(false),
50
  _n_periods(0),
51
  _threads(NULL), _n_threads(0)
52
{
53 54

  // Ergomonically select initial concurrent refinement parameters
55 56
  if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
    FLAG_SET_DEFAULT(G1ConcRefinementGreenZone, MAX2<int>(ParallelGCThreads, 1));
57
  }
58
  set_green_zone(G1ConcRefinementGreenZone);
59

60 61
  if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) {
    FLAG_SET_DEFAULT(G1ConcRefinementYellowZone, green_zone() * 3);
62
  }
63
  set_yellow_zone(MAX2<int>(G1ConcRefinementYellowZone, green_zone()));
64

65 66
  if (FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
    FLAG_SET_DEFAULT(G1ConcRefinementRedZone, yellow_zone() * 2);
67
  }
68
  set_red_zone(MAX2<int>(G1ConcRefinementRedZone, yellow_zone()));
69 70 71 72 73 74 75 76 77 78 79 80 81 82
  _n_worker_threads = thread_num();
  // We need one extra thread to do the young gen rset size sampling.
  _n_threads = _n_worker_threads + 1;
  reset_threshold_step();

  _threads = NEW_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _n_threads);
  int worker_id_offset = (int)DirtyCardQueueSet::num_par_ids();
  ConcurrentG1RefineThread *next = NULL;
  for (int i = _n_threads - 1; i >= 0; i--) {
    ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(this, next, worker_id_offset, i);
    assert(t != NULL, "Conc refine should have been created");
    assert(t->cg1r() == this, "Conc refine thread should refer to this");
    _threads[i] = t;
    next = t;
83 84 85
  }
}

86
void ConcurrentG1Refine::reset_threshold_step() {
87
  if (FLAG_IS_DEFAULT(G1ConcRefinementThresholdStep)) {
88 89
    _thread_threshold_step = (yellow_zone() - green_zone()) / (worker_thread_num() + 1);
  } else {
90
    _thread_threshold_step = G1ConcRefinementThresholdStep;
91
  }
92 93 94
}

int ConcurrentG1Refine::thread_num() {
95
  return MAX2<int>((G1ConcRefinementThreads > 0) ? G1ConcRefinementThreads : ParallelGCThreads, 1);
96 97
}

98 99
void ConcurrentG1Refine::init() {
  if (G1ConcRSLogCacheSize > 0) {
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    _g1h = G1CollectedHeap::heap();
    _max_n_card_counts =
      (unsigned) (_g1h->g1_reserved_obj_bytes() >> CardTableModRefBS::card_shift);

    size_t max_card_num = ((size_t)1 << (sizeof(unsigned)*BitsPerByte-1)) - 1;
    guarantee(_max_n_card_counts < max_card_num, "card_num representation");

    int desired = _max_n_card_counts / InitialCacheFraction;
    for (_cache_size_index = 0;
              _cc_cache_sizes[_cache_size_index] >= 0; _cache_size_index++) {
      if (_cc_cache_sizes[_cache_size_index] >= desired) break;
    }
    _cache_size_index = MAX2(0, (_cache_size_index - 1));

    int initial_size = _cc_cache_sizes[_cache_size_index];
    if (initial_size < 0) initial_size = _max_n_card_counts;

    // Make sure we don't go bigger than we will ever need
    _n_card_counts = MIN2((unsigned) initial_size, _max_n_card_counts);

    _card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
    _card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);

    Copy::fill_to_bytes(&_card_counts[0],
                        _n_card_counts * sizeof(CardCountCacheEntry));
    Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));

    ModRefBarrierSet* bs = _g1h->mr_bs();
    guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
    _ct_bs = (CardTableModRefBS*)bs;
    _ct_bot = _ct_bs->byte_for_const(_g1h->reserved_region().start());

132 133 134 135 136 137
    _def_use_cache = true;
    _use_cache = true;
    _hot_cache_size = (1 << G1ConcRSLogCacheSize);
    _hot_cache = NEW_C_HEAP_ARRAY(jbyte*, _hot_cache_size);
    _n_hot = 0;
    _hot_cache_idx = 0;
138 139 140

    // For refining the cards in the hot cache in parallel
    int n_workers = (ParallelGCThreads > 0 ?
141
                        _g1h->workers()->total_workers() : 1);
142 143
    _hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / n_workers);
    _hot_cache_par_claimed_idx = 0;
144 145 146
  }
}

147 148 149 150 151 152 153 154
void ConcurrentG1Refine::stop() {
  if (_threads != NULL) {
    for (int i = 0; i < _n_threads; i++) {
      _threads[i]->stop();
    }
  }
}

155 156 157 158 159 160 161 162 163
void ConcurrentG1Refine::reinitialize_threads() {
  reset_threshold_step();
  if (_threads != NULL) {
    for (int i = 0; i < _n_threads; i++) {
      _threads[i]->initialize();
    }
  }
}

164 165
ConcurrentG1Refine::~ConcurrentG1Refine() {
  if (G1ConcRSLogCacheSize > 0) {
166 167 168 169
    assert(_card_counts != NULL, "Logic");
    FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
    assert(_card_epochs != NULL, "Logic");
    FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
170 171 172
    assert(_hot_cache != NULL, "Logic");
    FREE_C_HEAP_ARRAY(jbyte*, _hot_cache);
  }
173 174 175 176
  if (_threads != NULL) {
    for (int i = 0; i < _n_threads; i++) {
      delete _threads[i];
    }
177
    FREE_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _threads);
178 179 180
  }
}

181 182 183 184
void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
  if (_threads != NULL) {
    for (int i = 0; i < _n_threads; i++) {
      tc->do_thread(_threads[i]);
185 186 187 188
    }
  }
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
bool ConcurrentG1Refine::is_young_card(jbyte* card_ptr) {
  HeapWord* start = _ct_bs->addr_for(card_ptr);
  HeapRegion* r = _g1h->heap_region_containing(start);
  if (r != NULL && r->is_young()) {
    return true;
  }
  // This card is not associated with a heap region
  // so can't be young.
  return false;
}

jbyte* ConcurrentG1Refine::add_card_count(jbyte* card_ptr, int* count, bool* defer) {
  unsigned new_card_num = ptr_2_card_num(card_ptr);
  unsigned bucket = hash(new_card_num);
  assert(0 <= bucket && bucket < _n_card_counts, "Bounds");

  CardCountCacheEntry* count_ptr = &_card_counts[bucket];
  CardEpochCacheEntry* epoch_ptr = &_card_epochs[bucket];

  // We have to construct a new entry if we haven't updated the counts
  // during the current period, or if the count was updated for a
  // different card number.
  unsigned int new_epoch = (unsigned int) _n_periods;
  julong new_epoch_entry = make_epoch_entry(new_card_num, new_epoch);
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  while (true) {
    // Fetch the previous epoch value
    julong prev_epoch_entry = epoch_ptr->_value;
    julong cas_res;

    if (extract_epoch(prev_epoch_entry) != new_epoch) {
      // This entry has not yet been updated during this period.
      // Note: we update the epoch value atomically to ensure
      // that there is only one winner that updates the cached
      // card_ptr value even though all the refine threads share
      // the same epoch value.

      cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
                                         (volatile jlong*)&epoch_ptr->_value,
                                         (jlong) prev_epoch_entry);

      if (cas_res == prev_epoch_entry) {
        // We have successfully won the race to update the
        // epoch and card_num value. Make it look like the
        // count and eviction count were previously cleared.
        count_ptr->_count = 1;
        count_ptr->_evict_count = 0;
        *count = 0;
        // We can defer the processing of card_ptr
        *defer = true;
        return card_ptr;
      }
      // We did not win the race to update the epoch field, so some other
      // thread must have done it. The value that gets returned by CAS
      // should be the new epoch value.
      assert(extract_epoch(cas_res) == new_epoch, "unexpected epoch");
      // We could 'continue' here or just re-read the previous epoch value
      prev_epoch_entry = epoch_ptr->_value;
    }

    // The epoch entry for card_ptr has been updated during this period.
    unsigned old_card_num = extract_card_num(prev_epoch_entry);

    // The card count that will be returned to caller
    *count = count_ptr->_count;

    // Are we updating the count for the same card?
    if (new_card_num == old_card_num) {
      // Same card - just update the count. We could have more than one
      // thread racing to update count for the current card. It should be
      // OK not to use a CAS as the only penalty should be some missed
      // increments of the count which delays identifying the card as "hot".

      if (*count < max_jubyte) count_ptr->_count++;
      // We can defer the processing of card_ptr
      *defer = true;
      return card_ptr;
    }

    // Different card - evict old card info
    if (count_ptr->_evict_count < max_jubyte) count_ptr->_evict_count++;
    if (count_ptr->_evict_count > G1CardCountCacheExpandThreshold) {
      // Trigger a resize the next time we clear
      _expand_card_counts = true;
    }

    cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
                                       (volatile jlong*)&epoch_ptr->_value,
                                       (jlong) prev_epoch_entry);

    if (cas_res == prev_epoch_entry) {
      // We successfully updated the card num value in the epoch entry
      count_ptr->_count = 0; // initialize counter for new card num
282
      jbyte* old_card_ptr = card_num_2_ptr(old_card_num);
283 284 285 286

      // Even though the region containg the card at old_card_num was not
      // in the young list when old_card_num was recorded in the epoch
      // cache it could have been added to the free list and subsequently
287 288 289 290 291
      // added to the young list in the intervening time. See CR 6817995.
      // We do not deal with this case here - it will be handled in
      // HeapRegion::oops_on_card_seq_iterate_careful after it has been
      // determined that the region containing the card has been allocated
      // to, and it's safe to check the young type of the region.
292 293 294 295 296 297 298 299

      // We do not want to defer processing of card_ptr in this case
      // (we need to refine old_card_ptr and card_ptr)
      *defer = false;
      return old_card_ptr;
    }
    // Someone else beat us - try again.
  }
300 301
}

302 303 304 305
jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr, bool* defer) {
  int count;
  jbyte* cached_ptr = add_card_count(card_ptr, &count, defer);
  assert(cached_ptr != NULL, "bad cached card ptr");
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  // We've just inserted a card pointer into the card count cache
  // and got back the card that we just inserted or (evicted) the
  // previous contents of that count slot.

  // The card we got back could be in a young region. When the
  // returned card (if evicted) was originally inserted, we had
  // determined that its containing region was not young. However
  // it is possible for the region to be freed during a cleanup
  // pause, then reallocated and tagged as young which will result
  // in the returned card residing in a young region.
  //
  // We do not deal with this case here - the change from non-young
  // to young could be observed at any time - it will be handled in
  // HeapRegion::oops_on_card_seq_iterate_careful after it has been
  // determined that the region containing the card has been allocated
  // to.
323 324 325 326

  // The card pointer we obtained from card count cache is not hot
  // so do not store it in the cache; return it for immediate
  // refining.
327
  if (count < G1ConcRSHotCardLimit) {
328
    return cached_ptr;
329
  }
330

331
  // Otherwise, the pointer we got from the _card_counts cache is hot.
332 333 334 335 336 337 338
  jbyte* res = NULL;
  MutexLockerEx x(HotCardCache_lock, Mutex::_no_safepoint_check_flag);
  if (_n_hot == _hot_cache_size) {
    res = _hot_cache[_hot_cache_idx];
    _n_hot--;
  }
  // Now _n_hot < _hot_cache_size, and we can insert at _hot_cache_idx.
339
  _hot_cache[_hot_cache_idx] = cached_ptr;
340 341 342
  _hot_cache_idx++;
  if (_hot_cache_idx == _hot_cache_size) _hot_cache_idx = 0;
  _n_hot++;
343

344 345
  // The card obtained from the hot card cache could be in a young
  // region. See above on how this can happen.
346

347 348 349
  return res;
}

J
johnc 已提交
350 351 352
void ConcurrentG1Refine::clean_up_cache(int worker_i,
                                        G1RemSet* g1rs,
                                        DirtyCardQueue* into_cset_dcq) {
353
  assert(!use_cache(), "cache should be disabled");
354 355 356 357 358 359 360 361 362 363 364 365
  int start_idx;

  while ((start_idx = _hot_cache_par_claimed_idx) < _n_hot) { // read once
    int end_idx = start_idx + _hot_cache_par_chunk_size;

    if (start_idx ==
        Atomic::cmpxchg(end_idx, &_hot_cache_par_claimed_idx, start_idx)) {
      // The current worker has successfully claimed the chunk [start_idx..end_idx)
      end_idx = MIN2(end_idx, _n_hot);
      for (int i = start_idx; i < end_idx; i++) {
        jbyte* entry = _hot_cache[i];
        if (entry != NULL) {
J
johnc 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378
          if (g1rs->concurrentRefineOneCard(entry, worker_i, true)) {
            // 'entry' contains references that point into the current
            // collection set. We need to record 'entry' in the DCQS
            // that's used for that purpose.
            //
            // The only time we care about recording cards that contain
            // references that point into the collection set is during
            // RSet updating while within an evacuation pause.
            // In this case worker_i should be the id of a GC worker thread
            assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
            assert(worker_i < (int) DirtyCardQueueSet::num_par_ids(), "incorrect worker id");
            into_cset_dcq->enqueue(entry);
          }
379 380
        }
      }
381 382 383 384
    }
  }
}

385 386 387 388 389
void ConcurrentG1Refine::expand_card_count_cache() {
  if (_n_card_counts < _max_n_card_counts) {
    int new_idx = _cache_size_index+1;
    int new_size = _cc_cache_sizes[new_idx];
    if (new_size < 0) new_size = _max_n_card_counts;
390

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    // Make sure we don't go bigger than we will ever need
    new_size = MIN2((unsigned) new_size, _max_n_card_counts);

    // Expand the card count and card epoch tables
    if (new_size > (int)_n_card_counts) {
      // We can just free and allocate a new array as we're
      // not interested in preserving the contents
      assert(_card_counts != NULL, "Logic!");
      assert(_card_epochs != NULL, "Logic!");
      FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
      FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
      _n_card_counts = new_size;
      _card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
      _card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);
      _cache_size_index = new_idx;
406 407 408 409
    }
  }
}

410 411 412 413 414 415 416 417 418 419 420 421
void ConcurrentG1Refine::clear_and_record_card_counts() {
  if (G1ConcRSLogCacheSize == 0) return;

#ifndef PRODUCT
  double start = os::elapsedTime();
#endif

  if (_expand_card_counts) {
    expand_card_count_cache();
    _expand_card_counts = false;
    // Only need to clear the epochs.
    Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
422
  }
423 424 425 426 427 428 429 430 431 432

  int this_epoch = (int) _n_periods;
  assert((this_epoch+1) <= max_jint, "to many periods");
  // Update epoch
  _n_periods++;

#ifndef PRODUCT
  double elapsed = os::elapsedTime() - start;
  _g1h->g1_policy()->record_cc_clear_time(elapsed * 1000.0);
#endif
433
}
T
tonyp 已提交
434 435 436 437 438 439 440

void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
  for (int i = 0; i < _n_threads; ++i) {
    _threads[i]->print_on(st);
    st->cr();
  }
}