concurrentG1Refine.cpp 15.4 KB
Newer Older
1
/*
X
xdono 已提交
2
 * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_concurrentG1Refine.cpp.incl"

28 29 30 31 32 33 34 35
// Possible sizes for the card counts cache: odd primes that roughly double in size.
// (See jvmtiTagMap.cpp).
int ConcurrentG1Refine::_cc_cache_sizes[] = {
        16381,    32771,    76831,    150001,   307261,
       614563,  1228891,  2457733,   4915219,  9830479,
     19660831, 39321619, 78643219, 157286461,       -1
  };

36
ConcurrentG1Refine::ConcurrentG1Refine() :
37 38 39
  _card_counts(NULL), _card_epochs(NULL),
  _n_card_counts(0), _max_n_card_counts(0),
  _cache_size_index(0), _expand_card_counts(false),
40 41
  _hot_cache(NULL),
  _def_use_cache(false), _use_cache(false),
42
  _n_periods(0),
43
  _threads(NULL), _n_threads(0)
44
{
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

  // Ergomonically select initial concurrent refinement parameters
  if (FLAG_IS_DEFAULT(G1ConcRefineGreenZone)) {
    FLAG_SET_DEFAULT(G1ConcRefineGreenZone, MAX2<int>(ParallelGCThreads, 1));
  }
  set_green_zone(G1ConcRefineGreenZone);

  if (FLAG_IS_DEFAULT(G1ConcRefineYellowZone)) {
    FLAG_SET_DEFAULT(G1ConcRefineYellowZone, green_zone() * 3);
  }
  set_yellow_zone(MAX2<int>(G1ConcRefineYellowZone, green_zone()));

  if (FLAG_IS_DEFAULT(G1ConcRefineRedZone)) {
    FLAG_SET_DEFAULT(G1ConcRefineRedZone, yellow_zone() * 2);
  }
  set_red_zone(MAX2<int>(G1ConcRefineRedZone, yellow_zone()));
  _n_worker_threads = thread_num();
  // We need one extra thread to do the young gen rset size sampling.
  _n_threads = _n_worker_threads + 1;
  reset_threshold_step();

  _threads = NEW_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _n_threads);
  int worker_id_offset = (int)DirtyCardQueueSet::num_par_ids();
  ConcurrentG1RefineThread *next = NULL;
  for (int i = _n_threads - 1; i >= 0; i--) {
    ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(this, next, worker_id_offset, i);
    assert(t != NULL, "Conc refine should have been created");
    assert(t->cg1r() == this, "Conc refine thread should refer to this");
    _threads[i] = t;
    next = t;
75 76 77
  }
}

78 79 80 81 82
void ConcurrentG1Refine::reset_threshold_step() {
  if (FLAG_IS_DEFAULT(G1ConcRefineThresholdStep)) {
    _thread_threshold_step = (yellow_zone() - green_zone()) / (worker_thread_num() + 1);
  } else {
    _thread_threshold_step = G1ConcRefineThresholdStep;
83
  }
84 85 86 87
}

int ConcurrentG1Refine::thread_num() {
  return MAX2<int>((G1ParallelRSetThreads > 0) ? G1ParallelRSetThreads : ParallelGCThreads, 1);
88 89
}

90 91
void ConcurrentG1Refine::init() {
  if (G1ConcRSLogCacheSize > 0) {
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    _g1h = G1CollectedHeap::heap();
    _max_n_card_counts =
      (unsigned) (_g1h->g1_reserved_obj_bytes() >> CardTableModRefBS::card_shift);

    size_t max_card_num = ((size_t)1 << (sizeof(unsigned)*BitsPerByte-1)) - 1;
    guarantee(_max_n_card_counts < max_card_num, "card_num representation");

    int desired = _max_n_card_counts / InitialCacheFraction;
    for (_cache_size_index = 0;
              _cc_cache_sizes[_cache_size_index] >= 0; _cache_size_index++) {
      if (_cc_cache_sizes[_cache_size_index] >= desired) break;
    }
    _cache_size_index = MAX2(0, (_cache_size_index - 1));

    int initial_size = _cc_cache_sizes[_cache_size_index];
    if (initial_size < 0) initial_size = _max_n_card_counts;

    // Make sure we don't go bigger than we will ever need
    _n_card_counts = MIN2((unsigned) initial_size, _max_n_card_counts);

    _card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
    _card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);

    Copy::fill_to_bytes(&_card_counts[0],
                        _n_card_counts * sizeof(CardCountCacheEntry));
    Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));

    ModRefBarrierSet* bs = _g1h->mr_bs();
    guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
    _ct_bs = (CardTableModRefBS*)bs;
    _ct_bot = _ct_bs->byte_for_const(_g1h->reserved_region().start());

124 125 126 127 128 129
    _def_use_cache = true;
    _use_cache = true;
    _hot_cache_size = (1 << G1ConcRSLogCacheSize);
    _hot_cache = NEW_C_HEAP_ARRAY(jbyte*, _hot_cache_size);
    _n_hot = 0;
    _hot_cache_idx = 0;
130 131 132

    // For refining the cards in the hot cache in parallel
    int n_workers = (ParallelGCThreads > 0 ?
133
                        _g1h->workers()->total_workers() : 1);
134 135
    _hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / n_workers);
    _hot_cache_par_claimed_idx = 0;
136 137 138
  }
}

139 140 141 142 143 144 145 146
void ConcurrentG1Refine::stop() {
  if (_threads != NULL) {
    for (int i = 0; i < _n_threads; i++) {
      _threads[i]->stop();
    }
  }
}

147 148 149 150 151 152 153 154 155
void ConcurrentG1Refine::reinitialize_threads() {
  reset_threshold_step();
  if (_threads != NULL) {
    for (int i = 0; i < _n_threads; i++) {
      _threads[i]->initialize();
    }
  }
}

156 157
ConcurrentG1Refine::~ConcurrentG1Refine() {
  if (G1ConcRSLogCacheSize > 0) {
158 159 160 161
    assert(_card_counts != NULL, "Logic");
    FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
    assert(_card_epochs != NULL, "Logic");
    FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
162 163 164
    assert(_hot_cache != NULL, "Logic");
    FREE_C_HEAP_ARRAY(jbyte*, _hot_cache);
  }
165 166 167 168
  if (_threads != NULL) {
    for (int i = 0; i < _n_threads; i++) {
      delete _threads[i];
    }
169
    FREE_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _threads);
170 171 172
  }
}

173 174 175 176
void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
  if (_threads != NULL) {
    for (int i = 0; i < _n_threads; i++) {
      tc->do_thread(_threads[i]);
177 178 179 180
    }
  }
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
bool ConcurrentG1Refine::is_young_card(jbyte* card_ptr) {
  HeapWord* start = _ct_bs->addr_for(card_ptr);
  HeapRegion* r = _g1h->heap_region_containing(start);
  if (r != NULL && r->is_young()) {
    return true;
  }
  // This card is not associated with a heap region
  // so can't be young.
  return false;
}

jbyte* ConcurrentG1Refine::add_card_count(jbyte* card_ptr, int* count, bool* defer) {
  unsigned new_card_num = ptr_2_card_num(card_ptr);
  unsigned bucket = hash(new_card_num);
  assert(0 <= bucket && bucket < _n_card_counts, "Bounds");

  CardCountCacheEntry* count_ptr = &_card_counts[bucket];
  CardEpochCacheEntry* epoch_ptr = &_card_epochs[bucket];

  // We have to construct a new entry if we haven't updated the counts
  // during the current period, or if the count was updated for a
  // different card number.
  unsigned int new_epoch = (unsigned int) _n_periods;
  julong new_epoch_entry = make_epoch_entry(new_card_num, new_epoch);
205

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  while (true) {
    // Fetch the previous epoch value
    julong prev_epoch_entry = epoch_ptr->_value;
    julong cas_res;

    if (extract_epoch(prev_epoch_entry) != new_epoch) {
      // This entry has not yet been updated during this period.
      // Note: we update the epoch value atomically to ensure
      // that there is only one winner that updates the cached
      // card_ptr value even though all the refine threads share
      // the same epoch value.

      cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
                                         (volatile jlong*)&epoch_ptr->_value,
                                         (jlong) prev_epoch_entry);

      if (cas_res == prev_epoch_entry) {
        // We have successfully won the race to update the
        // epoch and card_num value. Make it look like the
        // count and eviction count were previously cleared.
        count_ptr->_count = 1;
        count_ptr->_evict_count = 0;
        *count = 0;
        // We can defer the processing of card_ptr
        *defer = true;
        return card_ptr;
      }
      // We did not win the race to update the epoch field, so some other
      // thread must have done it. The value that gets returned by CAS
      // should be the new epoch value.
      assert(extract_epoch(cas_res) == new_epoch, "unexpected epoch");
      // We could 'continue' here or just re-read the previous epoch value
      prev_epoch_entry = epoch_ptr->_value;
    }

    // The epoch entry for card_ptr has been updated during this period.
    unsigned old_card_num = extract_card_num(prev_epoch_entry);

    // The card count that will be returned to caller
    *count = count_ptr->_count;

    // Are we updating the count for the same card?
    if (new_card_num == old_card_num) {
      // Same card - just update the count. We could have more than one
      // thread racing to update count for the current card. It should be
      // OK not to use a CAS as the only penalty should be some missed
      // increments of the count which delays identifying the card as "hot".

      if (*count < max_jubyte) count_ptr->_count++;
      // We can defer the processing of card_ptr
      *defer = true;
      return card_ptr;
    }

    // Different card - evict old card info
    if (count_ptr->_evict_count < max_jubyte) count_ptr->_evict_count++;
    if (count_ptr->_evict_count > G1CardCountCacheExpandThreshold) {
      // Trigger a resize the next time we clear
      _expand_card_counts = true;
    }

    cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
                                       (volatile jlong*)&epoch_ptr->_value,
                                       (jlong) prev_epoch_entry);

    if (cas_res == prev_epoch_entry) {
      // We successfully updated the card num value in the epoch entry
      count_ptr->_count = 0; // initialize counter for new card num

      // Even though the region containg the card at old_card_num was not
      // in the young list when old_card_num was recorded in the epoch
      // cache it could have been added to the free list and subsequently
      // added to the young list in the intervening time. If the evicted
      // card is in a young region just return the card_ptr and the evicted
      // card will not be cleaned. See CR 6817995.

      jbyte* old_card_ptr = card_num_2_ptr(old_card_num);
      if (is_young_card(old_card_ptr)) {
        *count = 0;
        // We can defer the processing of card_ptr
        *defer = true;
        return card_ptr;
      }

      // We do not want to defer processing of card_ptr in this case
      // (we need to refine old_card_ptr and card_ptr)
      *defer = false;
      return old_card_ptr;
    }
    // Someone else beat us - try again.
  }
297 298
}

299 300 301 302
jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr, bool* defer) {
  int count;
  jbyte* cached_ptr = add_card_count(card_ptr, &count, defer);
  assert(cached_ptr != NULL, "bad cached card ptr");
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

  if (is_young_card(cached_ptr)) {
    // The region containing cached_ptr has been freed during a clean up
    // pause, reallocated, and tagged as young.
    assert(cached_ptr != card_ptr, "shouldn't be");

    // We've just inserted a new old-gen card pointer into the card count
    // cache and evicted the previous contents of that count slot.
    // The evicted card pointer has been determined to be in a young region
    // and so cannot be the newly inserted card pointer (that will be
    // in an old region).
    // The count for newly inserted card will be set to zero during the
    // insertion, so we don't want to defer the cleaning of the newly
    // inserted card pointer.
    assert(*defer == false, "deferring non-hot card");
    return NULL;
  }
320 321 322 323

  // The card pointer we obtained from card count cache is not hot
  // so do not store it in the cache; return it for immediate
  // refining.
324
  if (count < G1ConcRSHotCardLimit) {
325
    return cached_ptr;
326
  }
327 328

  // Otherwise, the pointer we got from the _card_counts is hot.
329 330 331 332 333 334 335
  jbyte* res = NULL;
  MutexLockerEx x(HotCardCache_lock, Mutex::_no_safepoint_check_flag);
  if (_n_hot == _hot_cache_size) {
    res = _hot_cache[_hot_cache_idx];
    _n_hot--;
  }
  // Now _n_hot < _hot_cache_size, and we can insert at _hot_cache_idx.
336
  _hot_cache[_hot_cache_idx] = cached_ptr;
337 338 339
  _hot_cache_idx++;
  if (_hot_cache_idx == _hot_cache_size) _hot_cache_idx = 0;
  _n_hot++;
340 341 342 343 344 345 346 347 348 349 350 351 352

  if (res != NULL) {
    // Even though the region containg res was not in the young list
    // when it was recorded in the hot cache it could have been added
    // to the free list and subsequently added to the young list in
    // the intervening time. If res is in a young region, return NULL
    // so that res is not cleaned. See CR 6817995.

    if (is_young_card(res)) {
      res = NULL;
    }
  }

353 354 355 356 357
  return res;
}

void ConcurrentG1Refine::clean_up_cache(int worker_i, G1RemSet* g1rs) {
  assert(!use_cache(), "cache should be disabled");
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  int start_idx;

  while ((start_idx = _hot_cache_par_claimed_idx) < _n_hot) { // read once
    int end_idx = start_idx + _hot_cache_par_chunk_size;

    if (start_idx ==
        Atomic::cmpxchg(end_idx, &_hot_cache_par_claimed_idx, start_idx)) {
      // The current worker has successfully claimed the chunk [start_idx..end_idx)
      end_idx = MIN2(end_idx, _n_hot);
      for (int i = start_idx; i < end_idx; i++) {
        jbyte* entry = _hot_cache[i];
        if (entry != NULL) {
          g1rs->concurrentRefineOneCard(entry, worker_i);
        }
      }
373 374 375 376
    }
  }
}

377 378 379 380 381
void ConcurrentG1Refine::expand_card_count_cache() {
  if (_n_card_counts < _max_n_card_counts) {
    int new_idx = _cache_size_index+1;
    int new_size = _cc_cache_sizes[new_idx];
    if (new_size < 0) new_size = _max_n_card_counts;
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    // Make sure we don't go bigger than we will ever need
    new_size = MIN2((unsigned) new_size, _max_n_card_counts);

    // Expand the card count and card epoch tables
    if (new_size > (int)_n_card_counts) {
      // We can just free and allocate a new array as we're
      // not interested in preserving the contents
      assert(_card_counts != NULL, "Logic!");
      assert(_card_epochs != NULL, "Logic!");
      FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
      FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
      _n_card_counts = new_size;
      _card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
      _card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);
      _cache_size_index = new_idx;
398 399 400 401
    }
  }
}

402 403 404 405 406 407 408 409 410 411 412 413
void ConcurrentG1Refine::clear_and_record_card_counts() {
  if (G1ConcRSLogCacheSize == 0) return;

#ifndef PRODUCT
  double start = os::elapsedTime();
#endif

  if (_expand_card_counts) {
    expand_card_count_cache();
    _expand_card_counts = false;
    // Only need to clear the epochs.
    Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
414
  }
415 416 417 418 419 420 421 422 423 424

  int this_epoch = (int) _n_periods;
  assert((this_epoch+1) <= max_jint, "to many periods");
  // Update epoch
  _n_periods++;

#ifndef PRODUCT
  double elapsed = os::elapsedTime() - start;
  _g1h->g1_policy()->record_cc_clear_time(elapsed * 1000.0);
#endif
425
}
T
tonyp 已提交
426 427 428 429 430 431 432

void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
  for (int i = 0; i < _n_threads; ++i) {
    _threads[i]->print_on(st);
    st->cr();
  }
}