assembler_x86.cpp 162.7 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25
#include "precompiled.hpp"
26 27
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
28 29 30 31 32 33 34 35 36 37 38
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
39 40
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
41 42 43
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
44
#endif // INCLUDE_ALL_GCS
D
duke 已提交
45

46 47 48 49 50 51 52 53 54
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
D
duke 已提交
55 56 57 58 59 60 61
// Implementation of AddressLiteral

AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  _is_lval = false;
  _target = target;
  switch (rtype) {
  case relocInfo::oop_type:
62
  case relocInfo::metadata_type:
D
duke 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    // Oops are a special case. Normally they would be their own section
    // but in cases like icBuffer they are literals in the code stream that
    // we don't have a section for. We use none so that we get a literal address
    // which is always patchable.
    break;
  case relocInfo::external_word_type:
    _rspec = external_word_Relocation::spec(target);
    break;
  case relocInfo::internal_word_type:
    _rspec = internal_word_Relocation::spec(target);
    break;
  case relocInfo::opt_virtual_call_type:
    _rspec = opt_virtual_call_Relocation::spec();
    break;
  case relocInfo::static_call_type:
    _rspec = static_call_Relocation::spec();
    break;
  case relocInfo::runtime_call_type:
    _rspec = runtime_call_Relocation::spec();
    break;
83 84 85 86
  case relocInfo::poll_type:
  case relocInfo::poll_return_type:
    _rspec = Relocation::spec_simple(rtype);
    break;
D
duke 已提交
87 88 89 90 91 92 93 94 95 96 97
  case relocInfo::none:
    break;
  default:
    ShouldNotReachHere();
    break;
  }
}

// Implementation of Address

#ifdef _LP64
98 99

Address Address::make_array(ArrayAddress adr) {
D
duke 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  // Not implementable on 64bit machines
  // Should have been handled higher up the call chain.
  ShouldNotReachHere();
  return Address();
}

// exceedingly dangerous constructor
Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = disp;
  switch (rtype) {
    case relocInfo::external_word_type:
      _rspec = external_word_Relocation::spec(loc);
      break;
    case relocInfo::internal_word_type:
      _rspec = internal_word_Relocation::spec(loc);
      break;
    case relocInfo::runtime_call_type:
      // HMM
      _rspec = runtime_call_Relocation::spec();
      break;
123 124 125 126
    case relocInfo::poll_type:
    case relocInfo::poll_return_type:
      _rspec = Relocation::spec_simple(rtype);
      break;
D
duke 已提交
127 128 129 130 131 132
    case relocInfo::none:
      break;
    default:
      ShouldNotReachHere();
  }
}
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
#else // LP64

Address Address::make_array(ArrayAddress adr) {
  AddressLiteral base = adr.base();
  Address index = adr.index();
  assert(index._disp == 0, "must not have disp"); // maybe it can?
  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
  array._rspec = base._rspec;
  return array;
}

// exceedingly dangerous constructor
Address::Address(address loc, RelocationHolder spec) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = (intptr_t) loc;
  _rspec = spec;
}

#endif // _LP64


D
duke 已提交
156 157 158 159

// Convert the raw encoding form into the form expected by the constructor for
// Address.  An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
160
Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
161
  RelocationHolder rspec;
162 163
  if (disp_reloc != relocInfo::none) {
    rspec = Relocation::spec_simple(disp_reloc);
164
  }
D
duke 已提交
165 166 167
  bool valid_index = index != rsp->encoding();
  if (valid_index) {
    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
168
    madr._rspec = rspec;
D
duke 已提交
169 170 171
    return madr;
  } else {
    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
172
    madr._rspec = rspec;
D
duke 已提交
173 174 175 176 177
    return madr;
  }
}

// Implementation of Assembler
178

D
duke 已提交
179 180 181 182
int AbstractAssembler::code_fill_byte() {
  return (u_char)'\xF4'; // hlt
}

183 184 185
// make this go away someday
void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
  if (rtype == relocInfo::none)
186
        emit_int32(data);
187
  else  emit_data(data, Relocation::spec_simple(rtype), format);
D
duke 已提交
188 189
}

190 191
void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
D
duke 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  if (rspec.type() !=  relocInfo::none) {
    #ifdef ASSERT
      check_relocation(rspec, format);
    #endif
    // Do not use AbstractAssembler::relocate, which is not intended for
    // embedded words.  Instead, relocate to the enclosing instruction.

    // hack. call32 is too wide for mask so use disp32
    if (format == call32_operand)
      code_section()->relocate(inst_mark(), rspec, disp32_operand);
    else
      code_section()->relocate(inst_mark(), rspec, format);
  }
206
  emit_int32(data);
D
duke 已提交
207 208
}

209 210 211 212
static int encode(Register r) {
  int enc = r->encoding();
  if (enc >= 8) {
    enc -= 8;
D
duke 已提交
213
  }
214
  return enc;
D
duke 已提交
215 216 217
}

void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
218
  assert(dst->has_byte_register(), "must have byte register");
D
duke 已提交
219 220 221
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert(isByte(imm8), "not a byte");
  assert((op1 & 0x01) == 0, "should be 8bit operation");
222 223 224
  emit_int8(op1);
  emit_int8(op2 | encode(dst));
  emit_int8(imm8);
D
duke 已提交
225 226
}

227 228

void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
D
duke 已提交
229 230 231 232
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
233 234 235
    emit_int8(op1 | 0x02); // set sign bit
    emit_int8(op2 | encode(dst));
    emit_int8(imm32 & 0xFF);
D
duke 已提交
236
  } else {
237 238
    emit_int8(op1);
    emit_int8(op2 | encode(dst));
239
    emit_int32(imm32);
D
duke 已提交
240 241 242
  }
}

243 244 245 246 247
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
248 249
  emit_int8(op1);
  emit_int8(op2 | encode(dst));
250
  emit_int32(imm32);
251 252
}

D
duke 已提交
253
// immediate-to-memory forms
254
void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
D
duke 已提交
255 256 257
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
258
    emit_int8(op1 | 0x02); // set sign bit
D
duke 已提交
259
    emit_operand(rm, adr, 1);
260
    emit_int8(imm32 & 0xFF);
D
duke 已提交
261
  } else {
262
    emit_int8(op1);
D
duke 已提交
263
    emit_operand(rm, adr, 4);
264
    emit_int32(imm32);
D
duke 已提交
265 266 267 268 269 270
  }
}


void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
  assert(isByte(op1) && isByte(op2), "wrong opcode");
271 272
  emit_int8(op1);
  emit_int8(op2 | encode(dst) << 3 | encode(src));
D
duke 已提交
273 274
}

275

D
duke 已提交
276 277 278 279 280
void Assembler::emit_operand(Register reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
                             RelocationHolder const& rspec,
                             int rip_relative_correction) {
  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
281 282 283 284 285 286 287

  // Encode the registers as needed in the fields they are used in

  int regenc = encode(reg) << 3;
  int indexenc = index->is_valid() ? encode(index) << 3 : 0;
  int baseenc = base->is_valid() ? encode(base) : 0;

D
duke 已提交
288 289 290 291 292
  if (base->is_valid()) {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [base + index*scale + disp]
      if (disp == 0 && rtype == relocInfo::none  &&
293
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
294 295 296
        // [base + index*scale]
        // [00 reg 100][ss index base]
        assert(index != rsp, "illegal addressing mode");
297 298
        emit_int8(0x04 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
D
duke 已提交
299 300 301 302
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + index*scale + imm8]
        // [01 reg 100][ss index base] imm8
        assert(index != rsp, "illegal addressing mode");
303 304 305
        emit_int8(0x44 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
        emit_int8(disp & 0xFF);
D
duke 已提交
306 307 308 309
      } else {
        // [base + index*scale + disp32]
        // [10 reg 100][ss index base] disp32
        assert(index != rsp, "illegal addressing mode");
310 311
        emit_int8(0x84 | regenc);
        emit_int8(scale << 6 | indexenc | baseenc);
D
duke 已提交
312 313
        emit_data(disp, rspec, disp32_operand);
      }
314
    } else if (base == rsp LP64_ONLY(|| base == r12)) {
D
duke 已提交
315 316 317 318
      // [rsp + disp]
      if (disp == 0 && rtype == relocInfo::none) {
        // [rsp]
        // [00 reg 100][00 100 100]
319 320
        emit_int8(0x04 | regenc);
        emit_int8(0x24);
D
duke 已提交
321 322 323
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [rsp + imm8]
        // [01 reg 100][00 100 100] disp8
324 325 326
        emit_int8(0x44 | regenc);
        emit_int8(0x24);
        emit_int8(disp & 0xFF);
D
duke 已提交
327 328 329
      } else {
        // [rsp + imm32]
        // [10 reg 100][00 100 100] disp32
330 331
        emit_int8(0x84 | regenc);
        emit_int8(0x24);
D
duke 已提交
332 333 334 335
        emit_data(disp, rspec, disp32_operand);
      }
    } else {
      // [base + disp]
336
      assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
D
duke 已提交
337
      if (disp == 0 && rtype == relocInfo::none &&
338
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
339 340
        // [base]
        // [00 reg base]
341
        emit_int8(0x00 | regenc | baseenc);
D
duke 已提交
342 343 344
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + disp8]
        // [01 reg base] disp8
345 346
        emit_int8(0x40 | regenc | baseenc);
        emit_int8(disp & 0xFF);
D
duke 已提交
347 348 349
      } else {
        // [base + disp32]
        // [10 reg base] disp32
350
        emit_int8(0x80 | regenc | baseenc);
D
duke 已提交
351 352 353 354 355 356 357 358 359
        emit_data(disp, rspec, disp32_operand);
      }
    }
  } else {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [index*scale + disp]
      // [00 reg 100][ss index 101] disp32
      assert(index != rsp, "illegal addressing mode");
360 361
      emit_int8(0x04 | regenc);
      emit_int8(scale << 6 | indexenc | 0x05);
D
duke 已提交
362 363
      emit_data(disp, rspec, disp32_operand);
    } else if (rtype != relocInfo::none ) {
364
      // [disp] (64bit) RIP-RELATIVE (32bit) abs
D
duke 已提交
365 366
      // [00 000 101] disp32

367
      emit_int8(0x05 | regenc);
D
duke 已提交
368 369 370 371 372 373 374 375
      // Note that the RIP-rel. correction applies to the generated
      // disp field, but _not_ to the target address in the rspec.

      // disp was created by converting the target address minus the pc
      // at the start of the instruction. That needs more correction here.
      // intptr_t disp = target - next_ip;
      assert(inst_mark() != NULL, "must be inside InstructionMark");
      address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
376 377 378
      int64_t adjusted = disp;
      // Do rip-rel adjustment for 64bit
      LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
D
duke 已提交
379 380
      assert(is_simm32(adjusted),
             "must be 32bit offset (RIP relative address)");
381
      emit_data((int32_t) adjusted, rspec, disp32_operand);
D
duke 已提交
382 383

    } else {
384
      // 32bit never did this, did everything as the rip-rel/disp code above
D
duke 已提交
385 386
      // [disp] ABSOLUTE
      // [00 reg 100][00 100 101] disp32
387 388
      emit_int8(0x04 | regenc);
      emit_int8(0x25);
D
duke 已提交
389 390 391 392 393 394 395
      emit_data(disp, rspec, disp32_operand);
    }
  }
}

void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
396 397
                             RelocationHolder const& rspec) {
  emit_operand((Register)reg, base, index, scale, disp, rspec);
D
duke 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
}

// Secret local extension to Assembler::WhichOperand:
#define end_pc_operand (_WhichOperand_limit)

address Assembler::locate_operand(address inst, WhichOperand which) {
  // Decode the given instruction, and return the address of
  // an embedded 32-bit operand word.

  // If "which" is disp32_operand, selects the displacement portion
  // of an effective address specifier.
  // If "which" is imm64_operand, selects the trailing immediate constant.
  // If "which" is call32_operand, selects the displacement of a call or jump.
  // Caller is responsible for ensuring that there is such an operand,
  // and that it is 32/64 bits wide.

  // If "which" is end_pc_operand, find the end of the instruction.

  address ip = inst;
  bool is_64bit = false;

  debug_only(bool has_disp32 = false);
  int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn

  again_after_prefix:
  switch (0xFF & *ip++) {

  // These convenience macros generate groups of "case" labels for the switch.
#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
             case (x)+4: case (x)+5: case (x)+6: case (x)+7
#define REP16(x) REP8((x)+0): \
              case REP8((x)+8)

  case CS_segment:
  case SS_segment:
  case DS_segment:
  case ES_segment:
  case FS_segment:
  case GS_segment:
438 439 440
    // Seems dubious
    LP64_ONLY(assert(false, "shouldn't have that prefix"));
    assert(ip == inst+1, "only one prefix allowed");
D
duke 已提交
441 442 443 444 445 446 447 448 449 450 451
    goto again_after_prefix;

  case 0x67:
  case REX:
  case REX_B:
  case REX_X:
  case REX_XB:
  case REX_R:
  case REX_RB:
  case REX_RX:
  case REX_RXB:
452
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
453 454 455 456 457 458 459 460 461 462
    goto again_after_prefix;

  case REX_W:
  case REX_WB:
  case REX_WX:
  case REX_WXB:
  case REX_WR:
  case REX_WRB:
  case REX_WRX:
  case REX_WRXB:
463
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
464 465 466 467 468 469 470 471 472
    is_64bit = true;
    goto again_after_prefix;

  case 0xFF: // pushq a; decl a; incl a; call a; jmp a
  case 0x88: // movb a, r
  case 0x89: // movl a, r
  case 0x8A: // movb r, a
  case 0x8B: // movl r, a
  case 0x8F: // popl a
473
    debug_only(has_disp32 = true);
D
duke 已提交
474 475 476 477 478 479
    break;

  case 0x68: // pushq #32
    if (which == end_pc_operand) {
      return ip + 4;
    }
480 481
    assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
    return ip;                  // not produced by emit_operand
D
duke 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

  case 0x66: // movw ... (size prefix)
    again_after_size_prefix2:
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
502
      NOT_LP64(assert(false, "64bit prefix found"));
D
duke 已提交
503 504 505
      goto again_after_size_prefix2;
    case 0x8B: // movw r, a
    case 0x89: // movw a, r
506
      debug_only(has_disp32 = true);
D
duke 已提交
507 508
      break;
    case 0xC7: // movw a, #16
509
      debug_only(has_disp32 = true);
D
duke 已提交
510 511 512 513 514 515 516 517 518 519 520 521
      tail_size = 2;  // the imm16
      break;
    case 0x0F: // several SSE/SSE2 variants
      ip--;    // reparse the 0x0F
      goto again_after_prefix;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP8(0xB8): // movl/q r, #32/#64(oop?)
    if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
522 523
    // these asserts are somewhat nonsensical
#ifndef _LP64
524 525
    assert(which == imm_operand || which == disp32_operand,
           err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
526 527
#else
    assert((which == call32_operand || which == imm_operand) && is_64bit ||
528 529
           which == narrow_oop_operand && !is_64bit,
           err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
530
#endif // _LP64
D
duke 已提交
531 532 533 534 535 536 537 538 539 540
    return ip;

  case 0x69: // imul r, a, #32
  case 0xC7: // movl a, #32(oop?)
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x0F: // movx..., etc.
    switch (0xFF & *ip++) {
K
kvn 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553
    case 0x3A: // pcmpestri
      tail_size = 1;
    case 0x38: // ptest, pmovzxbw
      ip++; // skip opcode
      debug_only(has_disp32 = true); // has both kinds of operands!
      break;

    case 0x70: // pshufd r, r/a, #8
      debug_only(has_disp32 = true); // has both kinds of operands!
    case 0x73: // psrldq r, #8
      tail_size = 1;
      break;

D
duke 已提交
554 555 556 557 558
    case 0x12: // movlps
    case 0x28: // movaps
    case 0x2E: // ucomiss
    case 0x2F: // comiss
    case 0x54: // andps
559 560
    case 0x55: // andnps
    case 0x56: // orps
D
duke 已提交
561 562 563
    case 0x57: // xorps
    case 0x6E: // movd
    case 0x7E: // movd
K
kvn 已提交
564
    case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
565
      debug_only(has_disp32 = true);
D
duke 已提交
566
      break;
567

D
duke 已提交
568 569
    case 0xAD: // shrd r, a, %cl
    case 0xAF: // imul r, a
570 571 572 573
    case 0xBE: // movsbl r, a (movsxb)
    case 0xBF: // movswl r, a (movsxw)
    case 0xB6: // movzbl r, a (movzxb)
    case 0xB7: // movzwl r, a (movzxw)
D
duke 已提交
574 575 576 577 578 579 580 581 582
    case REP16(0x40): // cmovl cc, r, a
    case 0xB0: // cmpxchgb
    case 0xB1: // cmpxchg
    case 0xC1: // xaddl
    case 0xC7: // cmpxchg8
    case REP16(0x90): // setcc a
      debug_only(has_disp32 = true);
      // fall out of the switch to decode the address
      break;
583

K
kvn 已提交
584 585 586 587 588 589
    case 0xC4: // pinsrw r, a, #8
      debug_only(has_disp32 = true);
    case 0xC5: // pextrw r, r, #8
      tail_size = 1;  // the imm8
      break;

D
duke 已提交
590 591 592 593
    case 0xAC: // shrd r, a, #8
      debug_only(has_disp32 = true);
      tail_size = 1;  // the imm8
      break;
594

D
duke 已提交
595 596
    case REP16(0x80): // jcc rdisp32
      if (which == end_pc_operand)  return ip + 4;
597
      assert(which == call32_operand, "jcc has no disp32 or imm");
D
duke 已提交
598 599 600 601 602 603 604 605
      return ip;
    default:
      ShouldNotReachHere();
    }
    break;

  case 0x81: // addl a, #32; addl r, #32
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
606
    // on 32bit in the case of cmpl, the imm might be an oop
D
duke 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x83: // addl a, #8; addl r, #8
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1;
    break;

  case 0x9B:
    switch (0xFF & *ip++) {
    case 0xD9: // fnstcw a
      debug_only(has_disp32 = true);
      break;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
  case REP4(0x10): // adc...
  case REP4(0x20): // and...
  case REP4(0x30): // xor...
  case REP4(0x08): // or...
  case REP4(0x18): // sbb...
  case REP4(0x28): // sub...
  case 0xF7: // mull a
635
  case 0x8D: // lea r, a
D
duke 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649
  case 0x87: // xchg r, a
  case REP4(0x38): // cmp...
  case 0x85: // test r, a
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
  case 0xC6: // movb a, #8
  case 0x80: // cmpb a, #8
  case 0x6B: // imul r, a, #8
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1; // the imm8
    break;

K
kvn 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  case 0xC4: // VEX_3bytes
  case 0xC5: // VEX_2bytes
    assert((UseAVX > 0), "shouldn't have VEX prefix");
    assert(ip == inst+1, "no prefixes allowed");
    // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
    // but they have prefix 0x0F and processed when 0x0F processed above.
    //
    // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
    // instructions (these instructions are not supported in 64-bit mode).
    // To distinguish them bits [7:6] are set in the VEX second byte since
    // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
    // those VEX bits REX and vvvv bits are inverted.
    //
    // Fortunately C2 doesn't generate these instructions so we don't need
    // to check for them in product version.

    // Check second byte
    NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));

    // First byte
    if ((0xFF & *inst) == VEX_3bytes) {
      ip++; // third byte
      is_64bit = ((VEX_W & *ip) == VEX_W);
    }
    ip++; // opcode
    // To find the end of instruction (which == end_pc_operand).
    switch (0xFF & *ip) {
    case 0x61: // pcmpestri r, r/a, #8
    case 0x70: // pshufd r, r/a, #8
    case 0x73: // psrldq r, #8
      tail_size = 1;  // the imm8
      break;
    default:
      break;
    }
    ip++; // skip opcode
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;
D
duke 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700

  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
  case 0xDD: // fld_d a; fst_d a; fstp_d a
  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
  case 0xDF: // fild_d a; fistp_d a
  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
    debug_only(has_disp32 = true);
    break;

K
kvn 已提交
701 702 703 704 705 706
  case 0xE8: // call rdisp32
  case 0xE9: // jmp  rdisp32
    if (which == end_pc_operand)  return ip + 4;
    assert(which == call32_operand, "call has no disp32 or imm");
    return ip;

707 708 709 710
  case 0xF0:                    // Lock
    assert(os::is_MP(), "only on MP");
    goto again_after_prefix;

D
duke 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  case 0xF3:                    // For SSE
  case 0xF2:                    // For SSE2
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
730
      NOT_LP64(assert(false, "found 64bit prefix"));
D
duke 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
      ip++;
    default:
      ip++;
    }
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  default:
    ShouldNotReachHere();

#undef REP8
#undef REP16
  }

  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
746 747 748 749 750 751
#ifdef _LP64
  assert(which != imm_operand, "instruction is not a movq reg, imm64");
#else
  // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
  assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
#endif // LP64
D
duke 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
  assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");

  // parse the output of emit_operand
  int op2 = 0xFF & *ip++;
  int base = op2 & 0x07;
  int op3 = -1;
  const int b100 = 4;
  const int b101 = 5;
  if (base == b100 && (op2 >> 6) != 3) {
    op3 = 0xFF & *ip++;
    base = op3 & 0x07;   // refetch the base
  }
  // now ip points at the disp (if any)

  switch (op2 >> 6) {
  case 0:
    // [00 reg  100][ss index base]
    // [00 reg  100][00   100  esp]
    // [00 reg base]
    // [00 reg  100][ss index  101][disp32]
    // [00 reg  101]               [disp32]

    if (base == b101) {
      if (which == disp32_operand)
        return ip;              // caller wants the disp32
      ip += 4;                  // skip the disp32
    }
    break;

  case 1:
    // [01 reg  100][ss index base][disp8]
    // [01 reg  100][00   100  esp][disp8]
    // [01 reg base]               [disp8]
    ip += 1;                    // skip the disp8
    break;

  case 2:
    // [10 reg  100][ss index base][disp32]
    // [10 reg  100][00   100  esp][disp32]
    // [10 reg base]               [disp32]
    if (which == disp32_operand)
      return ip;                // caller wants the disp32
    ip += 4;                    // skip the disp32
    break;

  case 3:
    // [11 reg base]  (not a memory addressing mode)
    break;
  }

  if (which == end_pc_operand) {
    return ip + tail_size;
  }

806
#ifdef _LP64
807
  assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
808 809 810
#else
  assert(which == imm_operand, "instruction has only an imm field");
#endif // LP64
D
duke 已提交
811 812 813 814 815 816 817 818
  return ip;
}

address Assembler::locate_next_instruction(address inst) {
  // Secretly share code with locate_operand:
  return locate_operand(inst, end_pc_operand);
}

819

D
duke 已提交
820 821 822
#ifdef ASSERT
void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
  address inst = inst_mark();
823
  assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
D
duke 已提交
824 825 826 827 828 829
  address opnd;

  Relocation* r = rspec.reloc();
  if (r->type() == relocInfo::none) {
    return;
  } else if (r->is_call() || format == call32_operand) {
830
    // assert(format == imm32_operand, "cannot specify a nonzero format");
D
duke 已提交
831 832
    opnd = locate_operand(inst, call32_operand);
  } else if (r->is_data()) {
833 834 835
    assert(format == imm_operand || format == disp32_operand
           LP64_ONLY(|| format == narrow_oop_operand), "format ok");
    opnd = locate_operand(inst, (WhichOperand)format);
D
duke 已提交
836
  } else {
837
    assert(format == imm_operand, "cannot specify a format");
D
duke 已提交
838 839 840 841
    return;
  }
  assert(opnd == pc(), "must put operand where relocs can find it");
}
842
#endif // ASSERT
D
duke 已提交
843

844 845 846 847 848
void Assembler::emit_operand32(Register reg, Address adr) {
  assert(reg->encoding() < 8, "no extended registers");
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec);
D
duke 已提交
849 850 851 852 853 854 855 856 857
}

void Assembler::emit_operand(Register reg, Address adr,
                             int rip_relative_correction) {
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec,
               rip_relative_correction);
}

858
void Assembler::emit_operand(XMMRegister reg, Address adr) {
D
duke 已提交
859
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
860 861 862 863 864 865 866 867 868 869 870 871 872
               adr._rspec);
}

// MMX operations
void Assembler::emit_operand(MMXRegister reg, Address adr) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}

// work around gcc (3.2.1-7a) bug
void Assembler::emit_operand(Address adr, MMXRegister reg) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
D
duke 已提交
873 874
}

875

D
duke 已提交
876 877 878
void Assembler::emit_farith(int b1, int b2, int i) {
  assert(isByte(b1) && isByte(b2), "wrong opcode");
  assert(0 <= i &&  i < 8, "illegal stack offset");
879 880
  emit_int8(b1);
  emit_int8(b2 + i);
D
duke 已提交
881 882 883
}


884 885 886 887 888 889 890 891 892 893 894
// Now the Assembler instructions (identical for 32/64 bits)

void Assembler::adcl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rdx, dst, imm32);
}

void Assembler::adcl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
895
  emit_int8(0x11);
896 897
  emit_operand(src, dst);
}
D
duke 已提交
898

899 900 901
void Assembler::adcl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD0, dst, imm32);
D
duke 已提交
902 903
}

904 905 906
void Assembler::adcl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
907
  emit_int8(0x13);
908
  emit_operand(dst, src);
D
duke 已提交
909 910
}

911 912 913
void Assembler::adcl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
D
duke 已提交
914 915
}

916 917 918 919
void Assembler::addl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rax, dst, imm32);
D
duke 已提交
920 921
}

922 923 924
void Assembler::addl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
925
  emit_int8(0x01);
926
  emit_operand(src, dst);
D
duke 已提交
927 928
}

929 930 931 932
void Assembler::addl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC0, dst, imm32);
}
D
duke 已提交
933

934 935 936
void Assembler::addl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
937
  emit_int8(0x03);
938
  emit_operand(dst, src);
D
duke 已提交
939 940
}

941 942 943
void Assembler::addl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
D
duke 已提交
944 945
}

946
void Assembler::addr_nop_4() {
947
  assert(UseAddressNop, "no CPU support");
948
  // 4 bytes: NOP DWORD PTR [EAX+0]
949 950 951 952
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
  emit_int8(0);    // 8-bits offset (1 byte)
D
duke 已提交
953 954
}

955
void Assembler::addr_nop_5() {
956
  assert(UseAddressNop, "no CPU support");
957
  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
958 959 960 961 962
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
  emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  emit_int8(0);    // 8-bits offset (1 byte)
D
duke 已提交
963 964
}

965
void Assembler::addr_nop_7() {
966
  assert(UseAddressNop, "no CPU support");
967
  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
968 969 970 971
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8((unsigned char)0x80);
                   // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
972
  emit_int32(0);   // 32-bits offset (4 bytes)
D
duke 已提交
973 974
}

975
void Assembler::addr_nop_8() {
976
  assert(UseAddressNop, "no CPU support");
977
  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
978 979 980 981 982
  emit_int8(0x0F);
  emit_int8(0x1F);
  emit_int8((unsigned char)0x84);
                   // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
  emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
983
  emit_int32(0);   // 32-bits offset (4 bytes)
984 985 986 987
}

void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
988
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
989 990 991 992
}

void Assembler::addsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
993
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
D
duke 已提交
994 995
}

996 997
void Assembler::addss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
998
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
999 1000 1001 1002
}

void Assembler::addss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003
  emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 1005
}

1006 1007 1008 1009
void Assembler::aesdec(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1010
  emit_int8((unsigned char)0xDE);
1011 1012 1013 1014 1015 1016
  emit_operand(dst, src);
}

void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1017 1018
  emit_int8((unsigned char)0xDE);
  emit_int8(0xC0 | encode);
1019 1020 1021 1022 1023 1024
}

void Assembler::aesdeclast(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025
  emit_int8((unsigned char)0xDF);
1026 1027 1028 1029 1030 1031
  emit_operand(dst, src);
}

void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1032 1033
  emit_int8((unsigned char)0xDF);
  emit_int8((unsigned char)(0xC0 | encode));
1034 1035 1036 1037 1038 1039
}

void Assembler::aesenc(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040
  emit_int8((unsigned char)0xDC);
1041 1042 1043 1044 1045 1046
  emit_operand(dst, src);
}

void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1047 1048
  emit_int8((unsigned char)0xDC);
  emit_int8(0xC0 | encode);
1049 1050 1051 1052 1053 1054
}

void Assembler::aesenclast(XMMRegister dst, Address src) {
  assert(VM_Version::supports_aes(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055
  emit_int8((unsigned char)0xDD);
1056 1057 1058 1059 1060 1061
  emit_operand(dst, src);
}

void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_aes(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1062 1063
  emit_int8((unsigned char)0xDD);
  emit_int8((unsigned char)(0xC0 | encode));
1064 1065 1066
}


K
kvn 已提交
1067 1068 1069
void Assembler::andl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
1070
  emit_int8((unsigned char)0x81);
K
kvn 已提交
1071
  emit_operand(rsp, dst, 4);
1072
  emit_int32(imm32);
K
kvn 已提交
1073 1074
}

1075
void Assembler::andl(Register dst, int32_t imm32) {
D
duke 已提交
1076
  prefix(dst);
1077
  emit_arith(0x81, 0xE0, dst, imm32);
D
duke 已提交
1078 1079
}

1080
void Assembler::andl(Register dst, Address src) {
D
duke 已提交
1081
  InstructionMark im(this);
1082
  prefix(src, dst);
1083
  emit_int8(0x23);
1084
  emit_operand(dst, src);
D
duke 已提交
1085 1086
}

1087 1088 1089
void Assembler::andl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
D
duke 已提交
1090 1091
}

1092 1093
void Assembler::bsfl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1094 1095 1096
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBC);
  emit_int8((unsigned char)(0xC0 | encode));
1097 1098 1099 1100 1101
}

void Assembler::bsrl(Register dst, Register src) {
  assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1102 1103 1104
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
1105 1106
}

1107 1108
void Assembler::bswapl(Register reg) { // bswap
  int encode = prefix_and_encode(reg->encoding());
1109 1110
  emit_int8(0x0F);
  emit_int8((unsigned char)(0xC8 | encode));
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
}

void Assembler::call(Label& L, relocInfo::relocType rtype) {
  // suspect disp32 is always good
  int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);

  if (L.is_bound()) {
    const int long_size = 5;
    int offs = (int)( target(L) - pc() );
    assert(offs <= 0, "assembler error");
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
1123
    emit_int8((unsigned char)0xE8);
1124 1125 1126 1127 1128 1129
    emit_data(offs - long_size, rtype, operand);
  } else {
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
    L.add_patch_at(code(), locator());

1130
    emit_int8((unsigned char)0xE8);
1131 1132 1133 1134 1135
    emit_data(int(0), rtype, operand);
  }
}

void Assembler::call(Register dst) {
K
kvn 已提交
1136
  int encode = prefix_and_encode(dst->encoding());
1137 1138
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xD0 | encode));
1139 1140 1141 1142
}


void Assembler::call(Address adr) {
D
duke 已提交
1143
  InstructionMark im(this);
1144
  prefix(adr);
1145
  emit_int8((unsigned char)0xFF);
1146
  emit_operand(rdx, adr);
D
duke 已提交
1147 1148
}

1149 1150 1151
void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  assert(entry != NULL, "call most probably wrong");
  InstructionMark im(this);
1152
  emit_int8((unsigned char)0xE8);
1153
  intptr_t disp = entry - (pc() + sizeof(int32_t));
1154 1155 1156 1157 1158 1159
  assert(is_simm32(disp), "must be 32bit offset (call2)");
  // Technically, should use call32_operand, but this format is
  // implied by the fact that we're emitting a call instruction.

  int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  emit_data((int) disp, rspec, operand);
D
duke 已提交
1160 1161
}

1162
void Assembler::cdql() {
1163
  emit_int8((unsigned char)0x99);
1164 1165
}

1166
void Assembler::cld() {
1167
  emit_int8((unsigned char)0xFC);
1168 1169
}

1170 1171
void Assembler::cmovl(Condition cc, Register dst, Register src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1172
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1173 1174 1175
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1176 1177
}

1178 1179 1180

void Assembler::cmovl(Condition cc, Register dst, Address src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1181
  prefix(src, dst);
1182 1183
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
D
duke 已提交
1184 1185 1186
  emit_operand(dst, src);
}

1187
void Assembler::cmpb(Address dst, int imm8) {
D
duke 已提交
1188 1189
  InstructionMark im(this);
  prefix(dst);
1190
  emit_int8((unsigned char)0x80);
1191
  emit_operand(rdi, dst, 1);
1192
  emit_int8(imm8);
D
duke 已提交
1193 1194
}

1195
void Assembler::cmpl(Address dst, int32_t imm32) {
D
duke 已提交
1196
  InstructionMark im(this);
1197
  prefix(dst);
1198
  emit_int8((unsigned char)0x81);
1199
  emit_operand(rdi, dst, 4);
1200
  emit_int32(imm32);
D
duke 已提交
1201 1202
}

1203 1204 1205
void Assembler::cmpl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF8, dst, imm32);
D
duke 已提交
1206 1207
}

1208 1209 1210
void Assembler::cmpl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
D
duke 已提交
1211 1212 1213
}


1214
void Assembler::cmpl(Register dst, Address  src) {
D
duke 已提交
1215
  InstructionMark im(this);
1216
  prefix(src, dst);
1217
  emit_int8((unsigned char)0x3B);
D
duke 已提交
1218 1219 1220
  emit_operand(dst, src);
}

1221
void Assembler::cmpw(Address dst, int imm16) {
D
duke 已提交
1222
  InstructionMark im(this);
1223
  assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1224 1225
  emit_int8(0x66);
  emit_int8((unsigned char)0x81);
1226
  emit_operand(rdi, dst, 2);
1227
  emit_int16(imm16);
D
duke 已提交
1228 1229
}

1230 1231 1232 1233
// The 32-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
C
coleenp 已提交
1234 1235
  InstructionMark im(this);
  prefix(adr, reg);
1236 1237
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB1);
C
coleenp 已提交
1238
  emit_operand(reg, adr);
D
duke 已提交
1239 1240
}

1241 1242 1243 1244
void Assembler::comisd(XMMRegister dst, Address src) {
  // NOTE: dbx seems to decode this as comiss even though the
  // 0x66 is there. Strangly ucomisd comes out correct
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1245
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
K
kvn 已提交
1246 1247 1248 1249
}

void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1250
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
D
duke 已提交
1251 1252
}

1253 1254
void Assembler::comiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1255
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
D
duke 已提交
1256 1257
}

K
kvn 已提交
1258 1259
void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1260
  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
K
kvn 已提交
1261 1262
}

1263
void Assembler::cpuid() {
1264 1265
  emit_int8(0x0F);
  emit_int8((unsigned char)0xA2);
1266 1267
}

1268 1269
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1270
  emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
D
duke 已提交
1271 1272
}

1273 1274
void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1275
  emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
D
duke 已提交
1276 1277
}

1278 1279
void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1280
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
D
duke 已提交
1281 1282
}

K
kvn 已提交
1283 1284
void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1285
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
K
kvn 已提交
1286 1287
}

1288 1289
void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1290
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1291 1292
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1293 1294
}

K
kvn 已提交
1295 1296
void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1297
  emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
K
kvn 已提交
1298 1299
}

1300 1301
void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
1302
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1303 1304
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1305 1306
}

K
kvn 已提交
1307 1308
void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1309
  emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
K
kvn 已提交
1310 1311
}

1312 1313
void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1314
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
D
duke 已提交
1315 1316
}

K
kvn 已提交
1317 1318
void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1319
  emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
K
kvn 已提交
1320 1321 1322
}


1323 1324
void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1325
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1326 1327
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1328 1329
}

1330 1331
void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
1332
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1333 1334
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1335 1336
}

1337 1338 1339 1340
void Assembler::decl(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrement() instead.
  InstructionMark im(this);
  prefix(dst);
1341
  emit_int8((unsigned char)0xFF);
1342
  emit_operand(rcx, dst);
D
duke 已提交
1343 1344
}

1345 1346
void Assembler::divsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1347
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
D
duke 已提交
1348 1349
}

1350 1351
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1352
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
D
duke 已提交
1353 1354
}

1355 1356
void Assembler::divss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1357
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
D
duke 已提交
1358 1359
}

1360 1361
void Assembler::divss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1362
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
D
duke 已提交
1363 1364
}

1365 1366
void Assembler::emms() {
  NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1367 1368
  emit_int8(0x0F);
  emit_int8(0x77);
D
duke 已提交
1369 1370
}

1371
void Assembler::hlt() {
1372
  emit_int8((unsigned char)0xF4);
D
duke 已提交
1373 1374
}

1375 1376
void Assembler::idivl(Register src) {
  int encode = prefix_and_encode(src->encoding());
1377 1378
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF8 | encode));
D
duke 已提交
1379 1380
}

1381 1382
void Assembler::divl(Register src) { // Unsigned
  int encode = prefix_and_encode(src->encoding());
1383 1384
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF0 | encode));
1385 1386
}

1387
void Assembler::imull(Register dst, Register src) {
D
duke 已提交
1388
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1389 1390 1391
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAF);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1392 1393 1394
}


1395
void Assembler::imull(Register dst, Register src, int value) {
D
duke 已提交
1396
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1397
  if (is8bit(value)) {
1398 1399 1400
    emit_int8(0x6B);
    emit_int8((unsigned char)(0xC0 | encode));
    emit_int8(value & 0xFF);
1401
  } else {
1402 1403
    emit_int8(0x69);
    emit_int8((unsigned char)(0xC0 | encode));
1404
    emit_int32(value);
1405
  }
D
duke 已提交
1406 1407
}

1408 1409
void Assembler::incl(Address dst) {
  // Don't use it directly. Use MacroAssembler::increment() instead.
D
duke 已提交
1410
  InstructionMark im(this);
1411
  prefix(dst);
1412
  emit_int8((unsigned char)0xFF);
1413
  emit_operand(rax, dst);
D
duke 已提交
1414 1415
}

1416
void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
D
duke 已提交
1417
  InstructionMark im(this);
1418 1419 1420 1421 1422 1423 1424
  assert((0 <= cc) && (cc < 16), "illegal cc");
  if (L.is_bound()) {
    address dst = target(L);
    assert(dst != NULL, "jcc most probably wrong");

    const int short_size = 2;
    const int long_size = 6;
1425
    intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1426
    if (maybe_short && is8bit(offs - short_size)) {
1427
      // 0111 tttn #8-bit disp
1428 1429
      emit_int8(0x70 | cc);
      emit_int8((offs - short_size) & 0xFF);
1430 1431 1432 1433
    } else {
      // 0000 1111 1000 tttn #32-bit disp
      assert(is_simm32(offs - long_size),
             "must be 32bit offset (call4)");
1434 1435
      emit_int8(0x0F);
      emit_int8((unsigned char)(0x80 | cc));
1436
      emit_int32(offs - long_size);
1437 1438 1439 1440 1441 1442 1443
    }
  } else {
    // Note: could eliminate cond. jumps to this jump if condition
    //       is the same however, seems to be rather unlikely case.
    // Note: use jccb() if label to be bound is very close to get
    //       an 8-bit displacement
    L.add_patch_at(code(), locator());
1444 1445
    emit_int8(0x0F);
    emit_int8((unsigned char)(0x80 | cc));
1446
    emit_int32(0);
1447
  }
D
duke 已提交
1448 1449
}

1450 1451 1452 1453
void Assembler::jccb(Condition cc, Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
1454
#ifdef ASSERT
1455
    intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1456 1457 1458 1459 1460 1461
    intptr_t delta = short_branch_delta();
    if (delta != 0) {
      dist += (dist < 0 ? (-delta) :delta);
    }
    assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
1462
    intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1463
    // 0111 tttn #8-bit disp
1464 1465
    emit_int8(0x70 | cc);
    emit_int8((offs - short_size) & 0xFF);
1466 1467 1468
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1469 1470
    emit_int8(0x70 | cc);
    emit_int8(0);
1471
  }
D
duke 已提交
1472 1473
}

1474
void Assembler::jmp(Address adr) {
D
duke 已提交
1475
  InstructionMark im(this);
1476
  prefix(adr);
1477
  emit_int8((unsigned char)0xFF);
1478
  emit_operand(rsp, adr);
D
duke 已提交
1479 1480
}

1481
void Assembler::jmp(Label& L, bool maybe_short) {
1482 1483 1484 1485 1486 1487
  if (L.is_bound()) {
    address entry = target(L);
    assert(entry != NULL, "jmp most probably wrong");
    InstructionMark im(this);
    const int short_size = 2;
    const int long_size = 5;
1488
    intptr_t offs = entry - pc();
1489
    if (maybe_short && is8bit(offs - short_size)) {
1490 1491
      emit_int8((unsigned char)0xEB);
      emit_int8((offs - short_size) & 0xFF);
1492
    } else {
1493
      emit_int8((unsigned char)0xE9);
1494
      emit_int32(offs - long_size);
1495 1496 1497 1498 1499 1500 1501 1502
    }
  } else {
    // By default, forward jumps are always 32-bit displacements, since
    // we can't yet know where the label will be bound.  If you're sure that
    // the forward jump will not run beyond 256 bytes, use jmpb to
    // force an 8-bit displacement.
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1503
    emit_int8((unsigned char)0xE9);
1504
    emit_int32(0);
1505
  }
D
duke 已提交
1506 1507
}

1508 1509
void Assembler::jmp(Register entry) {
  int encode = prefix_and_encode(entry->encoding());
1510 1511
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xE0 | encode));
D
duke 已提交
1512 1513
}

1514
void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
D
duke 已提交
1515
  InstructionMark im(this);
1516
  emit_int8((unsigned char)0xE9);
1517
  assert(dest != NULL, "must have a target");
1518
  intptr_t disp = dest - (pc() + sizeof(int32_t));
1519 1520
  assert(is_simm32(disp), "must be 32bit offset (jmp)");
  emit_data(disp, rspec.reloc(), call32_operand);
D
duke 已提交
1521 1522
}

1523 1524 1525 1526 1527
void Assembler::jmpb(Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
    assert(entry != NULL, "jmp most probably wrong");
1528
#ifdef ASSERT
1529
    intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1530 1531 1532 1533 1534 1535
    intptr_t delta = short_branch_delta();
    if (delta != 0) {
      dist += (dist < 0 ? (-delta) :delta);
    }
    assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
1536
    intptr_t offs = entry - pc();
1537 1538
    emit_int8((unsigned char)0xEB);
    emit_int8((offs - short_size) & 0xFF);
1539 1540 1541
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
1542 1543
    emit_int8((unsigned char)0xEB);
    emit_int8(0);
1544
  }
D
duke 已提交
1545 1546
}

1547 1548
void Assembler::ldmxcsr( Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1549
  InstructionMark im(this);
1550
  prefix(src);
1551 1552
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
1553
  emit_operand(as_Register(2), src);
D
duke 已提交
1554 1555
}

1556
void Assembler::leal(Register dst, Address src) {
D
duke 已提交
1557
  InstructionMark im(this);
1558
#ifdef _LP64
1559
  emit_int8(0x67); // addr32
1560 1561
  prefix(src, dst);
#endif // LP64
1562
  emit_int8((unsigned char)0x8D);
1563
  emit_operand(dst, src);
D
duke 已提交
1564 1565
}

1566
void Assembler::lfence() {
1567 1568 1569
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
  emit_int8((unsigned char)0xE8);
1570 1571
}

1572
void Assembler::lock() {
1573
  emit_int8((unsigned char)0xF0);
D
duke 已提交
1574 1575
}

1576 1577
void Assembler::lzcntl(Register dst, Register src) {
  assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1578
  emit_int8((unsigned char)0xF3);
1579
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1580 1581 1582
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
1583 1584
}

1585
// Emit mfence instruction
1586
void Assembler::mfence() {
1587
  NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1588 1589 1590
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
  emit_int8((unsigned char)0xF0);
D
duke 已提交
1591 1592
}

1593 1594
void Assembler::mov(Register dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
1595 1596
}

1597 1598
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1599
  emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
D
duke 已提交
1600 1601
}

1602 1603
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1604
  emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1605 1606
}

1607 1608 1609
void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1610 1611
  emit_int8(0x16);
  emit_int8((unsigned char)(0xC0 | encode));
1612 1613
}

1614 1615
void Assembler::movb(Register dst, Address src) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
D
duke 已提交
1616
  InstructionMark im(this);
1617
  prefix(src, dst, true);
1618
  emit_int8((unsigned char)0x8A);
D
duke 已提交
1619 1620 1621 1622
  emit_operand(dst, src);
}


1623
void Assembler::movb(Address dst, int imm8) {
D
duke 已提交
1624
  InstructionMark im(this);
1625
   prefix(dst);
1626
  emit_int8((unsigned char)0xC6);
1627
  emit_operand(rax, dst, 1);
1628
  emit_int8(imm8);
D
duke 已提交
1629 1630
}

1631 1632 1633

void Assembler::movb(Address dst, Register src) {
  assert(src->has_byte_register(), "must have byte register");
D
duke 已提交
1634
  InstructionMark im(this);
1635
  prefix(dst, src, true);
1636
  emit_int8((unsigned char)0x88);
D
duke 已提交
1637 1638 1639
  emit_operand(src, dst);
}

1640 1641
void Assembler::movdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
1642
  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1643 1644
  emit_int8(0x6E);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1645 1646
}

1647 1648 1649
void Assembler::movdl(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // swap src/dst to get correct prefix
K
kvn 已提交
1650
  int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1651 1652
  emit_int8(0x7E);
  emit_int8((unsigned char)(0xC0 | encode));
1653 1654
}

1655 1656 1657
void Assembler::movdl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
K
kvn 已提交
1658
  simd_prefix(dst, src, VEX_SIMD_66);
1659
  emit_int8(0x6E);
1660 1661 1662
  emit_operand(dst, src);
}

1663 1664 1665 1666
void Assembler::movdl(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  simd_prefix(dst, src, VEX_SIMD_66);
1667
  emit_int8(0x7E);
1668 1669 1670
  emit_operand(src, dst);
}

1671 1672
void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1673
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
D
duke 已提交
1674 1675
}

1676 1677
void Assembler::movdqu(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1678
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1679 1680 1681 1682
}

void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1683
  emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1684 1685 1686 1687 1688
}

void Assembler::movdqu(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
K
kvn 已提交
1689
  simd_prefix(dst, src, VEX_SIMD_F3);
1690
  emit_int8(0x7F);
1691 1692 1693
  emit_operand(src, dst);
}

1694 1695 1696 1697 1698
// Move Unaligned 256bit Vector
void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  assert(UseAVX, "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1699 1700
  emit_int8(0x6F);
  emit_int8((unsigned char)(0xC0 | encode));
1701 1702 1703 1704 1705 1706 1707
}

void Assembler::vmovdqu(XMMRegister dst, Address src) {
  assert(UseAVX, "");
  InstructionMark im(this);
  bool vector256 = true;
  vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1708
  emit_int8(0x6F);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
  emit_operand(dst, src);
}

void Assembler::vmovdqu(Address dst, XMMRegister src) {
  assert(UseAVX, "");
  InstructionMark im(this);
  bool vector256 = true;
  // swap src<->dst for encoding
  assert(src != xnoreg, "sanity");
  vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1719
  emit_int8(0x7F);
1720 1721 1722
  emit_operand(src, dst);
}

1723 1724 1725 1726
// Uses zero extension on 64bit

void Assembler::movl(Register dst, int32_t imm32) {
  int encode = prefix_and_encode(dst->encoding());
1727
  emit_int8((unsigned char)(0xB8 | encode));
1728
  emit_int32(imm32);
D
duke 已提交
1729 1730
}

1731 1732
void Assembler::movl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1733 1734
  emit_int8((unsigned char)0x8B);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1735 1736
}

1737
void Assembler::movl(Register dst, Address src) {
D
duke 已提交
1738
  InstructionMark im(this);
1739
  prefix(src, dst);
1740
  emit_int8((unsigned char)0x8B);
D
duke 已提交
1741 1742 1743
  emit_operand(dst, src);
}

1744 1745 1746
void Assembler::movl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
1747
  emit_int8((unsigned char)0xC7);
1748
  emit_operand(rax, dst, 4);
1749
  emit_int32(imm32);
D
duke 已提交
1750 1751
}

1752 1753 1754
void Assembler::movl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
1755
  emit_int8((unsigned char)0x89);
1756
  emit_operand(src, dst);
D
duke 已提交
1757 1758
}

1759 1760 1761 1762 1763
// New cpus require to use movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void Assembler::movlpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1764
  emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
D
duke 已提交
1765 1766
}

1767 1768
void Assembler::movq( MMXRegister dst, Address src ) {
  assert( VM_Version::supports_mmx(), "" );
1769 1770
  emit_int8(0x0F);
  emit_int8(0x6F);
1771
  emit_operand(dst, src);
D
duke 已提交
1772 1773
}

1774 1775
void Assembler::movq( Address dst, MMXRegister src ) {
  assert( VM_Version::supports_mmx(), "" );
1776 1777
  emit_int8(0x0F);
  emit_int8(0x7F);
1778 1779 1780 1781 1782 1783 1784
  // workaround gcc (3.2.1-7a) bug
  // In that version of gcc with only an emit_operand(MMX, Address)
  // gcc will tail jump and try and reverse the parameters completely
  // obliterating dst in the process. By having a version available
  // that doesn't need to swap the args at the tail jump the bug is
  // avoided.
  emit_operand(dst, src);
D
duke 已提交
1785 1786
}

1787 1788
void Assembler::movq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1789
  InstructionMark im(this);
K
kvn 已提交
1790
  simd_prefix(dst, src, VEX_SIMD_F3);
1791
  emit_int8(0x7E);
D
duke 已提交
1792 1793 1794
  emit_operand(dst, src);
}

1795 1796
void Assembler::movq(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1797
  InstructionMark im(this);
K
kvn 已提交
1798
  simd_prefix(dst, src, VEX_SIMD_66);
1799
  emit_int8((unsigned char)0xD6);
1800
  emit_operand(src, dst);
D
duke 已提交
1801 1802
}

1803
void Assembler::movsbl(Register dst, Address src) { // movsxb
D
duke 已提交
1804
  InstructionMark im(this);
1805
  prefix(src, dst);
1806 1807
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
1808
  emit_operand(dst, src);
D
duke 已提交
1809 1810
}

1811 1812 1813
void Assembler::movsbl(Register dst, Register src) { // movsxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1814 1815 1816
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1817 1818
}

1819 1820
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1821
  emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
D
duke 已提交
1822 1823
}

1824 1825
void Assembler::movsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1826
  emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
D
duke 已提交
1827 1828
}

1829 1830
void Assembler::movsd(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1831
  InstructionMark im(this);
K
kvn 已提交
1832
  simd_prefix(dst, src, VEX_SIMD_F2);
1833
  emit_int8(0x11);
1834
  emit_operand(src, dst);
D
duke 已提交
1835 1836
}

1837 1838
void Assembler::movss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1839
  emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
D
duke 已提交
1840 1841
}

1842 1843
void Assembler::movss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1844
  emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
D
duke 已提交
1845 1846
}

1847 1848 1849
void Assembler::movss(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
K
kvn 已提交
1850
  simd_prefix(dst, src, VEX_SIMD_F3);
1851
  emit_int8(0x11);
1852
  emit_operand(src, dst);
D
duke 已提交
1853 1854
}

1855
void Assembler::movswl(Register dst, Address src) { // movsxw
D
duke 已提交
1856
  InstructionMark im(this);
1857
  prefix(src, dst);
1858 1859
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
D
duke 已提交
1860 1861 1862
  emit_operand(dst, src);
}

1863
void Assembler::movswl(Register dst, Register src) { // movsxw
D
duke 已提交
1864
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1865 1866 1867
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
1868 1869
}

1870 1871
void Assembler::movw(Address dst, int imm16) {
  InstructionMark im(this);
D
duke 已提交
1872

1873
  emit_int8(0x66); // switch to 16-bit mode
1874
  prefix(dst);
1875
  emit_int8((unsigned char)0xC7);
1876
  emit_operand(rax, dst, 2);
1877
  emit_int16(imm16);
D
duke 已提交
1878 1879
}

1880
void Assembler::movw(Register dst, Address src) {
D
duke 已提交
1881
  InstructionMark im(this);
1882
  emit_int8(0x66);
1883
  prefix(src, dst);
1884
  emit_int8((unsigned char)0x8B);
1885
  emit_operand(dst, src);
D
duke 已提交
1886 1887
}

1888 1889
void Assembler::movw(Address dst, Register src) {
  InstructionMark im(this);
1890
  emit_int8(0x66);
1891
  prefix(dst, src);
1892
  emit_int8((unsigned char)0x89);
1893
  emit_operand(src, dst);
D
duke 已提交
1894 1895
}

1896
void Assembler::movzbl(Register dst, Address src) { // movzxb
D
duke 已提交
1897
  InstructionMark im(this);
1898
  prefix(src, dst);
1899 1900
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
1901
  emit_operand(dst, src);
D
duke 已提交
1902 1903
}

1904 1905 1906
void Assembler::movzbl(Register dst, Register src) { // movzxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1907 1908 1909
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
  emit_int8(0xC0 | encode);
D
duke 已提交
1910 1911
}

1912 1913 1914
void Assembler::movzwl(Register dst, Address src) { // movzxw
  InstructionMark im(this);
  prefix(src, dst);
1915 1916
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB7);
1917
  emit_operand(dst, src);
D
duke 已提交
1918 1919
}

1920
void Assembler::movzwl(Register dst, Register src) { // movzxw
D
duke 已提交
1921
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1922 1923 1924
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB7);
  emit_int8(0xC0 | encode);
D
duke 已提交
1925 1926 1927 1928 1929
}

void Assembler::mull(Address src) {
  InstructionMark im(this);
  prefix(src);
1930
  emit_int8((unsigned char)0xF7);
D
duke 已提交
1931 1932 1933 1934 1935
  emit_operand(rsp, src);
}

void Assembler::mull(Register src) {
  int encode = prefix_and_encode(src->encoding());
1936 1937
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xE0 | encode));
D
duke 已提交
1938 1939
}

1940 1941
void Assembler::mulsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1942
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
D
duke 已提交
1943 1944
}

1945 1946
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1947
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
D
duke 已提交
1948 1949
}

1950 1951
void Assembler::mulss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1952
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
D
duke 已提交
1953 1954
}

1955 1956
void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
1957
  emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
D
duke 已提交
1958 1959
}

1960
void Assembler::negl(Register dst) {
D
duke 已提交
1961
  int encode = prefix_and_encode(dst->encoding());
1962 1963
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD8 | encode));
D
duke 已提交
1964 1965
}

1966 1967 1968 1969 1970 1971 1972
void Assembler::nop(int i) {
#ifdef ASSERT
  assert(i > 0, " ");
  // The fancy nops aren't currently recognized by debuggers making it a
  // pain to disassemble code while debugging. If asserts are on clearly
  // speed is not an issue so simply use the single byte traditional nop
  // to do alignment.
D
duke 已提交
1973

1974
  for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
1975
  return;
D
duke 已提交
1976

1977
#endif // ASSERT
D
duke 已提交
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
  if (UseAddressNop && VM_Version::is_intel()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
D
duke 已提交
1993

1994
    // The rest coding is Intel specific - don't use consecutive address nops
D
duke 已提交
1995

1996 1997 1998 1999
    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
D
duke 已提交
2000

2001 2002 2003
    while(i >= 15) {
      // For Intel don't generate consecutive addess nops (mix with regular nops)
      i -= 15;
2004 2005 2006
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
2007
      addr_nop_8();
2008 2009 2010 2011 2012
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8(0x66);   // size prefix
      emit_int8((unsigned char)0x90);
                         // nop
2013 2014 2015
    }
    switch (i) {
      case 14:
2016
        emit_int8(0x66); // size prefix
2017
      case 13:
2018
        emit_int8(0x66); // size prefix
2019 2020
      case 12:
        addr_nop_8();
2021 2022 2023 2024 2025
        emit_int8(0x66); // size prefix
        emit_int8(0x66); // size prefix
        emit_int8(0x66); // size prefix
        emit_int8((unsigned char)0x90);
                         // nop
2026 2027
        break;
      case 11:
2028
        emit_int8(0x66); // size prefix
2029
      case 10:
2030
        emit_int8(0x66); // size prefix
2031
      case 9:
2032
        emit_int8(0x66); // size prefix
2033 2034 2035 2036 2037 2038 2039
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
2040
        emit_int8(0x66); // size prefix
2041 2042 2043 2044 2045 2046 2047 2048
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2049
        emit_int8(0x66); // size prefix
2050
      case 2:
2051
        emit_int8(0x66); // size prefix
2052
      case 1:
2053 2054
        emit_int8((unsigned char)0x90);
                         // nop
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }
  if (UseAddressNop && VM_Version::is_amd()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00

    // The rest coding is AMD specific - use consecutive address nops

    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //     Size prefixes (0x66) are added for larger sizes

    while(i >= 22) {
      i -= 11;
2087 2088 2089
      emit_int8(0x66); // size prefix
      emit_int8(0x66); // size prefix
      emit_int8(0x66); // size prefix
2090 2091 2092 2093 2094 2095
      addr_nop_8();
    }
    // Generate first nop for size between 21-12
    switch (i) {
      case 21:
        i -= 1;
2096
        emit_int8(0x66); // size prefix
2097 2098 2099
      case 20:
      case 19:
        i -= 1;
2100
        emit_int8(0x66); // size prefix
2101 2102 2103
      case 18:
      case 17:
        i -= 1;
2104
        emit_int8(0x66); // size prefix
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
      case 16:
      case 15:
        i -= 8;
        addr_nop_8();
        break;
      case 14:
      case 13:
        i -= 7;
        addr_nop_7();
        break;
      case 12:
        i -= 6;
2117
        emit_int8(0x66); // size prefix
2118 2119 2120 2121 2122 2123 2124 2125 2126
        addr_nop_5();
        break;
      default:
        assert(i < 12, " ");
    }

    // Generate second nop for size between 11-1
    switch (i) {
      case 11:
2127
        emit_int8(0x66); // size prefix
2128
      case 10:
2129
        emit_int8(0x66); // size prefix
2130
      case 9:
2131
        emit_int8(0x66); // size prefix
2132 2133 2134 2135 2136 2137 2138
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
2139
        emit_int8(0x66); // size prefix
2140 2141 2142 2143 2144 2145 2146 2147
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2148
        emit_int8(0x66); // size prefix
2149
      case 2:
2150
        emit_int8(0x66); // size prefix
2151
      case 1:
2152 2153
        emit_int8((unsigned char)0x90);
                         // nop
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }

  // Using nops with size prefixes "0x66 0x90".
  // From AMD Optimization Guide:
  //  1: 0x90
  //  2: 0x66 0x90
  //  3: 0x66 0x66 0x90
  //  4: 0x66 0x66 0x66 0x90
  //  5: 0x66 0x66 0x90 0x66 0x90
  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  //
  while(i > 12) {
    i -= 4;
2176 2177 2178 2179 2180
    emit_int8(0x66); // size prefix
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
                     // nop
2181 2182 2183 2184 2185
  }
  // 1 - 12 nops
  if(i > 8) {
    if(i > 9) {
      i -= 1;
2186
      emit_int8(0x66);
2187 2188
    }
    i -= 3;
2189 2190 2191
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
2192 2193 2194 2195 2196
  }
  // 1 - 8 nops
  if(i > 4) {
    if(i > 6) {
      i -= 1;
2197
      emit_int8(0x66);
2198 2199
    }
    i -= 3;
2200 2201 2202
    emit_int8(0x66);
    emit_int8(0x66);
    emit_int8((unsigned char)0x90);
2203 2204 2205
  }
  switch (i) {
    case 4:
2206
      emit_int8(0x66);
2207
    case 3:
2208
      emit_int8(0x66);
2209
    case 2:
2210
      emit_int8(0x66);
2211
    case 1:
2212
      emit_int8((unsigned char)0x90);
2213 2214 2215 2216
      break;
    default:
      assert(i == 0, " ");
  }
D
duke 已提交
2217 2218
}

2219 2220
void Assembler::notl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2221 2222
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD0 | encode));
D
duke 已提交
2223 2224
}

2225
void Assembler::orl(Address dst, int32_t imm32) {
D
duke 已提交
2226
  InstructionMark im(this);
2227
  prefix(dst);
2228
  emit_arith_operand(0x81, rcx, dst, imm32);
D
duke 已提交
2229 2230
}

2231 2232 2233
void Assembler::orl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC8, dst, imm32);
D
duke 已提交
2234 2235
}

2236
void Assembler::orl(Register dst, Address src) {
D
duke 已提交
2237
  InstructionMark im(this);
2238
  prefix(src, dst);
2239
  emit_int8(0x0B);
D
duke 已提交
2240 2241 2242
  emit_operand(dst, src);
}

2243 2244 2245
void Assembler::orl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
D
duke 已提交
2246 2247
}

K
kvn 已提交
2248 2249 2250
void Assembler::packuswb(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2251
  emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
K
kvn 已提交
2252 2253 2254 2255
}

void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2256
  emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
K
kvn 已提交
2257
}
C
cfang 已提交
2258

2259 2260 2261 2262 2263 2264
void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2265 2266 2267 2268 2269
  assert(VM_Version::supports_avx2(), "");
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
  emit_int8(0x00);
  emit_int8(0xC0 | encode);
  emit_int8(imm8);
2270 2271
}

C
cfang 已提交
2272 2273 2274
void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  assert(VM_Version::supports_sse4_2(), "");
  InstructionMark im(this);
K
kvn 已提交
2275
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2276
  emit_int8(0x61);
C
cfang 已提交
2277
  emit_operand(dst, src);
2278
  emit_int8(imm8);
C
cfang 已提交
2279 2280 2281 2282
}

void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  assert(VM_Version::supports_sse4_2(), "");
2283
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2284 2285 2286
  emit_int8(0x61);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(imm8);
C
cfang 已提交
2287 2288
}

K
kvn 已提交
2289 2290 2291 2292
void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  assert(VM_Version::supports_sse4_1(), "");
  InstructionMark im(this);
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2293
  emit_int8(0x30);
K
kvn 已提交
2294 2295 2296 2297 2298
  emit_operand(dst, src);
}

void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
2299
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2300 2301
  emit_int8(0x30);
  emit_int8((unsigned char)(0xC0 | encode));
K
kvn 已提交
2302 2303
}

2304 2305
// generic
void Assembler::pop(Register dst) {
D
duke 已提交
2306
  int encode = prefix_and_encode(dst->encoding());
2307
  emit_int8(0x58 | encode);
D
duke 已提交
2308 2309
}

2310 2311 2312
void Assembler::popcntl(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
2313
  emit_int8((unsigned char)0xF3);
2314
  prefix(src, dst);
2315 2316
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB8);
2317 2318 2319 2320 2321
  emit_operand(dst, src);
}

void Assembler::popcntl(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
2322
  emit_int8((unsigned char)0xF3);
2323
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
2324 2325 2326
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB8);
  emit_int8((unsigned char)(0xC0 | encode));
2327 2328
}

2329
void Assembler::popf() {
2330
  emit_int8((unsigned char)0x9D);
D
duke 已提交
2331 2332
}

R
roland 已提交
2333
#ifndef _LP64 // no 32bit push/pop on amd64
2334 2335 2336 2337
void Assembler::popl(Address dst) {
  // NOTE: this will adjust stack by 8byte on 64bits
  InstructionMark im(this);
  prefix(dst);
2338
  emit_int8((unsigned char)0x8F);
2339
  emit_operand(rax, dst);
D
duke 已提交
2340
}
R
roland 已提交
2341
#endif
D
duke 已提交
2342

2343 2344
void Assembler::prefetch_prefix(Address src) {
  prefix(src);
2345
  emit_int8(0x0F);
D
duke 已提交
2346 2347
}

2348
void Assembler::prefetchnta(Address src) {
2349
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2350 2351
  InstructionMark im(this);
  prefetch_prefix(src);
2352
  emit_int8(0x18);
2353
  emit_operand(rax, src); // 0, src
D
duke 已提交
2354 2355
}

2356
void Assembler::prefetchr(Address src) {
2357
  assert(VM_Version::supports_3dnow_prefetch(), "must support");
2358 2359
  InstructionMark im(this);
  prefetch_prefix(src);
2360
  emit_int8(0x0D);
2361
  emit_operand(rax, src); // 0, src
D
duke 已提交
2362 2363
}

2364 2365 2366 2367
void Assembler::prefetcht0(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
2368
  emit_int8(0x18);
2369
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2370 2371
}

2372 2373
void Assembler::prefetcht1(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
D
duke 已提交
2374
  InstructionMark im(this);
2375
  prefetch_prefix(src);
2376
  emit_int8(0x18);
2377
  emit_operand(rdx, src); // 2, src
D
duke 已提交
2378 2379
}

2380 2381 2382 2383
void Assembler::prefetcht2(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
2384
  emit_int8(0x18);
2385
  emit_operand(rbx, src); // 3, src
D
duke 已提交
2386 2387
}

2388
void Assembler::prefetchw(Address src) {
2389
  assert(VM_Version::supports_3dnow_prefetch(), "must support");
D
duke 已提交
2390
  InstructionMark im(this);
2391
  prefetch_prefix(src);
2392
  emit_int8(0x0D);
2393
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2394 2395
}

2396
void Assembler::prefix(Prefix p) {
2397
  emit_int8(p);
D
duke 已提交
2398 2399
}

2400 2401 2402
void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_ssse3(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2403 2404
  emit_int8(0x00);
  emit_int8((unsigned char)(0xC0 | encode));
2405 2406 2407 2408 2409 2410
}

void Assembler::pshufb(XMMRegister dst, Address src) {
  assert(VM_Version::supports_ssse3(), "");
  InstructionMark im(this);
  simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2411
  emit_int8(0x00);
2412 2413 2414
  emit_operand(dst, src);
}

2415 2416 2417
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2418
  emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2419
  emit_int8(mode & 0xFF);
2420

D
duke 已提交
2421 2422
}

2423 2424 2425
void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2426
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
D
duke 已提交
2427
  InstructionMark im(this);
K
kvn 已提交
2428
  simd_prefix(dst, src, VEX_SIMD_66);
2429
  emit_int8(0x70);
2430
  emit_operand(dst, src);
2431
  emit_int8(mode & 0xFF);
D
duke 已提交
2432 2433
}

2434 2435 2436
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2437
  emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2438
  emit_int8(mode & 0xFF);
D
duke 已提交
2439 2440
}

2441 2442 2443
void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2444
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
D
duke 已提交
2445
  InstructionMark im(this);
K
kvn 已提交
2446
  simd_prefix(dst, src, VEX_SIMD_F2);
2447
  emit_int8(0x70);
D
duke 已提交
2448
  emit_operand(dst, src);
2449
  emit_int8(mode & 0xFF);
D
duke 已提交
2450 2451
}

2452 2453 2454
void Assembler::psrldq(XMMRegister dst, int shift) {
  // Shift 128 bit value in xmm register by number of bytes.
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
2455
  int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2456 2457 2458
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift);
2459 2460
}

C
cfang 已提交
2461 2462
void Assembler::ptest(XMMRegister dst, Address src) {
  assert(VM_Version::supports_sse4_1(), "");
K
kvn 已提交
2463
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
C
cfang 已提交
2464
  InstructionMark im(this);
K
kvn 已提交
2465
  simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2466
  emit_int8(0x17);
C
cfang 已提交
2467 2468 2469 2470 2471
  emit_operand(dst, src);
}

void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
2472
  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2473 2474
  emit_int8(0x17);
  emit_int8((unsigned char)(0xC0 | encode));
C
cfang 已提交
2475 2476
}

2477 2478 2479 2480 2481 2482 2483
void Assembler::vptest(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
2484
  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
  emit_int8(0x17);
  emit_operand(dst, src);
}

void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  emit_int8(0x17);
  emit_int8((unsigned char)(0xC0 | encode));
}

K
kvn 已提交
2497 2498 2499
void Assembler::punpcklbw(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2500
  emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
K
kvn 已提交
2501 2502
}

2503 2504
void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2505
  emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
D
duke 已提交
2506 2507
}

K
kvn 已提交
2508 2509 2510
void Assembler::punpckldq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2511
  emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
K
kvn 已提交
2512 2513 2514 2515
}

void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2516
  emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
K
kvn 已提交
2517 2518
}

K
kvn 已提交
2519 2520
void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2521
  emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
K
kvn 已提交
2522 2523
}

2524 2525 2526
void Assembler::push(int32_t imm32) {
  // in 64bits we push 64bits onto the stack but only
  // take a 32bit immediate
2527
  emit_int8(0x68);
2528
  emit_int32(imm32);
D
duke 已提交
2529 2530
}

2531 2532 2533
void Assembler::push(Register src) {
  int encode = prefix_and_encode(src->encoding());

2534
  emit_int8(0x50 | encode);
D
duke 已提交
2535 2536
}

2537
void Assembler::pushf() {
2538
  emit_int8((unsigned char)0x9C);
D
duke 已提交
2539 2540
}

R
roland 已提交
2541
#ifndef _LP64 // no 32bit push/pop on amd64
2542 2543 2544 2545
void Assembler::pushl(Address src) {
  // Note this will push 64bit on 64bit
  InstructionMark im(this);
  prefix(src);
2546
  emit_int8((unsigned char)0xFF);
2547
  emit_operand(rsi, src);
D
duke 已提交
2548
}
R
roland 已提交
2549
#endif
D
duke 已提交
2550

2551 2552 2553 2554
void Assembler::rcll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1) {
2555 2556
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xD0 | encode));
2557
  } else {
2558 2559 2560
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)0xD0 | encode);
    emit_int8(imm8);
2561
  }
D
duke 已提交
2562 2563
}

2564 2565 2566
// copies data from [esi] to [edi] using rcx pointer sized words
// generic
void Assembler::rep_mov() {
2567
  emit_int8((unsigned char)0xF3);
2568 2569
  // MOVSQ
  LP64_ONLY(prefix(REX_W));
2570
  emit_int8((unsigned char)0xA5);
D
duke 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579
// sets rcx bytes with rax, value at [edi]
void Assembler::rep_stosb() {
  emit_int8((unsigned char)0xF3); // REP
  LP64_ONLY(prefix(REX_W));
  emit_int8((unsigned char)0xAA); // STOSB
}

2580 2581
// sets rcx pointer sized words with rax, value at [edi]
// generic
2582 2583 2584
void Assembler::rep_stos() {
  emit_int8((unsigned char)0xF3); // REP
  LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2585
  emit_int8((unsigned char)0xAB);
2586 2587 2588 2589 2590
}

// scans rcx pointer sized words at [edi] for occurance of rax,
// generic
void Assembler::repne_scan() { // repne_scan
2591
  emit_int8((unsigned char)0xF2);
2592 2593
  // SCASQ
  LP64_ONLY(prefix(REX_W));
2594
  emit_int8((unsigned char)0xAF);
2595 2596 2597 2598 2599 2600
}

#ifdef _LP64
// scans rcx 4 byte words at [edi] for occurance of rax,
// generic
void Assembler::repne_scanl() { // repne_scan
2601
  emit_int8((unsigned char)0xF2);
2602
  // SCASL
2603
  emit_int8((unsigned char)0xAF);
2604 2605 2606 2607 2608
}
#endif

void Assembler::ret(int imm16) {
  if (imm16 == 0) {
2609
    emit_int8((unsigned char)0xC3);
2610
  } else {
2611
    emit_int8((unsigned char)0xC2);
2612
    emit_int16(imm16);
2613 2614 2615 2616 2617 2618 2619 2620
  }
}

void Assembler::sahf() {
#ifdef _LP64
  // Not supported in 64bit mode
  ShouldNotReachHere();
#endif
2621
  emit_int8((unsigned char)0x9E);
2622 2623 2624 2625 2626 2627
}

void Assembler::sarl(Register dst, int imm8) {
  int encode = prefix_and_encode(dst->encoding());
  assert(isShiftCount(imm8), "illegal shift count");
  if (imm8 == 1) {
2628 2629
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xF8 | encode));
2630
  } else {
2631 2632 2633
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xF8 | encode));
    emit_int8(imm8);
2634 2635 2636 2637 2638
  }
}

void Assembler::sarl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2639 2640
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xF8 | encode));
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
}

void Assembler::sbbl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}

void Assembler::sbbl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD8, dst, imm32);
}


void Assembler::sbbl(Register dst, Address src) {
D
duke 已提交
2656 2657
  InstructionMark im(this);
  prefix(src, dst);
2658
  emit_int8(0x1B);
D
duke 已提交
2659 2660 2661
  emit_operand(dst, src);
}

2662 2663 2664
void Assembler::sbbl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
D
duke 已提交
2665 2666
}

2667 2668 2669
void Assembler::setb(Condition cc, Register dst) {
  assert(0 <= cc && cc < 16, "illegal cc");
  int encode = prefix_and_encode(dst->encoding(), true);
2670 2671 2672
  emit_int8(0x0F);
  emit_int8((unsigned char)0x90 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
2673 2674
}

2675 2676 2677 2678
void Assembler::shll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1 ) {
2679 2680
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xE0 | encode));
2681
  } else {
2682 2683 2684
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xE0 | encode));
    emit_int8(imm8);
2685
  }
D
duke 已提交
2686 2687
}

2688 2689
void Assembler::shll(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2690 2691
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE0 | encode));
2692 2693 2694 2695 2696
}

void Assembler::shrl(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
2697 2698 2699
  emit_int8((unsigned char)0xC1);
  emit_int8((unsigned char)(0xE8 | encode));
  emit_int8(imm8);
2700 2701 2702 2703
}

void Assembler::shrl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
2704 2705
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE8 | encode));
2706 2707 2708 2709
}

// copies a single word from [esi] to [edi]
void Assembler::smovl() {
2710
  emit_int8((unsigned char)0xA5);
2711 2712 2713 2714
}

void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2715
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
D
duke 已提交
2716 2717
}

2718 2719
void Assembler::sqrtsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2720
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2721 2722 2723
}

void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
K
kvn 已提交
2724
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2725
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2726 2727
}

2728
void Assembler::std() {
2729
  emit_int8((unsigned char)0xFD);
2730 2731
}

2732
void Assembler::sqrtss(XMMRegister dst, Address src) {
K
kvn 已提交
2733
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2734
  emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2735 2736
}

2737 2738 2739 2740
void Assembler::stmxcsr( Address dst) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  prefix(dst);
2741 2742
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
2743
  emit_operand(as_Register(3), dst);
D
duke 已提交
2744 2745
}

2746 2747 2748
void Assembler::subl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
2749
  emit_arith_operand(0x81, rbp, dst, imm32);
2750 2751 2752 2753 2754
}

void Assembler::subl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
2755
  emit_int8(0x29);
2756 2757 2758
  emit_operand(src, dst);
}

2759 2760 2761 2762 2763
void Assembler::subl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xE8, dst, imm32);
}

2764 2765 2766 2767 2768 2769
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::subl_imm32(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith_imm32(0x81, 0xE8, dst, imm32);
}

2770
void Assembler::subl(Register dst, Address src) {
D
duke 已提交
2771 2772
  InstructionMark im(this);
  prefix(src, dst);
2773
  emit_int8(0x2B);
D
duke 已提交
2774 2775 2776
  emit_operand(dst, src);
}

2777 2778 2779 2780 2781 2782 2783
void Assembler::subl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2784
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
D
duke 已提交
2785 2786
}

2787 2788
void Assembler::subsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2789
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
D
duke 已提交
2790 2791
}

2792 2793
void Assembler::subss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2794
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
D
duke 已提交
2795 2796
}

2797 2798
void Assembler::subss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2799
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
D
duke 已提交
2800 2801
}

2802 2803 2804 2805
void Assembler::testb(Register dst, int imm8) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  (void) prefix_and_encode(dst->encoding(), true);
  emit_arith_b(0xF6, 0xC0, dst, imm8);
D
duke 已提交
2806 2807
}

2808 2809 2810 2811 2812 2813
void Assembler::testl(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
2814
    emit_int8((unsigned char)0xA9);
2815 2816
  } else {
    encode = prefix_and_encode(encode);
2817 2818
    emit_int8((unsigned char)0xF7);
    emit_int8((unsigned char)(0xC0 | encode));
2819
  }
2820
  emit_int32(imm32);
D
duke 已提交
2821 2822
}

2823 2824 2825 2826
void Assembler::testl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
}
D
duke 已提交
2827

2828 2829 2830
void Assembler::testl(Register dst, Address  src) {
  InstructionMark im(this);
  prefix(src, dst);
2831
  emit_int8((unsigned char)0x85);
2832
  emit_operand(dst, src);
D
duke 已提交
2833 2834
}

2835 2836
void Assembler::ucomisd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2837
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
D
duke 已提交
2838 2839
}

2840 2841
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2842
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
D
duke 已提交
2843 2844
}

2845 2846
void Assembler::ucomiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2847
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2848 2849 2850 2851
}

void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
2852
  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2853 2854 2855 2856 2857 2858
}


void Assembler::xaddl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
2859 2860
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC1);
2861 2862 2863 2864 2865 2866
  emit_operand(src, dst);
}

void Assembler::xchgl(Register dst, Address src) { // xchg
  InstructionMark im(this);
  prefix(src, dst);
2867
  emit_int8((unsigned char)0x87);
2868 2869 2870 2871 2872
  emit_operand(dst, src);
}

void Assembler::xchgl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
2873 2874
  emit_int8((unsigned char)0x87);
  emit_int8((unsigned char)(0xC0 | encode));
2875 2876
}

2877
void Assembler::xgetbv() {
2878 2879 2880
  emit_int8(0x0F);
  emit_int8(0x01);
  emit_int8((unsigned char)0xD0);
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890
void Assembler::xorl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF0, dst, imm32);
}

void Assembler::xorl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
2891
  emit_int8(0x33);
2892 2893 2894 2895 2896 2897 2898 2899 2900
  emit_operand(dst, src);
}

void Assembler::xorl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
}


2901
// AVX 3-operands scalar float-point arithmetic instructions
2902 2903 2904

void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2905
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2906 2907 2908 2909
}

void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2910
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2911 2912 2913 2914
}

void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2915
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2916 2917 2918 2919
}

void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2920
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2921 2922 2923 2924
}

void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2925
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2926 2927 2928 2929
}

void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2930
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2931 2932 2933 2934
}

void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2935
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2936 2937 2938 2939
}

void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2940
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2941 2942 2943 2944
}

void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2945
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2946 2947 2948 2949
}

void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2950
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2951 2952 2953
}

void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
2954 2955
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2956 2957 2958 2959
}

void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2960
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2961 2962 2963 2964
}

void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2965
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2966 2967 2968 2969
}

void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2970
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2971 2972 2973 2974
}

void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  assert(VM_Version::supports_avx(), "");
2975
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2976 2977 2978 2979
}

void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
2980
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2981 2982
}

2983 2984 2985 2986 2987 2988 2989
//====================VECTOR ARITHMETIC=====================================

// Float-point vector arithmetic

void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
2990 2991
}

2992 2993 2994
void Assembler::addps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
2995 2996
}

2997
void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2998
  assert(VM_Version::supports_avx(), "");
2999
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3000 3001
}

3002
void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3003
  assert(VM_Version::supports_avx(), "");
3004
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3005 3006
}

3007 3008 3009
void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
K
kvn 已提交
3010 3011
}

3012
void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3013
  assert(VM_Version::supports_avx(), "");
3014
  emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3015 3016
}

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
}

void Assembler::subps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
}

void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
}

void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
}

void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
}

void Assembler::divps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
}

void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
}

void Assembler::andps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
}

void Assembler::andps(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
}

void Assembler::andpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
}

void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
}

void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
}

void Assembler::xorpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
}

void Assembler::xorps(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
}

void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
}

void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx(), "");
  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
}


// Integer vector arithmetic
void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
}

void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
}

void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
}

void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
}

void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
}

void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
}

void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
}

void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
}

void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
}

void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");
  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3317 3318
  emit_int8(0x40);
  emit_int8((unsigned char)(0xC0 | encode));
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
}

void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3329 3330
  emit_int8(0x40);
  emit_int8((unsigned char)(0xC0 | encode));
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
}

void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  InstructionMark im(this);
  int dst_enc = dst->encoding();
  int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3344
  emit_int8(0x40);
3345 3346 3347 3348 3349 3350 3351 3352
  emit_operand(dst, src);
}

// Shift packed integers left by specified number of bits.
void Assembler::psllw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3353 3354 3355
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3356 3357 3358 3359 3360 3361
}

void Assembler::pslld(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3362 3363 3364
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3365 3366 3367 3368 3369 3370
}

void Assembler::psllq(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3371 3372 3373
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
}

void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
}

void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
}

void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3395
  emit_int8(shift & 0xFF);
3396 3397 3398 3399 3400 3401
}

void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3402
  emit_int8(shift & 0xFF);
3403 3404 3405 3406 3407 3408
}

void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3409
  emit_int8(shift & 0xFF);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
}

void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
}

// Shift packed integers logically right by specified number of bits.
void Assembler::psrlw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3432 3433 3434
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3435 3436 3437 3438 3439 3440
}

void Assembler::psrld(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3441 3442 3443
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3444 3445 3446 3447 3448 3449 3450 3451
}

void Assembler::psrlq(XMMRegister dst, int shift) {
  // Do not confuse it with psrldq SSE2 instruction which
  // shifts 128 bit value in xmm register by number of bytes.
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3452 3453 3454
  emit_int8(0x73);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
}

void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
}

void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
}

void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3476
  emit_int8(shift & 0xFF);
3477 3478 3479 3480 3481 3482
}

void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3483
  emit_int8(shift & 0xFF);
3484 3485 3486 3487 3488 3489
}

void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3490
  emit_int8(shift & 0xFF);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
}

void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
}

// Shift packed integers arithmetically right by specified number of bits.
void Assembler::psraw(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3513 3514 3515
  emit_int8(0x71);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3516 3517 3518 3519 3520 3521
}

void Assembler::psrad(XMMRegister dst, int shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3522 3523 3524
  emit_int8(0x72);
  emit_int8((unsigned char)(0xC0 | encode));
  emit_int8(shift & 0xFF);
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
}

void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
}

void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
}

void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3541
  emit_int8(shift & 0xFF);
3542 3543 3544 3545 3546 3547
}

void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3548
  emit_int8(shift & 0xFF);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
}

void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
}

void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
}


// AND packed integers
void Assembler::pand(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
}

void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::por(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
}

void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
}

void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
}

void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
}


void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3613 3614
  emit_int8(0x18);
  emit_int8((unsigned char)(0xC0 | encode));
3615 3616
  // 0x00 - insert into lower 128 bits
  // 0x01 - insert into upper 128 bits
3617
  emit_int8(0x01);
3618 3619
}

3620 3621 3622 3623 3624 3625 3626 3627
void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3628
  emit_int8(0x18);
3629 3630
  emit_operand(dst, src);
  // 0x01 - insert into upper 128 bits
3631
  emit_int8(0x01);
3632 3633 3634 3635 3636 3637 3638 3639 3640
}

void Assembler::vextractf128h(Address dst, XMMRegister src) {
  assert(VM_Version::supports_avx(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(src != xnoreg, "sanity");
  int src_enc = src->encoding();
  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3641
  emit_int8(0x19);
3642 3643
  emit_operand(src, dst);
  // 0x01 - extract from upper 128 bits
3644
  emit_int8(0x01);
3645 3646
}

3647 3648 3649
void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  bool vector256 = true;
K
kvn 已提交
3650
  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3651 3652
  emit_int8(0x38);
  emit_int8((unsigned char)(0xC0 | encode));
K
kvn 已提交
3653 3654
  // 0x00 - insert into lower 128 bits
  // 0x01 - insert into upper 128 bits
3655
  emit_int8(0x01);
K
kvn 已提交
3656 3657
}

3658 3659 3660 3661 3662 3663 3664 3665
void Assembler::vinserti128h(XMMRegister dst, Address src) {
  assert(VM_Version::supports_avx2(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(dst != xnoreg, "sanity");
  int dst_enc = dst->encoding();
  // swap src<->dst for encoding
  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3666
  emit_int8(0x38);
3667 3668
  emit_operand(dst, src);
  // 0x01 - insert into upper 128 bits
3669
  emit_int8(0x01);
3670 3671 3672 3673 3674 3675 3676 3677 3678
}

void Assembler::vextracti128h(Address dst, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  InstructionMark im(this);
  bool vector256 = true;
  assert(src != xnoreg, "sanity");
  int src_enc = src->encoding();
  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3679
  emit_int8(0x39);
3680 3681
  emit_operand(src, dst);
  // 0x01 - extract from upper 128 bits
3682
  emit_int8(0x01);
3683 3684
}

3685 3686 3687 3688 3689 3690 3691 3692 3693
// duplicate 4-bytes integer data from src into 8 locations in dest
void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_avx2(), "");
  bool vector256 = true;
  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  emit_int8(0x58);
  emit_int8((unsigned char)(0xC0 | encode));
}

3694 3695 3696
void Assembler::vzeroupper() {
  assert(VM_Version::supports_avx(), "");
  (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3697
  emit_int8(0x77);
3698 3699
}

3700

3701 3702 3703 3704 3705 3706
#ifndef _LP64
// 32bit only pieces of the assembler

void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT
  InstructionMark im(this);
3707 3708
  emit_int8((unsigned char)0x81);
  emit_int8((unsigned char)(0xF8 | src1->encoding()));
3709 3710 3711 3712 3713 3714
  emit_data(imm32, rspec, 0);
}

void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  InstructionMark im(this);
3715
  emit_int8((unsigned char)0x81);
3716 3717 3718 3719 3720 3721 3722 3723 3724
  emit_operand(rdi, src1);
  emit_data(imm32, rspec, 0);
}

// The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
// into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg8(Address adr) {
  InstructionMark im(this);
3725 3726
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC7);
3727 3728 3729 3730 3731
  emit_operand(rcx, adr);
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
3732
 emit_int8(0x48 | dst->encoding());
3733 3734 3735 3736 3737 3738 3739
}

#endif // _LP64

// 64bit typically doesn't use the x87 but needs to for the trig funcs

void Assembler::fabs() {
3740 3741
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE1);
3742 3743 3744 3745 3746 3747 3748 3749
}

void Assembler::fadd(int i) {
  emit_farith(0xD8, 0xC0, i);
}

void Assembler::fadd_d(Address src) {
  InstructionMark im(this);
3750
  emit_int8((unsigned char)0xDC);
3751 3752 3753 3754 3755
  emit_operand32(rax, src);
}

void Assembler::fadd_s(Address src) {
  InstructionMark im(this);
3756
  emit_int8((unsigned char)0xD8);
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
  emit_operand32(rax, src);
}

void Assembler::fadda(int i) {
  emit_farith(0xDC, 0xC0, i);
}

void Assembler::faddp(int i) {
  emit_farith(0xDE, 0xC0, i);
}

void Assembler::fchs() {
3769 3770
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE0);
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
}

void Assembler::fcom(int i) {
  emit_farith(0xD8, 0xD0, i);
}

void Assembler::fcomp(int i) {
  emit_farith(0xD8, 0xD8, i);
}

void Assembler::fcomp_d(Address src) {
  InstructionMark im(this);
3783
  emit_int8((unsigned char)0xDC);
3784 3785 3786 3787 3788
  emit_operand32(rbx, src);
}

void Assembler::fcomp_s(Address src) {
  InstructionMark im(this);
3789
  emit_int8((unsigned char)0xD8);
3790 3791 3792 3793
  emit_operand32(rbx, src);
}

void Assembler::fcompp() {
3794 3795
  emit_int8((unsigned char)0xDE);
  emit_int8((unsigned char)0xD9);
3796 3797 3798
}

void Assembler::fcos() {
3799 3800
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFF);
3801 3802 3803
}

void Assembler::fdecstp() {
3804 3805
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF6);
3806 3807 3808 3809 3810 3811 3812 3813
}

void Assembler::fdiv(int i) {
  emit_farith(0xD8, 0xF0, i);
}

void Assembler::fdiv_d(Address src) {
  InstructionMark im(this);
3814
  emit_int8((unsigned char)0xDC);
3815 3816 3817 3818 3819
  emit_operand32(rsi, src);
}

void Assembler::fdiv_s(Address src) {
  InstructionMark im(this);
3820
  emit_int8((unsigned char)0xD8);
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
  emit_operand32(rsi, src);
}

void Assembler::fdiva(int i) {
  emit_farith(0xDC, 0xF8, i);
}

// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
//       is erroneous for some of the floating-point instructions below.

void Assembler::fdivp(int i) {
  emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
}

void Assembler::fdivr(int i) {
  emit_farith(0xD8, 0xF8, i);
}

void Assembler::fdivr_d(Address src) {
  InstructionMark im(this);
3841
  emit_int8((unsigned char)0xDC);
3842 3843 3844 3845 3846
  emit_operand32(rdi, src);
}

void Assembler::fdivr_s(Address src) {
  InstructionMark im(this);
3847
  emit_int8((unsigned char)0xD8);
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
  emit_operand32(rdi, src);
}

void Assembler::fdivra(int i) {
  emit_farith(0xDC, 0xF0, i);
}

void Assembler::fdivrp(int i) {
  emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
}

void Assembler::ffree(int i) {
  emit_farith(0xDD, 0xC0, i);
}

void Assembler::fild_d(Address adr) {
  InstructionMark im(this);
3865
  emit_int8((unsigned char)0xDF);
3866 3867 3868 3869 3870
  emit_operand32(rbp, adr);
}

void Assembler::fild_s(Address adr) {
  InstructionMark im(this);
3871
  emit_int8((unsigned char)0xDB);
3872 3873 3874 3875
  emit_operand32(rax, adr);
}

void Assembler::fincstp() {
3876 3877
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF7);
3878 3879 3880
}

void Assembler::finit() {
3881 3882 3883
  emit_int8((unsigned char)0x9B);
  emit_int8((unsigned char)0xDB);
  emit_int8((unsigned char)0xE3);
3884 3885 3886 3887
}

void Assembler::fist_s(Address adr) {
  InstructionMark im(this);
3888
  emit_int8((unsigned char)0xDB);
3889 3890 3891 3892 3893
  emit_operand32(rdx, adr);
}

void Assembler::fistp_d(Address adr) {
  InstructionMark im(this);
3894
  emit_int8((unsigned char)0xDF);
3895 3896 3897 3898 3899
  emit_operand32(rdi, adr);
}

void Assembler::fistp_s(Address adr) {
  InstructionMark im(this);
3900
  emit_int8((unsigned char)0xDB);
3901 3902 3903 3904
  emit_operand32(rbx, adr);
}

void Assembler::fld1() {
3905 3906
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE8);
3907 3908 3909 3910
}

void Assembler::fld_d(Address adr) {
  InstructionMark im(this);
3911
  emit_int8((unsigned char)0xDD);
3912 3913 3914 3915 3916
  emit_operand32(rax, adr);
}

void Assembler::fld_s(Address adr) {
  InstructionMark im(this);
3917
  emit_int8((unsigned char)0xD9);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
  emit_operand32(rax, adr);
}


void Assembler::fld_s(int index) {
  emit_farith(0xD9, 0xC0, index);
}

void Assembler::fld_x(Address adr) {
  InstructionMark im(this);
3928
  emit_int8((unsigned char)0xDB);
3929 3930 3931 3932 3933
  emit_operand32(rbp, adr);
}

void Assembler::fldcw(Address src) {
  InstructionMark im(this);
3934
  emit_int8((unsigned char)0xD9);
3935 3936 3937 3938 3939
  emit_operand32(rbp, src);
}

void Assembler::fldenv(Address src) {
  InstructionMark im(this);
3940
  emit_int8((unsigned char)0xD9);
3941 3942 3943 3944
  emit_operand32(rsp, src);
}

void Assembler::fldlg2() {
3945 3946
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEC);
3947 3948 3949
}

void Assembler::fldln2() {
3950 3951
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xED);
3952 3953 3954
}

void Assembler::fldz() {
3955 3956
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEE);
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
}

void Assembler::flog() {
  fldln2();
  fxch();
  fyl2x();
}

void Assembler::flog10() {
  fldlg2();
  fxch();
  fyl2x();
}

void Assembler::fmul(int i) {
  emit_farith(0xD8, 0xC8, i);
}

void Assembler::fmul_d(Address src) {
  InstructionMark im(this);
3977
  emit_int8((unsigned char)0xDC);
3978 3979 3980 3981 3982
  emit_operand32(rcx, src);
}

void Assembler::fmul_s(Address src) {
  InstructionMark im(this);
3983
  emit_int8((unsigned char)0xD8);
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
  emit_operand32(rcx, src);
}

void Assembler::fmula(int i) {
  emit_farith(0xDC, 0xC8, i);
}

void Assembler::fmulp(int i) {
  emit_farith(0xDE, 0xC8, i);
}

void Assembler::fnsave(Address dst) {
  InstructionMark im(this);
3997
  emit_int8((unsigned char)0xDD);
3998 3999 4000 4001 4002
  emit_operand32(rsi, dst);
}

void Assembler::fnstcw(Address src) {
  InstructionMark im(this);
4003 4004
  emit_int8((unsigned char)0x9B);
  emit_int8((unsigned char)0xD9);
4005 4006 4007 4008
  emit_operand32(rdi, src);
}

void Assembler::fnstsw_ax() {
4009 4010
  emit_int8((unsigned char)0xDF);
  emit_int8((unsigned char)0xE0);
4011 4012 4013
}

void Assembler::fprem() {
4014 4015
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF8);
4016 4017 4018
}

void Assembler::fprem1() {
4019 4020
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF5);
4021 4022 4023 4024
}

void Assembler::frstor(Address src) {
  InstructionMark im(this);
4025
  emit_int8((unsigned char)0xDD);
4026 4027 4028 4029
  emit_operand32(rsp, src);
}

void Assembler::fsin() {
4030 4031
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFE);
4032 4033 4034
}

void Assembler::fsqrt() {
4035 4036
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFA);
4037 4038 4039 4040
}

void Assembler::fst_d(Address adr) {
  InstructionMark im(this);
4041
  emit_int8((unsigned char)0xDD);
4042 4043 4044 4045 4046
  emit_operand32(rdx, adr);
}

void Assembler::fst_s(Address adr) {
  InstructionMark im(this);
4047
  emit_int8((unsigned char)0xD9);
4048 4049 4050 4051 4052
  emit_operand32(rdx, adr);
}

void Assembler::fstp_d(Address adr) {
  InstructionMark im(this);
4053
  emit_int8((unsigned char)0xDD);
4054 4055 4056 4057 4058 4059 4060 4061 4062
  emit_operand32(rbx, adr);
}

void Assembler::fstp_d(int index) {
  emit_farith(0xDD, 0xD8, index);
}

void Assembler::fstp_s(Address adr) {
  InstructionMark im(this);
4063
  emit_int8((unsigned char)0xD9);
4064 4065 4066 4067 4068
  emit_operand32(rbx, adr);
}

void Assembler::fstp_x(Address adr) {
  InstructionMark im(this);
4069
  emit_int8((unsigned char)0xDB);
4070 4071 4072 4073 4074 4075 4076 4077 4078
  emit_operand32(rdi, adr);
}

void Assembler::fsub(int i) {
  emit_farith(0xD8, 0xE0, i);
}

void Assembler::fsub_d(Address src) {
  InstructionMark im(this);
4079
  emit_int8((unsigned char)0xDC);
4080 4081 4082 4083 4084
  emit_operand32(rsp, src);
}

void Assembler::fsub_s(Address src) {
  InstructionMark im(this);
4085
  emit_int8((unsigned char)0xD8);
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
  emit_operand32(rsp, src);
}

void Assembler::fsuba(int i) {
  emit_farith(0xDC, 0xE8, i);
}

void Assembler::fsubp(int i) {
  emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
}

void Assembler::fsubr(int i) {
  emit_farith(0xD8, 0xE8, i);
}

void Assembler::fsubr_d(Address src) {
  InstructionMark im(this);
4103
  emit_int8((unsigned char)0xDC);
4104 4105 4106 4107 4108
  emit_operand32(rbp, src);
}

void Assembler::fsubr_s(Address src) {
  InstructionMark im(this);
4109
  emit_int8((unsigned char)0xD8);
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
  emit_operand32(rbp, src);
}

void Assembler::fsubra(int i) {
  emit_farith(0xDC, 0xE0, i);
}

void Assembler::fsubrp(int i) {
  emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
}

void Assembler::ftan() {
4122 4123 4124 4125
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF2);
  emit_int8((unsigned char)0xDD);
  emit_int8((unsigned char)0xD8);
4126 4127 4128
}

void Assembler::ftst() {
4129 4130
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xE4);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
}

void Assembler::fucomi(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDB, 0xE8, i);
}

void Assembler::fucomip(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDF, 0xE8, i);
}

void Assembler::fwait() {
4146
  emit_int8((unsigned char)0x9B);
4147 4148 4149 4150 4151 4152 4153
}

void Assembler::fxch(int i) {
  emit_farith(0xD9, 0xC8, i);
}

void Assembler::fyl2x() {
4154 4155
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF1);
4156 4157
}

4158
void Assembler::frndint() {
4159 4160
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xFC);
4161 4162 4163
}

void Assembler::f2xm1() {
4164 4165
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xF0);
4166 4167 4168
}

void Assembler::fldl2e() {
4169 4170
  emit_int8((unsigned char)0xD9);
  emit_int8((unsigned char)0xEA);
4171 4172
}

K
kvn 已提交
4173 4174 4175 4176 4177 4178 4179 4180
// SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
// SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
static int simd_opc[4] = { 0,    0, 0x38, 0x3A };

// Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  if (pre > 0) {
4181
    emit_int8(simd_pre[pre]);
K
kvn 已提交
4182 4183 4184 4185 4186 4187 4188
  }
  if (rex_w) {
    prefixq(adr, xreg);
  } else {
    prefix(adr, xreg);
  }
  if (opc > 0) {
4189
    emit_int8(0x0F);
K
kvn 已提交
4190 4191
    int opc2 = simd_opc[opc];
    if (opc2 > 0) {
4192
      emit_int8(opc2);
K
kvn 已提交
4193 4194 4195 4196 4197 4198
    }
  }
}

int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  if (pre > 0) {
4199
    emit_int8(simd_pre[pre]);
K
kvn 已提交
4200 4201 4202 4203
  }
  int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
                          prefix_and_encode(dst_enc, src_enc);
  if (opc > 0) {
4204
    emit_int8(0x0F);
K
kvn 已提交
4205 4206
    int opc2 = simd_opc[opc];
    if (opc2 > 0) {
4207
      emit_int8(opc2);
K
kvn 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
    }
  }
  return encode;
}


void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
    prefix(VEX_3bytes);

    int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
    byte1 = (~byte1) & 0xE0;
    byte1 |= opc;
4221
    emit_int8(byte1);
K
kvn 已提交
4222 4223 4224

    int byte2 = ((~nds_enc) & 0xf) << 3;
    byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4225
    emit_int8(byte2);
K
kvn 已提交
4226 4227 4228 4229 4230 4231 4232
  } else {
    prefix(VEX_2bytes);

    int byte1 = vex_r ? VEX_R : 0;
    byte1 = (~byte1) & 0x80;
    byte1 |= ((~nds_enc) & 0xf) << 3;
    byte1 |= (vector256 ? 4 : 0) | pre;
4233
    emit_int8(byte1);
K
kvn 已提交
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
  }
}

void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  bool vex_r = (xreg_enc >= 8);
  bool vex_b = adr.base_needs_rex();
  bool vex_x = adr.index_needs_rex();
  vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
}

int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  bool vex_r = (dst_enc >= 8);
  bool vex_b = (src_enc >= 8);
  bool vex_x = false;
  vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  return (((dst_enc & 7) << 3) | (src_enc & 7));
}


void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  if (UseAVX > 0) {
    int xreg_enc = xreg->encoding();
    int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
    vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  } else {
    assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
    rex_prefix(adr, xreg, pre, opc, rex_w);
  }
}

int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  int dst_enc = dst->encoding();
  int src_enc = src->encoding();
  if (UseAVX > 0) {
    int nds_enc = nds->is_valid() ? nds->encoding() : 0;
    return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  } else {
    assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
    return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  }
}
4275

4276 4277 4278
void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  InstructionMark im(this);
  simd_prefix(dst, dst, src, pre);
4279
  emit_int8(opcode);
4280 4281 4282 4283 4284
  emit_operand(dst, src);
}

void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  int encode = simd_prefix_and_encode(dst, dst, src, pre);
4285 4286
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4287 4288 4289 4290 4291 4292
}

// Versions with no second source register (non-destructive source).
void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  InstructionMark im(this);
  simd_prefix(dst, xnoreg, src, pre);
4293
  emit_int8(opcode);
4294 4295 4296 4297 4298
  emit_operand(dst, src);
}

void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4299 4300
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4301 4302 4303 4304 4305 4306 4307
}

// 3-operands AVX instructions
void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                               Address src, VexSimdPrefix pre, bool vector256) {
  InstructionMark im(this);
  vex_prefix(dst, nds, src, pre, vector256);
4308
  emit_int8(opcode);
4309 4310 4311 4312 4313 4314
  emit_operand(dst, src);
}

void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                               XMMRegister src, VexSimdPrefix pre, bool vector256) {
  int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4315 4316
  emit_int8(opcode);
  emit_int8((unsigned char)(0xC0 | encode));
4317 4318
}

4319 4320 4321 4322
#ifndef _LP64

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
4323
  emit_int8(0x40 | dst->encoding());
4324 4325 4326 4327 4328 4329 4330 4331
}

void Assembler::lea(Register dst, Address src) {
  leal(dst, src);
}

void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
4332
  emit_int8((unsigned char)0xC7);
4333 4334 4335 4336
  emit_operand(rax, dst);
  emit_data((int)imm32, rspec, 0);
}

4337 4338 4339
void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
4340
  emit_int8((unsigned char)(0xB8 | encode));
4341 4342
  emit_data((int)imm32, rspec, 0);
}
4343 4344

void Assembler::popa() { // 32bit
4345
  emit_int8(0x61);
4346 4347 4348 4349
}

void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
4350
  emit_int8(0x68);
4351 4352 4353 4354
  emit_data(imm32, rspec, 0);
}

void Assembler::pusha() { // 32bit
4355
  emit_int8(0x60);
4356 4357 4358
}

void Assembler::set_byte_if_not_zero(Register dst) {
4359 4360 4361
  emit_int8(0x0F);
  emit_int8((unsigned char)0x95);
  emit_int8((unsigned char)(0xE0 | dst->encoding()));
4362 4363 4364
}

void Assembler::shldl(Register dst, Register src) {
4365 4366 4367
  emit_int8(0x0F);
  emit_int8((unsigned char)0xA5);
  emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4368 4369 4370
}

void Assembler::shrdl(Register dst, Register src) {
4371 4372 4373
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAD);
  emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4374 4375 4376 4377
}

#else // LP64

I
iveresov 已提交
4378 4379
void Assembler::set_byte_if_not_zero(Register dst) {
  int enc = prefix_and_encode(dst->encoding(), true);
4380 4381 4382
  emit_int8(0x0F);
  emit_int8((unsigned char)0x95);
  emit_int8((unsigned char)(0xE0 | enc));
I
iveresov 已提交
4383 4384
}

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
// 64bit only pieces of the assembler
// This should only be used by 64bit instructions that can use rip-relative
// it cannot be used by instructions that want an immediate value.

bool Assembler::reachable(AddressLiteral adr) {
  int64_t disp;
  // None will force a 64bit literal to the code stream. Likely a placeholder
  // for something that will be patched later and we need to certain it will
  // always be reachable.
  if (adr.reloc() == relocInfo::none) {
    return false;
  }
  if (adr.reloc() == relocInfo::internal_word_type) {
    // This should be rip relative and easily reachable.
    return true;
  }
  if (adr.reloc() == relocInfo::virtual_call_type ||
      adr.reloc() == relocInfo::opt_virtual_call_type ||
      adr.reloc() == relocInfo::static_call_type ||
      adr.reloc() == relocInfo::static_stub_type ) {
    // This should be rip relative within the code cache and easily
    // reachable until we get huge code caches. (At which point
    // ic code is going to have issues).
    return true;
  }
  if (adr.reloc() != relocInfo::external_word_type &&
      adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
      adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
      adr.reloc() != relocInfo::runtime_call_type ) {
    return false;
  }

  // Stress the correction code
  if (ForceUnreachable) {
    // Must be runtimecall reloc, see if it is in the codecache
    // Flipping stuff in the codecache to be unreachable causes issues
    // with things like inline caches where the additional instructions
    // are not handled.
    if (CodeCache::find_blob(adr._target) == NULL) {
      return false;
    }
  }
  // For external_word_type/runtime_call_type if it is reachable from where we
  // are now (possibly a temp buffer) and where we might end up
  // anywhere in the codeCache then we are always reachable.
  // This would have to change if we ever save/restore shared code
  // to be more pessimistic.
  disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;
  disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;

4437
  disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454

  // Because rip relative is a disp + address_of_next_instruction and we
  // don't know the value of address_of_next_instruction we apply a fudge factor
  // to make sure we will be ok no matter the size of the instruction we get placed into.
  // We don't have to fudge the checks above here because they are already worst case.

  // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  // + 4 because better safe than sorry.
  const int fudge = 12 + 4;
  if (disp < 0) {
    disp -= fudge;
  } else {
    disp += fudge;
  }
  return is_simm32(disp);
}

4455 4456 4457 4458
// Check if the polling page is not reachable from the code cache using rip-relative
// addressing.
bool Assembler::is_polling_page_far() {
  intptr_t addr = (intptr_t)os::get_polling_page();
4459 4460
  return ForceUnreachable ||
         !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4461 4462 4463
         !is_simm32(addr - (intptr_t)CodeCache::high_bound());
}

4464 4465 4466 4467
void Assembler::emit_data64(jlong data,
                            relocInfo::relocType rtype,
                            int format) {
  if (rtype == relocInfo::none) {
4468
    emit_int64(data);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
  } else {
    emit_data64(data, Relocation::spec_simple(rtype), format);
  }
}

void Assembler::emit_data64(jlong data,
                            RelocationHolder const& rspec,
                            int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
  assert(imm_operand == format, "must be immediate");
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  // Do not use AbstractAssembler::relocate, which is not intended for
  // embedded words.  Instead, relocate to the enclosing instruction.
  code_section()->relocate(inst_mark(), rspec, format);
#ifdef ASSERT
  check_relocation(rspec, format);
#endif
4486
  emit_int64(data);
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
}

int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  if (reg_enc >= 8) {
    prefix(REX_B);
    reg_enc -= 8;
  } else if (byteinst && reg_enc >= 4) {
    prefix(REX);
  }
  return reg_enc;
}

int Assembler::prefixq_and_encode(int reg_enc) {
  if (reg_enc < 8) {
    prefix(REX_W);
  } else {
    prefix(REX_WB);
    reg_enc -= 8;
  }
  return reg_enc;
}

int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  if (dst_enc < 8) {
    if (src_enc >= 8) {
      prefix(REX_B);
      src_enc -= 8;
    } else if (byteinst && src_enc >= 4) {
      prefix(REX);
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  if (dst_enc < 8) {
    if (src_enc < 8) {
      prefix(REX_W);
    } else {
      prefix(REX_WB);
      src_enc -= 8;
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_WR);
    } else {
      prefix(REX_WRB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

void Assembler::prefix(Register reg) {
  if (reg->encoding() >= 8) {
    prefix(REX_B);
  }
}

void Assembler::prefix(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_XB);
    } else {
      prefix(REX_B);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_X);
    }
  }
}

void Assembler::prefixq(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_WXB);
    } else {
      prefix(REX_WB);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_WX);
    } else {
      prefix(REX_W);
    }
  }
}


void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
4597
      } else if (byteinst && reg->encoding() >= 4 ) {
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
        prefix(REX);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

void Assembler::prefixq(Address adr, Register src) {
  if (src->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WXB);
      } else {
        prefix(REX_WB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WX);
      } else {
        prefix(REX_W);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WRXB);
      } else {
        prefix(REX_WRB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WRX);
      } else {
        prefix(REX_WR);
      }
    }
  }
}

void Assembler::prefix(Address adr, XMMRegister reg) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

K
kvn 已提交
4680 4681
void Assembler::prefixq(Address adr, XMMRegister src) {
  if (src->encoding() < 8) {
4682 4683
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4684
        prefix(REX_WXB);
4685
      } else {
K
kvn 已提交
4686
        prefix(REX_WB);
4687 4688 4689
      }
    } else {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4690 4691 4692
        prefix(REX_WX);
      } else {
        prefix(REX_W);
4693 4694 4695 4696 4697
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4698
        prefix(REX_WRXB);
4699
      } else {
K
kvn 已提交
4700
        prefix(REX_WRB);
4701 4702 4703
      }
    } else {
      if (adr.index_needs_rex()) {
K
kvn 已提交
4704
        prefix(REX_WRX);
4705
      } else {
K
kvn 已提交
4706
        prefix(REX_WR);
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
      }
    }
  }
}

void Assembler::adcq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD0, dst, imm32);
}

void Assembler::adcq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4720
  emit_int8(0x13);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
  emit_operand(dst, src);
}

void Assembler::adcq(Register dst, Register src) {
  (int) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
}

void Assembler::addq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rax, dst,imm32);
}

void Assembler::addq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
4738
  emit_int8(0x01);
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
  emit_operand(src, dst);
}

void Assembler::addq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC0, dst, imm32);
}

void Assembler::addq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4750
  emit_int8(0x03);
4751 4752 4753 4754 4755 4756 4757 4758
  emit_operand(dst, src);
}

void Assembler::addq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
}

4759 4760 4761
void Assembler::andq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
4762
  emit_int8((unsigned char)0x81);
4763
  emit_operand(rsp, dst, 4);
4764
  emit_int32(imm32);
4765 4766
}

4767 4768 4769 4770 4771 4772 4773 4774
void Assembler::andq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE0, dst, imm32);
}

void Assembler::andq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4775
  emit_int8(0x23);
4776 4777 4778 4779 4780 4781 4782 4783
  emit_operand(dst, src);
}

void Assembler::andq(Register dst, Register src) {
  (int) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
}

4784 4785
void Assembler::bsfq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4786 4787 4788
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBC);
  emit_int8((unsigned char)(0xC0 | encode));
4789 4790 4791 4792 4793
}

void Assembler::bsrq(Register dst, Register src) {
  assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4794 4795 4796
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
4797 4798
}

4799 4800
void Assembler::bswapq(Register reg) {
  int encode = prefixq_and_encode(reg->encoding());
4801 4802
  emit_int8(0x0F);
  emit_int8((unsigned char)(0xC8 | encode));
4803 4804 4805 4806
}

void Assembler::cdqq() {
  prefix(REX_W);
4807
  emit_int8((unsigned char)0x99);
4808 4809 4810 4811
}

void Assembler::clflush(Address adr) {
  prefix(adr);
4812 4813
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
4814 4815 4816 4817 4818
  emit_operand(rdi, adr);
}

void Assembler::cmovq(Condition cc, Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4819 4820 4821
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
  emit_int8((unsigned char)(0xC0 | encode));
4822 4823 4824 4825 4826
}

void Assembler::cmovq(Condition cc, Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
4827 4828
  emit_int8(0x0F);
  emit_int8(0x40 | cc);
4829 4830 4831 4832 4833 4834
  emit_operand(dst, src);
}

void Assembler::cmpq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
4835
  emit_int8((unsigned char)0x81);
4836
  emit_operand(rdi, dst, 4);
4837
  emit_int32(imm32);
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
}

void Assembler::cmpq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xF8, dst, imm32);
}

void Assembler::cmpq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
4848
  emit_int8(0x3B);
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
  emit_operand(src, dst);
}

void Assembler::cmpq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
}

void Assembler::cmpq(Register dst, Address  src) {
  InstructionMark im(this);
  prefixq(src, dst);
4860
  emit_int8(0x3B);
4861 4862 4863 4864 4865 4866
  emit_operand(dst, src);
}

void Assembler::cmpxchgq(Register reg, Address adr) {
  InstructionMark im(this);
  prefixq(adr, reg);
4867 4868
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB1);
4869 4870 4871 4872 4873
  emit_operand(reg, adr);
}

void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
4874
  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
4875 4876
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
4877 4878
}

K
kvn 已提交
4879 4880 4881 4882
void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
4883
  emit_int8(0x2A);
K
kvn 已提交
4884 4885 4886
  emit_operand(dst, src);
}

4887 4888
void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
4889
  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
4890 4891
  emit_int8(0x2A);
  emit_int8((unsigned char)(0xC0 | encode));
4892 4893
}

K
kvn 已提交
4894 4895 4896 4897
void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
4898
  emit_int8(0x2A);
K
kvn 已提交
4899 4900 4901
  emit_operand(dst, src);
}

4902 4903
void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
K
kvn 已提交
4904
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
4905 4906
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
4907 4908 4909 4910
}

void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
K
kvn 已提交
4911
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
4912 4913
  emit_int8(0x2C);
  emit_int8((unsigned char)(0xC0 | encode));
4914 4915 4916 4917 4918 4919
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
  // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
4920 4921
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC8 | encode));
4922 4923 4924 4925 4926 4927
}

void Assembler::decq(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
4928 4929
  emit_int8((unsigned char)0xFF);
  emit_int8(0xC8 | encode);
4930 4931 4932 4933 4934 4935
}

void Assembler::decq(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
4936
  emit_int8((unsigned char)0xFF);
4937 4938 4939 4940 4941
  emit_operand(rcx, dst);
}

void Assembler::fxrstor(Address src) {
  prefixq(src);
4942 4943
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
4944 4945 4946 4947 4948
  emit_operand(as_Register(1), src);
}

void Assembler::fxsave(Address dst) {
  prefixq(dst);
4949 4950
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAE);
4951 4952 4953 4954 4955
  emit_operand(as_Register(0), dst);
}

void Assembler::idivq(Register src) {
  int encode = prefixq_and_encode(src->encoding());
4956 4957
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xF8 | encode));
4958 4959 4960 4961
}

void Assembler::imulq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4962 4963 4964
  emit_int8(0x0F);
  emit_int8((unsigned char)0xAF);
  emit_int8((unsigned char)(0xC0 | encode));
4965 4966 4967 4968 4969
}

void Assembler::imulq(Register dst, Register src, int value) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  if (is8bit(value)) {
4970 4971 4972
    emit_int8(0x6B);
    emit_int8((unsigned char)(0xC0 | encode));
    emit_int8(value & 0xFF);
4973
  } else {
4974 4975
    emit_int8(0x69);
    emit_int8((unsigned char)(0xC0 | encode));
4976
    emit_int32(value);
4977 4978 4979 4980 4981 4982 4983
  }
}

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
4984 4985
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC0 | encode));
4986 4987 4988 4989 4990 4991
}

void Assembler::incq(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
4992 4993
  emit_int8((unsigned char)0xFF);
  emit_int8((unsigned char)(0xC0 | encode));
4994 4995 4996 4997 4998 4999
}

void Assembler::incq(Address dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
5000
  emit_int8((unsigned char)0xFF);
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
  emit_operand(rax, dst);
}

void Assembler::lea(Register dst, Address src) {
  leaq(dst, src);
}

void Assembler::leaq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5011
  emit_int8((unsigned char)0x8D);
5012 5013 5014 5015 5016 5017
  emit_operand(dst, src);
}

void Assembler::mov64(Register dst, int64_t imm64) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5018
  emit_int8((unsigned char)(0xB8 | encode));
5019
  emit_int64(imm64);
5020 5021 5022 5023 5024
}

void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5025
  emit_int8(0xB8 | encode);
5026 5027 5028
  emit_data64(imm64, rspec);
}

5029 5030 5031
void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
5032
  emit_int8((unsigned char)(0xB8 | encode));
5033 5034 5035 5036 5037 5038
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(dst);
5039
  emit_int8((unsigned char)0xC7);
5040 5041 5042 5043 5044 5045 5046
  emit_operand(rax, dst, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(src1->encoding());
5047 5048
  emit_int8((unsigned char)0x81);
  emit_int8((unsigned char)(0xF8 | encode));
5049 5050 5051 5052 5053 5054
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(src1);
5055
  emit_int8((unsigned char)0x81);
5056 5057 5058 5059
  emit_operand(rax, src1, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

5060 5061
void Assembler::lzcntq(Register dst, Register src) {
  assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5062
  emit_int8((unsigned char)0xF3);
5063
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5064 5065 5066
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBD);
  emit_int8((unsigned char)(0xC0 | encode));
5067 5068
}

5069 5070
void Assembler::movdq(XMMRegister dst, Register src) {
  // table D-1 says MMX/SSE2
K
kvn 已提交
5071 5072
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5073 5074
  emit_int8(0x6E);
  emit_int8((unsigned char)(0xC0 | encode));
5075 5076 5077 5078
}

void Assembler::movdq(Register dst, XMMRegister src) {
  // table D-1 says MMX/SSE2
K
kvn 已提交
5079
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5080
  // swap src/dst to get correct prefix
K
kvn 已提交
5081
  int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5082 5083
  emit_int8(0x7E);
  emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
5084 5085
}

5086 5087
void Assembler::movq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5088 5089
  emit_int8((unsigned char)0x8B);
  emit_int8((unsigned char)(0xC0 | encode));
5090
}
D
duke 已提交
5091

5092 5093 5094
void Assembler::movq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5095
  emit_int8((unsigned char)0x8B);
5096 5097
  emit_operand(dst, src);
}
D
duke 已提交
5098

5099 5100 5101
void Assembler::movq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5102
  emit_int8((unsigned char)0x89);
5103 5104
  emit_operand(src, dst);
}
D
duke 已提交
5105

5106 5107 5108
void Assembler::movsbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5109 5110
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
5111 5112 5113 5114 5115
  emit_operand(dst, src);
}

void Assembler::movsbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5116 5117 5118
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBE);
  emit_int8((unsigned char)(0xC0 | encode));
5119 5120
}

5121 5122 5123 5124 5125 5126 5127
void Assembler::movslq(Register dst, int32_t imm32) {
  // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  // as a result we shouldn't use until tested at runtime...
  ShouldNotReachHere();
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
5128
  emit_int8((unsigned char)(0xC7 | encode));
5129
  emit_int32(imm32);
5130 5131 5132 5133 5134 5135
}

void Assembler::movslq(Address dst, int32_t imm32) {
  assert(is_simm32(imm32), "lost bits");
  InstructionMark im(this);
  prefixq(dst);
5136
  emit_int8((unsigned char)0xC7);
5137
  emit_operand(rax, dst, 4);
5138
  emit_int32(imm32);
5139 5140 5141 5142 5143
}

void Assembler::movslq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5144
  emit_int8(0x63);
5145 5146 5147 5148 5149
  emit_operand(dst, src);
}

void Assembler::movslq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5150 5151
  emit_int8(0x63);
  emit_int8((unsigned char)(0xC0 | encode));
5152 5153
}

5154 5155 5156
void Assembler::movswq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5157 5158
  emit_int8(0x0F);
  emit_int8((unsigned char)0xBF);
5159 5160 5161 5162 5163
  emit_operand(dst, src);
}

void Assembler::movswq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5164 5165 5166
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xBF);
  emit_int8((unsigned char)(0xC0 | encode));
5167 5168 5169 5170 5171
}

void Assembler::movzbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5172 5173
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB6);
5174 5175 5176 5177 5178
  emit_operand(dst, src);
}

void Assembler::movzbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5179 5180 5181
  emit_int8(0x0F);
  emit_int8((unsigned char)0xB6);
  emit_int8(0xC0 | encode);
5182 5183 5184 5185 5186
}

void Assembler::movzwq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5187 5188
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB7);
5189 5190 5191 5192 5193
  emit_operand(dst, src);
}

void Assembler::movzwq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5194 5195 5196
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB7);
  emit_int8((unsigned char)(0xC0 | encode));
5197 5198
}

5199 5200
void Assembler::negq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5201 5202
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD8 | encode));
5203 5204 5205 5206
}

void Assembler::notq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5207 5208
  emit_int8((unsigned char)0xF7);
  emit_int8((unsigned char)(0xD0 | encode));
5209 5210 5211 5212 5213
}

void Assembler::orq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
5214
  emit_int8((unsigned char)0x81);
5215
  emit_operand(rcx, dst, 4);
5216
  emit_int32(imm32);
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
}

void Assembler::orq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC8, dst, imm32);
}

void Assembler::orq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5227
  emit_int8(0x0B);
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
  emit_operand(dst, src);
}

void Assembler::orq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
}

void Assembler::popa() { // 64bit
  movq(r15, Address(rsp, 0));
  movq(r14, Address(rsp, wordSize));
  movq(r13, Address(rsp, 2 * wordSize));
  movq(r12, Address(rsp, 3 * wordSize));
  movq(r11, Address(rsp, 4 * wordSize));
  movq(r10, Address(rsp, 5 * wordSize));
  movq(r9,  Address(rsp, 6 * wordSize));
  movq(r8,  Address(rsp, 7 * wordSize));
  movq(rdi, Address(rsp, 8 * wordSize));
  movq(rsi, Address(rsp, 9 * wordSize));
  movq(rbp, Address(rsp, 10 * wordSize));
  // skip rsp
  movq(rbx, Address(rsp, 12 * wordSize));
  movq(rdx, Address(rsp, 13 * wordSize));
  movq(rcx, Address(rsp, 14 * wordSize));
  movq(rax, Address(rsp, 15 * wordSize));

  addq(rsp, 16 * wordSize);
}

5257 5258 5259
void Assembler::popcntq(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
5260
  emit_int8((unsigned char)0xF3);
5261
  prefixq(src, dst);
5262 5263
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB8);
5264 5265 5266 5267 5268
  emit_operand(dst, src);
}

void Assembler::popcntq(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
5269
  emit_int8((unsigned char)0xF3);
5270
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5271 5272 5273
  emit_int8((unsigned char)0x0F);
  emit_int8((unsigned char)0xB8);
  emit_int8((unsigned char)(0xC0 | encode));
5274 5275
}

5276 5277 5278
void Assembler::popq(Address dst) {
  InstructionMark im(this);
  prefixq(dst);
5279
  emit_int8((unsigned char)0x8F);
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
  emit_operand(rax, dst);
}

void Assembler::pusha() { // 64bit
  // we have to store original rsp.  ABI says that 128 bytes
  // below rsp are local scratch.
  movq(Address(rsp, -5 * wordSize), rsp);

  subq(rsp, 16 * wordSize);

  movq(Address(rsp, 15 * wordSize), rax);
  movq(Address(rsp, 14 * wordSize), rcx);
  movq(Address(rsp, 13 * wordSize), rdx);
  movq(Address(rsp, 12 * wordSize), rbx);
  // skip rsp
  movq(Address(rsp, 10 * wordSize), rbp);
  movq(Address(rsp, 9 * wordSize), rsi);
  movq(Address(rsp, 8 * wordSize), rdi);
  movq(Address(rsp, 7 * wordSize), r8);
  movq(Address(rsp, 6 * wordSize), r9);
  movq(Address(rsp, 5 * wordSize), r10);
  movq(Address(rsp, 4 * wordSize), r11);
  movq(Address(rsp, 3 * wordSize), r12);
  movq(Address(rsp, 2 * wordSize), r13);
  movq(Address(rsp, wordSize), r14);
  movq(Address(rsp, 0), r15);
}

void Assembler::pushq(Address src) {
  InstructionMark im(this);
  prefixq(src);
5311
  emit_int8((unsigned char)0xFF);
5312 5313 5314 5315 5316 5317 5318
  emit_operand(rsi, src);
}

void Assembler::rclq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5319 5320
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xD0 | encode));
5321
  } else {
5322 5323 5324
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xD0 | encode));
    emit_int8(imm8);
D
duke 已提交
5325
  }
5326 5327 5328 5329 5330
}
void Assembler::sarq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5331 5332
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xF8 | encode));
5333
  } else {
5334 5335 5336
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xF8 | encode));
    emit_int8(imm8);
5337 5338
  }
}
D
duke 已提交
5339

5340 5341
void Assembler::sarq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5342 5343
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xF8 | encode));
5344
}
5345

5346 5347 5348 5349 5350
void Assembler::sbbq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}
D
duke 已提交
5351

5352 5353 5354 5355
void Assembler::sbbq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD8, dst, imm32);
}
D
duke 已提交
5356

5357 5358 5359
void Assembler::sbbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5360
  emit_int8(0x1B);
5361 5362
  emit_operand(dst, src);
}
D
duke 已提交
5363

5364 5365 5366 5367
void Assembler::sbbq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
}
D
duke 已提交
5368

5369 5370 5371 5372
void Assembler::shlq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
5373 5374
    emit_int8((unsigned char)0xD1);
    emit_int8((unsigned char)(0xE0 | encode));
5375
  } else {
5376 5377 5378
    emit_int8((unsigned char)0xC1);
    emit_int8((unsigned char)(0xE0 | encode));
    emit_int8(imm8);
D
duke 已提交
5379
  }
5380 5381 5382 5383
}

void Assembler::shlq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5384 5385
  emit_int8((unsigned char)0xD3);
  emit_int8((unsigned char)(0xE0 | encode));
5386 5387 5388 5389 5390
}

void Assembler::shrq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
5391 5392 5393
  emit_int8((unsigned char)0xC1);
  emit_int8((unsigned char)(0xE8 | encode));
  emit_int8(imm8);
5394 5395 5396 5397
}

void Assembler::shrq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
5398 5399
  emit_int8((unsigned char)0xD3);
  emit_int8(0xE8 | encode);
5400 5401 5402 5403 5404
}

void Assembler::subq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
5405
  emit_arith_operand(0x81, rbp, dst, imm32);
5406 5407 5408 5409 5410
}

void Assembler::subq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5411
  emit_int8(0x29);
5412 5413 5414
  emit_operand(src, dst);
}

5415 5416 5417 5418 5419
void Assembler::subq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE8, dst, imm32);
}

5420 5421 5422 5423 5424 5425
// Force generation of a 4 byte immediate value even if it fits into 8bit
void Assembler::subq_imm32(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith_imm32(0x81, 0xE8, dst, imm32);
}

5426 5427 5428
void Assembler::subq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5429
  emit_int8(0x2B);
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
  emit_operand(dst, src);
}

void Assembler::subq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::testq(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
    prefix(REX_W);
5445
    emit_int8((unsigned char)0xA9);
D
duke 已提交
5446
  } else {
5447
    encode = prefixq_and_encode(encode);
5448 5449
    emit_int8((unsigned char)0xF7);
    emit_int8((unsigned char)(0xC0 | encode));
D
duke 已提交
5450
  }
5451
  emit_int32(imm32);
D
duke 已提交
5452 5453
}

5454 5455 5456
void Assembler::testq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
D
duke 已提交
5457 5458
}

5459 5460 5461
void Assembler::xaddq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
5462 5463
  emit_int8(0x0F);
  emit_int8((unsigned char)0xC1);
5464
  emit_operand(src, dst);
D
duke 已提交
5465 5466
}

5467 5468 5469
void Assembler::xchgq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5470
  emit_int8((unsigned char)0x87);
5471
  emit_operand(dst, src);
D
duke 已提交
5472 5473
}

5474 5475
void Assembler::xchgq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5476 5477
  emit_int8((unsigned char)0x87);
  emit_int8((unsigned char)(0xc0 | encode));
D
duke 已提交
5478 5479
}

5480 5481 5482
void Assembler::xorq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
D
duke 已提交
5483 5484
}

5485 5486 5487
void Assembler::xorq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
5488
  emit_int8(0x33);
5489
  emit_operand(dst, src);
5490 5491
}

5492
#endif // !LP64