memnode.hpp 50.3 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32
#ifndef SHARE_VM_OPTO_MEMNODE_HPP
#define SHARE_VM_OPTO_MEMNODE_HPP

#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"

D
duke 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
// Portions of code courtesy of Clifford Click

class MultiNode;
class PhaseCCP;
class PhaseTransform;

//------------------------------MemNode----------------------------------------
// Load or Store, possibly throwing a NULL pointer exception
class MemNode : public Node {
protected:
#ifdef ASSERT
  const TypePtr* _adr_type;     // What kind of memory is being addressed?
#endif
  virtual uint size_of() const; // Size is bigger (ASSERT only)
public:
  enum { Control,               // When is it safe to do this load?
         Memory,                // Chunk of memory is being loaded from
         Address,               // Actually address, derived from base
         ValueIn,               // Value to store
         OopStore               // Preceeding oop store, only in StoreCM
  };
protected:
  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    : Node(c0,c1,c2   ) {
    init_class_id(Class_Mem);
    debug_only(_adr_type=at; adr_type();)
  }
  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    : Node(c0,c1,c2,c3) {
    init_class_id(Class_Mem);
    debug_only(_adr_type=at; adr_type();)
  }
  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    : Node(c0,c1,c2,c3,c4) {
    init_class_id(Class_Mem);
    debug_only(_adr_type=at; adr_type();)
  }

K
kvn 已提交
71
public:
D
duke 已提交
72 73 74 75 76 77
  // Helpers for the optimizer.  Documented in memnode.cpp.
  static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
                                      Node* p2, AllocateNode* a2,
                                      PhaseTransform* phase);
  static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);

78 79
  static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
  static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
D
duke 已提交
80
  // This one should probably be a phase-specific function:
81
  static bool all_controls_dominate(Node* dom, Node* sub);
D
duke 已提交
82

83 84
  // Find any cast-away of null-ness and keep its control.
  static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
D
duke 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );

  virtual const class TypePtr *adr_type() const;  // returns bottom_type of address

  // Shared code for Ideal methods:
  Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.

  // Helper function for adr_type() implementations.
  static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);

  // Raw access function, to allow copying of adr_type efficiently in
  // product builds and retain the debug info for debug builds.
  const TypePtr *raw_adr_type() const {
#ifdef ASSERT
    return _adr_type;
#else
    return 0;
#endif
  }

  // Map a load or store opcode to its corresponding store opcode.
  // (Return -1 if unknown.)
  virtual int store_Opcode() const { return -1; }

  // What is the type of the value in memory?  (T_VOID mean "unspecified".)
  virtual BasicType memory_type() const = 0;
111 112 113 114 115 116 117
  virtual int memory_size() const {
#ifdef ASSERT
    return type2aelembytes(memory_type(), true);
#else
    return type2aelembytes(memory_type());
#endif
  }
D
duke 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

  // Search through memory states which precede this node (load or store).
  // Look for an exact match for the address, with no intervening
  // aliased stores.
  Node* find_previous_store(PhaseTransform* phase);

  // Can this node (load or store) accurately see a stored value in
  // the given memory state?  (The state may or may not be in(Memory).)
  Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;

#ifndef PRODUCT
  static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
  virtual void dump_spec(outputStream *st) const;
#endif
};

//------------------------------LoadNode---------------------------------------
// Load value; requires Memory and Address
class LoadNode : public MemNode {
protected:
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
  const Type* const _type;      // What kind of value is loaded?
public:

  LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
    : MemNode(c,mem,adr,at), _type(rt) {
    init_class_id(Class_Load);
  }

  // Polymorphic factory method:
149 150
  static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
                     const TypePtr* at, const Type *rt, BasicType bt );
D
duke 已提交
151 152 153 154 155 156 157 158 159 160 161

  virtual uint hash()   const;  // Check the type

  // Handle algebraic identities here.  If we have an identity, return the Node
  // we are equivalent to.  We look for Load of a Store.
  virtual Node *Identity( PhaseTransform *phase );

  // If the load is from Field memory and the pointer is non-null, we can
  // zero out the control input.
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

162 163 164
  // Split instance field load through Phi.
  Node* split_through_phi(PhaseGVN *phase);

165 166 167
  // Recover original value from boxed values
  Node *eliminate_autobox(PhaseGVN *phase);

D
duke 已提交
168 169 170 171
  // Compute a new Type for this node.  Basically we just do the pre-check,
  // then call the virtual add() to set the type.
  virtual const Type *Value( PhaseTransform *phase ) const;

172 173 174 175
  // Common methods for LoadKlass and LoadNKlass nodes.
  const Type *klass_value_common( PhaseTransform *phase ) const;
  Node *klass_identity_common( PhaseTransform *phase );

D
duke 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  virtual uint ideal_reg() const;
  virtual const Type *bottom_type() const;
  // Following method is copied from TypeNode:
  void set_type(const Type* t) {
    assert(t != NULL, "sanity");
    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
    *(const Type**)&_type = t;   // cast away const-ness
    // If this node is in the hash table, make sure it doesn't need a rehash.
    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  }
  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };

  // Do not match memory edge
  virtual uint match_edge(uint idx) const;

  // Map a load opcode to its corresponding store opcode.
  virtual int store_Opcode() const = 0;

194 195 196
  // Check if the load's memory input is a Phi node with the same control.
  bool is_instance_field_load_with_local_phi(Node* ctrl);

D
duke 已提交
197 198 199
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
200 201 202 203
#ifdef ASSERT
  // Helper function to allow a raw load without control edge for some cases
  static bool is_immutable_value(Node* adr);
#endif
D
duke 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
protected:
  const Type* load_array_final_field(const TypeKlassPtr *tkls,
                                     ciKlass* klass) const;
};

//------------------------------LoadBNode--------------------------------------
// Load a byte (8bits signed) from memory
class LoadBNode : public LoadNode {
public:
  LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
    : LoadNode(c,mem,adr,at,ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual int store_Opcode() const { return Op_StoreB; }
  virtual BasicType memory_type() const { return T_BYTE; }
};

222 223 224 225 226 227 228 229 230 231 232 233 234
//------------------------------LoadUBNode-------------------------------------
// Load a unsigned byte (8bits unsigned) from memory
class LoadUBNode : public LoadNode {
public:
  LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
    : LoadNode(c, mem, adr, at, ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
  virtual int store_Opcode() const { return Op_StoreB; }
  virtual BasicType memory_type() const { return T_BYTE; }
};

235 236 237
//------------------------------LoadUSNode-------------------------------------
// Load an unsigned short/char (16bits unsigned) from memory
class LoadUSNode : public LoadNode {
D
duke 已提交
238
public:
239
  LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
D
duke 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    : LoadNode(c,mem,adr,at,ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual int store_Opcode() const { return Op_StoreC; }
  virtual BasicType memory_type() const { return T_CHAR; }
};

//------------------------------LoadINode--------------------------------------
// Load an integer from memory
class LoadINode : public LoadNode {
public:
  LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
    : LoadNode(c,mem,adr,at,ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual int store_Opcode() const { return Op_StoreI; }
  virtual BasicType memory_type() const { return T_INT; }
};

260 261 262 263 264 265 266 267 268 269 270 271
//------------------------------LoadUI2LNode-----------------------------------
// Load an unsigned integer into long from memory
class LoadUI2LNode : public LoadNode {
public:
  LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
    : LoadNode(c, mem, adr, at, t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegL; }
  virtual int store_Opcode() const { return Op_StoreL; }
  virtual BasicType memory_type() const { return T_LONG; }
};

D
duke 已提交
272 273 274 275 276 277 278 279 280
//------------------------------LoadRangeNode----------------------------------
// Load an array length from the array
class LoadRangeNode : public LoadINode {
public:
  LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
    : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
  virtual int Opcode() const;
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Identity( PhaseTransform *phase );
281
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
D
duke 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
};

//------------------------------LoadLNode--------------------------------------
// Load a long from memory
class LoadLNode : public LoadNode {
  virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
  virtual uint cmp( const Node &n ) const {
    return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
      && LoadNode::cmp(n);
  }
  virtual uint size_of() const { return sizeof(*this); }
  const bool _require_atomic_access;  // is piecewise load forbidden?

public:
  LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
             const TypeLong *tl = TypeLong::LONG,
             bool require_atomic_access = false )
    : LoadNode(c,mem,adr,at,tl)
    , _require_atomic_access(require_atomic_access)
  {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegL; }
  virtual int store_Opcode() const { return Op_StoreL; }
  virtual BasicType memory_type() const { return T_LONG; }
  bool require_atomic_access() { return _require_atomic_access; }
  static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const {
    LoadNode::dump_spec(st);
    if (_require_atomic_access)  st->print(" Atomic!");
  }
#endif
};

//------------------------------LoadL_unalignedNode----------------------------
// Load a long from unaligned memory
class LoadL_unalignedNode : public LoadLNode {
public:
  LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
    : LoadLNode(c,mem,adr,at) {}
  virtual int Opcode() const;
};

//------------------------------LoadFNode--------------------------------------
// Load a float (64 bits) from memory
class LoadFNode : public LoadNode {
public:
  LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
    : LoadNode(c,mem,adr,at,t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegF; }
  virtual int store_Opcode() const { return Op_StoreF; }
  virtual BasicType memory_type() const { return T_FLOAT; }
};

//------------------------------LoadDNode--------------------------------------
// Load a double (64 bits) from memory
class LoadDNode : public LoadNode {
public:
  LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
    : LoadNode(c,mem,adr,at,t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegD; }
  virtual int store_Opcode() const { return Op_StoreD; }
  virtual BasicType memory_type() const { return T_DOUBLE; }
};

//------------------------------LoadD_unalignedNode----------------------------
// Load a double from unaligned memory
class LoadD_unalignedNode : public LoadDNode {
public:
  LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
    : LoadDNode(c,mem,adr,at) {}
  virtual int Opcode() const;
};

//------------------------------LoadPNode--------------------------------------
// Load a pointer from memory (either object or array)
class LoadPNode : public LoadNode {
public:
  LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
    : LoadNode(c,mem,adr,at,t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegP; }
  virtual int store_Opcode() const { return Op_StoreP; }
  virtual BasicType memory_type() const { return T_ADDRESS; }
  // depends_only_on_test is almost always true, and needs to be almost always
  // true to enable key hoisting & commoning optimizations.  However, for the
  // special case of RawPtr loads from TLS top & end, the control edge carries
  // the dependence preventing hoisting past a Safepoint instead of the memory
  // edge.  (An unfortunate consequence of having Safepoints not set Raw
  // Memory; itself an unfortunate consequence of having Nodes which produce
  // results (new raw memory state) inside of loops preventing all manner of
  // other optimizations).  Basically, it's ugly but so is the alternative.
  // See comment in macro.cpp, around line 125 expand_allocate_common().
  virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
};

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

//------------------------------LoadNNode--------------------------------------
// Load a narrow oop from memory (either object or array)
class LoadNNode : public LoadNode {
public:
  LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
    : LoadNode(c,mem,adr,at,t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegN; }
  virtual int store_Opcode() const { return Op_StoreN; }
  virtual BasicType memory_type() const { return T_NARROWOOP; }
  // depends_only_on_test is almost always true, and needs to be almost always
  // true to enable key hoisting & commoning optimizations.  However, for the
  // special case of RawPtr loads from TLS top & end, the control edge carries
  // the dependence preventing hoisting past a Safepoint instead of the memory
  // edge.  (An unfortunate consequence of having Safepoints not set Raw
  // Memory; itself an unfortunate consequence of having Nodes which produce
  // results (new raw memory state) inside of loops preventing all manner of
  // other optimizations).  Basically, it's ugly but so is the alternative.
  // See comment in macro.cpp, around line 125 expand_allocate_common().
  virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
};

D
duke 已提交
403 404 405 406
//------------------------------LoadKlassNode----------------------------------
// Load a Klass from an object
class LoadKlassNode : public LoadPNode {
public:
407
  LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
D
duke 已提交
408 409 410 411 412
    : LoadPNode(c,mem,adr,at,tk) {}
  virtual int Opcode() const;
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual bool depends_only_on_test() const { return true; }
413 414 415 416

  // Polymorphic factory method:
  static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
                     const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
D
duke 已提交
417 418
};

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
//------------------------------LoadNKlassNode---------------------------------
// Load a narrow Klass from an object.
class LoadNKlassNode : public LoadNNode {
public:
  LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
    : LoadNNode(c,mem,adr,at,tk) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegN; }
  virtual int store_Opcode() const { return Op_StoreN; }
  virtual BasicType memory_type() const { return T_NARROWOOP; }

  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual bool depends_only_on_test() const { return true; }
};


D
duke 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
//------------------------------LoadSNode--------------------------------------
// Load a short (16bits signed) from memory
class LoadSNode : public LoadNode {
public:
  LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
    : LoadNode(c,mem,adr,at,ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual int store_Opcode() const { return Op_StoreC; }
  virtual BasicType memory_type() const { return T_SHORT; }
};

//------------------------------StoreNode--------------------------------------
// Store value; requires Store, Address and Value
class StoreNode : public MemNode {
protected:
  virtual uint cmp( const Node &n ) const;
  virtual bool depends_only_on_test() const { return false; }

  Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
  Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);

public:
  StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
    : MemNode(c,mem,adr,at,val) {
    init_class_id(Class_Store);
  }
  StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
    : MemNode(c,mem,adr,at,val,oop_store) {
    init_class_id(Class_Store);
  }

  // Polymorphic factory method:
470 471
  static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
                          const TypePtr* at, Node *val, BasicType bt );
D
duke 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

  virtual uint hash() const;    // Check the type

  // If the store is to Field memory and the pointer is non-null, we can
  // zero out the control input.
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

  // Compute a new Type for this node.  Basically we just do the pre-check,
  // then call the virtual add() to set the type.
  virtual const Type *Value( PhaseTransform *phase ) const;

  // Check for identity function on memory (Load then Store at same address)
  virtual Node *Identity( PhaseTransform *phase );

  // Do not match memory edge
  virtual uint match_edge(uint idx) const;

  virtual const Type *bottom_type() const;  // returns Type::MEMORY

  // Map a store opcode to its corresponding own opcode, trivially.
  virtual int store_Opcode() const { return Opcode(); }

  // have all possible loads of the value stored been optimized away?
  bool value_never_loaded(PhaseTransform *phase) const;
};

//------------------------------StoreBNode-------------------------------------
// Store byte to memory
class StoreBNode : public StoreNode {
public:
  StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual BasicType memory_type() const { return T_BYTE; }
};

//------------------------------StoreCNode-------------------------------------
// Store char/short to memory
class StoreCNode : public StoreNode {
public:
  StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual BasicType memory_type() const { return T_CHAR; }
};

//------------------------------StoreINode-------------------------------------
// Store int to memory
class StoreINode : public StoreNode {
public:
  StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_INT; }
};

//------------------------------StoreLNode-------------------------------------
// Store long to memory
class StoreLNode : public StoreNode {
  virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
  virtual uint cmp( const Node &n ) const {
    return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
      && StoreNode::cmp(n);
  }
  virtual uint size_of() const { return sizeof(*this); }
  const bool _require_atomic_access;  // is piecewise store forbidden?

public:
  StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
              bool require_atomic_access = false )
    : StoreNode(c,mem,adr,at,val)
    , _require_atomic_access(require_atomic_access)
  {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_LONG; }
  bool require_atomic_access() { return _require_atomic_access; }
  static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const {
    StoreNode::dump_spec(st);
    if (_require_atomic_access)  st->print(" Atomic!");
  }
#endif
};

//------------------------------StoreFNode-------------------------------------
// Store float to memory
class StoreFNode : public StoreNode {
public:
  StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_FLOAT; }
};

//------------------------------StoreDNode-------------------------------------
// Store double to memory
class StoreDNode : public StoreNode {
public:
  StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_DOUBLE; }
};

//------------------------------StorePNode-------------------------------------
// Store pointer to memory
class StorePNode : public StoreNode {
public:
  StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_ADDRESS; }
};

583 584 585 586 587 588 589 590 591
//------------------------------StoreNNode-------------------------------------
// Store narrow oop to memory
class StoreNNode : public StoreNode {
public:
  StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_NARROWOOP; }
};

D
duke 已提交
592 593 594 595 596
//------------------------------StoreCMNode-----------------------------------
// Store card-mark byte to memory for CM
// The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
// Preceeding equivalent StoreCMs may be eliminated.
class StoreCMNode : public StoreNode {
597
 private:
598 599 600 601 602 603
  virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
  virtual uint cmp( const Node &n ) const {
    return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
      && StoreNode::cmp(n);
  }
  virtual uint size_of() const { return sizeof(*this); }
604
  int _oop_alias_idx;   // The alias_idx of OopStore
605

D
duke 已提交
606
public:
607 608 609 610 611 612 613
  StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
    StoreNode(c,mem,adr,at,val,oop_store),
    _oop_alias_idx(oop_alias_idx) {
    assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
           _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
           "bad oop alias idx");
  }
D
duke 已提交
614 615
  virtual int Opcode() const;
  virtual Node *Identity( PhaseTransform *phase );
616
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
D
duke 已提交
617 618
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual BasicType memory_type() const { return T_VOID; } // unspecific
619
  int oop_alias_idx() const { return _oop_alias_idx; }
D
duke 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
};

//------------------------------LoadPLockedNode---------------------------------
// Load-locked a pointer from memory (either object or array).
// On Sparc & Intel this is implemented as a normal pointer load.
// On PowerPC and friends it's a real load-locked.
class LoadPLockedNode : public LoadPNode {
public:
  LoadPLockedNode( Node *c, Node *mem, Node *adr )
    : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
  virtual int Opcode() const;
  virtual int store_Opcode() const { return Op_StorePConditional; }
  virtual bool depends_only_on_test() const { return true; }
};

//------------------------------LoadLLockedNode---------------------------------
// Load-locked a pointer from memory (either object or array).
// On Sparc & Intel this is implemented as a normal long load.
class LoadLLockedNode : public LoadLNode {
public:
  LoadLLockedNode( Node *c, Node *mem, Node *adr )
    : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
  virtual int Opcode() const;
  virtual int store_Opcode() const { return Op_StoreLConditional; }
};

//------------------------------SCMemProjNode---------------------------------------
// This class defines a projection of the memory  state of a store conditional node.
// These nodes return a value, but also update memory.
class SCMemProjNode : public ProjNode {
public:
  enum {SCMEMPROJCON = (uint)-2};
  SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
  virtual int Opcode() const;
  virtual bool      is_CFG() const  { return false; }
  virtual const Type *bottom_type() const {return Type::MEMORY;}
  virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
  virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
  virtual const Type *Value( PhaseTransform *phase ) const;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const {};
#endif
};

//------------------------------LoadStoreNode---------------------------
665
// Note: is_Mem() method returns 'true' for this class.
D
duke 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
class LoadStoreNode : public Node {
public:
  enum {
    ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
  };
  LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
  virtual bool depends_only_on_test() const { return false; }
  virtual const Type *bottom_type() const { return TypeInt::BOOL; }
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
};

//------------------------------StorePConditionalNode---------------------------
// Conditionally store pointer to memory, if no change since prior
// load-locked.  Sets flags for success or failure of the store.
class StorePConditionalNode : public LoadStoreNode {
public:
  StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
  virtual int Opcode() const;
  // Produces flags
  virtual uint ideal_reg() const { return Op_RegFlags; }
};

689 690 691 692 693 694 695 696 697 698 699
//------------------------------StoreIConditionalNode---------------------------
// Conditionally store int to memory, if no change since prior
// load-locked.  Sets flags for success or failure of the store.
class StoreIConditionalNode : public LoadStoreNode {
public:
  StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreNode(c, mem, adr, val, ii) { }
  virtual int Opcode() const;
  // Produces flags
  virtual uint ideal_reg() const { return Op_RegFlags; }
};

D
duke 已提交
700 701 702 703 704 705 706
//------------------------------StoreLConditionalNode---------------------------
// Conditionally store long to memory, if no change since prior
// load-locked.  Sets flags for success or failure of the store.
class StoreLConditionalNode : public LoadStoreNode {
public:
  StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
  virtual int Opcode() const;
707 708
  // Produces flags
  virtual uint ideal_reg() const { return Op_RegFlags; }
D
duke 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
};


//------------------------------CompareAndSwapLNode---------------------------
class CompareAndSwapLNode : public LoadStoreNode {
public:
  CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
  virtual int Opcode() const;
};


//------------------------------CompareAndSwapINode---------------------------
class CompareAndSwapINode : public LoadStoreNode {
public:
  CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
  virtual int Opcode() const;
};


//------------------------------CompareAndSwapPNode---------------------------
class CompareAndSwapPNode : public LoadStoreNode {
public:
  CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
  virtual int Opcode() const;
};

735 736 737 738 739 740 741
//------------------------------CompareAndSwapNNode---------------------------
class CompareAndSwapNNode : public LoadStoreNode {
public:
  CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
  virtual int Opcode() const;
};

D
duke 已提交
742 743 744
//------------------------------ClearArray-------------------------------------
class ClearArrayNode: public Node {
public:
745 746 747 748
  ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
    : Node(ctrl,arymem,word_cnt,base) {
    init_class_id(Class_ClearArray);
  }
D
duke 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
  virtual int         Opcode() const;
  virtual const Type *bottom_type() const { return Type::MEMORY; }
  // ClearArray modifies array elements, and so affects only the
  // array memory addressed by the bottom_type of its base address.
  virtual const class TypePtr *adr_type() const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual uint match_edge(uint idx) const;

  // Clear the given area of an object or array.
  // The start offset must always be aligned mod BytesPerInt.
  // The end offset must always be aligned mod BytesPerLong.
  // Return the new memory.
  static Node* clear_memory(Node* control, Node* mem, Node* dest,
                            intptr_t start_offset,
                            intptr_t end_offset,
                            PhaseGVN* phase);
  static Node* clear_memory(Node* control, Node* mem, Node* dest,
                            intptr_t start_offset,
                            Node* end_offset,
                            PhaseGVN* phase);
  static Node* clear_memory(Node* control, Node* mem, Node* dest,
                            Node* start_offset,
                            Node* end_offset,
                            PhaseGVN* phase);
774 775 776
  // Return allocation input memory edge if it is different instance
  // or itself if it is the one we are looking for.
  static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
D
duke 已提交
777 778 779 780 781
};

//------------------------------StrComp-------------------------------------
class StrCompNode: public Node {
public:
782 783 784 785 786
  StrCompNode(Node* control, Node* char_array_mem,
              Node* s1, Node* c1,
              Node* s2, Node* c2): Node(control, char_array_mem,
                                        s1, c1,
                                        s2, c2) {};
D
duke 已提交
787 788 789
  virtual int Opcode() const;
  virtual bool depends_only_on_test() const { return false; }
  virtual const Type* bottom_type() const { return TypeInt::INT; }
790
  virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
D
duke 已提交
791 792 793 794 795
  virtual uint match_edge(uint idx) const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};

C
cfang 已提交
796 797 798
//------------------------------StrEquals-------------------------------------
class StrEqualsNode: public Node {
public:
799 800 801
  StrEqualsNode(Node* control, Node* char_array_mem,
                Node* s1, Node* s2, Node* c): Node(control, char_array_mem,
                                                   s1, s2, c) {};
C
cfang 已提交
802 803 804
  virtual int Opcode() const;
  virtual bool depends_only_on_test() const { return false; }
  virtual const Type* bottom_type() const { return TypeInt::BOOL; }
805
  virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
C
cfang 已提交
806 807 808 809 810 811 812 813
  virtual uint match_edge(uint idx) const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};

//------------------------------StrIndexOf-------------------------------------
class StrIndexOfNode: public Node {
public:
814 815 816 817 818
  StrIndexOfNode(Node* control, Node* char_array_mem,
                 Node* s1, Node* c1,
                 Node* s2, Node* c2): Node(control, char_array_mem,
                                           s1, c1,
                                           s2, c2) {};
C
cfang 已提交
819 820 821
  virtual int Opcode() const;
  virtual bool depends_only_on_test() const { return false; }
  virtual const Type* bottom_type() const { return TypeInt::INT; }
822
  virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
C
cfang 已提交
823 824 825 826 827
  virtual uint match_edge(uint idx) const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};

828 829 830
//------------------------------AryEq---------------------------------------
class AryEqNode: public Node {
public:
831 832
  AryEqNode(Node* control, Node* char_array_mem,
            Node* s1, Node* s2): Node(control, char_array_mem, s1, s2) {};
833 834 835 836
  virtual int Opcode() const;
  virtual bool depends_only_on_test() const { return false; }
  virtual const Type* bottom_type() const { return TypeInt::BOOL; }
  virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
837
  virtual uint match_edge(uint idx) const;
838 839 840 841
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};

D
duke 已提交
842 843 844 845 846
//------------------------------MemBar-----------------------------------------
// There are different flavors of Memory Barriers to match the Java Memory
// Model.  Monitor-enter and volatile-load act as Aquires: no following ref
// can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
// volatile-load.  Monitor-exit and volatile-store act as Release: no
T
twisti 已提交
847
// preceding ref can be moved to after them.  We insert a MemBar-Release
D
duke 已提交
848 849
// before a FastUnlock or volatile-store.  All volatiles need to be
// serialized, so we follow all volatile-stores with a MemBar-Volatile to
T
twisti 已提交
850
// separate it from any following volatile-load.
D
duke 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
class MemBarNode: public MultiNode {
  virtual uint hash() const ;                  // { return NO_HASH; }
  virtual uint cmp( const Node &n ) const ;    // Always fail, except on self

  virtual uint size_of() const { return sizeof(*this); }
  // Memory type this node is serializing.  Usually either rawptr or bottom.
  const TypePtr* _adr_type;

public:
  enum {
    Precedent = TypeFunc::Parms  // optional edge to force precedence
  };
  MemBarNode(Compile* C, int alias_idx, Node* precedent);
  virtual int Opcode() const = 0;
  virtual const class TypePtr *adr_type() const { return _adr_type; }
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual uint match_edge(uint idx) const { return 0; }
  virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
  virtual Node *match( const ProjNode *proj, const Matcher *m );
  // Factory method.  Builds a wide or narrow membar.
  // Optional 'precedent' becomes an extra edge if not null.
  static MemBarNode* make(Compile* C, int opcode,
                          int alias_idx = Compile::AliasIdxBot,
                          Node* precedent = NULL);
};

// "Acquire" - no following ref can move before (but earlier refs can
// follow, like an early Load stalled in cache).  Requires multi-cpu
// visibility.  Inserted after a volatile load or FastLock.
class MemBarAcquireNode: public MemBarNode {
public:
  MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
};

// "Release" - no earlier ref can move after (but later refs can move
// up, like a speculative pipelined cache-hitting Load).  Requires
// multi-cpu visibility.  Inserted before a volatile store or FastUnLock.
class MemBarReleaseNode: public MemBarNode {
public:
  MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
};

// Ordering between a volatile store and a following volatile load.
// Requires multi-CPU visibility?
class MemBarVolatileNode: public MemBarNode {
public:
  MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
};

// Ordering within the same CPU.  Used to order unsafe memory references
// inside the compiler when we lack alias info.  Not needed "outside" the
// compiler because the CPU does all the ordering for us.
class MemBarCPUOrderNode: public MemBarNode {
public:
  MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return 0; } // not matched in the AD file
};

// Isolation of object setup after an AllocateNode and before next safepoint.
// (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
class InitializeNode: public MemBarNode {
  friend class AllocateNode;

  bool _is_complete;

public:
  enum {
    Control    = TypeFunc::Control,
    Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
    RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
    RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
  };

  InitializeNode(Compile* C, int adr_type, Node* rawoop);
  virtual int Opcode() const;
  virtual uint size_of() const { return sizeof(*this); }
  virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress

  // Manage incoming memory edges via a MergeMem on in(Memory):
  Node* memory(uint alias_idx);

  // The raw memory edge coming directly from the Allocation.
  // The contents of this memory are *always* all-zero-bits.
  Node* zero_memory() { return memory(Compile::AliasIdxRaw); }

  // Return the corresponding allocation for this initialization (or null if none).
  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  AllocateNode* allocation();

  // Anything other than zeroing in this init?
  bool is_non_zero();

  // An InitializeNode must completed before macro expansion is done.
  // Completion requires that the AllocateNode must be followed by
  // initialization of the new memory to zero, then to any initializers.
  bool is_complete() { return _is_complete; }

  // Mark complete.  (Must not yet be complete.)
  void set_complete(PhaseGVN* phase);

#ifdef ASSERT
  // ensure all non-degenerate stores are ordered and non-overlapping
  bool stores_are_sane(PhaseTransform* phase);
#endif //ASSERT

  // See if this store can be captured; return offset where it initializes.
  // Return 0 if the store cannot be moved (any sort of problem).
  intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);

  // Capture another store; reformat it to write my internal raw memory.
  // Return the captured copy, else NULL if there is some sort of problem.
  Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);

  // Find captured store which corresponds to the range [start..start+size).
  // Return my own memory projection (meaning the initial zero bits)
  // if there is no such store.  Return NULL if there is a problem.
  Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);

  // Called when the associated AllocateNode is expanded into CFG.
  Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
                        intptr_t header_size, Node* size_in_bytes,
                        PhaseGVN* phase);

 private:
  void remove_extra_zeroes();

  // Find out where a captured store should be placed (or already is placed).
  int captured_store_insertion_point(intptr_t start, int size_in_bytes,
                                     PhaseTransform* phase);

  static intptr_t get_store_offset(Node* st, PhaseTransform* phase);

  Node* make_raw_address(intptr_t offset, PhaseTransform* phase);

  bool detect_init_independence(Node* n, bool st_is_pinned, int& count);

  void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
                               PhaseGVN* phase);

  intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
};

//------------------------------MergeMem---------------------------------------
// (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
class MergeMemNode: public Node {
  virtual uint hash() const ;                  // { return NO_HASH; }
  virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  friend class MergeMemStream;
  MergeMemNode(Node* def);  // clients use MergeMemNode::make

public:
  // If the input is a whole memory state, clone it with all its slices intact.
  // Otherwise, make a new memory state with just that base memory input.
  // In either case, the result is a newly created MergeMem.
  static MergeMemNode* make(Compile* C, Node* base_memory);

  virtual int Opcode() const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const { return 0; }
  virtual const RegMask &out_RegMask() const;
  virtual const Type *bottom_type() const { return Type::MEMORY; }
  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  // sparse accessors
  // Fetch the previously stored "set_memory_at", or else the base memory.
  // (Caller should clone it if it is a phi-nest.)
  Node* memory_at(uint alias_idx) const;
  // set the memory, regardless of its previous value
  void set_memory_at(uint alias_idx, Node* n);
  // the "base" is the memory that provides the non-finite support
  Node* base_memory() const       { return in(Compile::AliasIdxBot); }
  // warning: setting the base can implicitly set any of the other slices too
  void set_base_memory(Node* def);
  // sentinel value which denotes a copy of the base memory:
  Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
  static Node* make_empty_memory(); // where the sentinel comes from
  bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
  // hook for the iterator, to perform any necessary setup
  void iteration_setup(const MergeMemNode* other = NULL);
  // push sentinels until I am at least as long as the other (semantic no-op)
  void grow_to_match(const MergeMemNode* other);
  bool verify_sparse() const PRODUCT_RETURN0;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

class MergeMemStream : public StackObj {
 private:
  MergeMemNode*       _mm;
  const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
  Node*               _mm_base;  // loop-invariant base memory of _mm
  int                 _idx;
  int                 _cnt;
  Node*               _mem;
  Node*               _mem2;
  int                 _cnt2;

  void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
    // subsume_node will break sparseness at times, whenever a memory slice
    // folds down to a copy of the base ("fat") memory.  In such a case,
    // the raw edge will update to base, although it should be top.
    // This iterator will recognize either top or base_memory as an
    // "empty" slice.  See is_empty, is_empty2, and next below.
    //
    // The sparseness property is repaired in MergeMemNode::Ideal.
    // As long as access to a MergeMem goes through this iterator
    // or the memory_at accessor, flaws in the sparseness will
    // never be observed.
    //
    // Also, iteration_setup repairs sparseness.
    assert(mm->verify_sparse(), "please, no dups of base");
    assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");

    _mm  = mm;
    _mm_base = mm->base_memory();
    _mm2 = mm2;
    _cnt = mm->req();
    _idx = Compile::AliasIdxBot-1; // start at the base memory
    _mem = NULL;
    _mem2 = NULL;
  }

#ifdef ASSERT
  Node* check_memory() const {
    if (at_base_memory())
      return _mm->base_memory();
    else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
      return _mm->memory_at(_idx);
    else
      return _mm_base;
  }
  Node* check_memory2() const {
    return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
  }
#endif

  static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  void assert_synch() const {
    assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
           "no side-effects except through the stream");
  }

 public:

  // expected usages:
  // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }

  // iterate over one merge
  MergeMemStream(MergeMemNode* mm) {
    mm->iteration_setup();
    init(mm);
    debug_only(_cnt2 = 999);
  }
  // iterate in parallel over two merges
  // only iterates through non-empty elements of mm2
  MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
    assert(mm2, "second argument must be a MergeMem also");
    ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
    mm->iteration_setup(mm2);
    init(mm, mm2);
    _cnt2 = mm2->req();
  }
#ifdef ASSERT
  ~MergeMemStream() {
    assert_synch();
  }
#endif

  MergeMemNode* all_memory() const {
    return _mm;
  }
  Node* base_memory() const {
    assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
    return _mm_base;
  }
  const MergeMemNode* all_memory2() const {
    assert(_mm2 != NULL, "");
    return _mm2;
  }
  bool at_base_memory() const {
    return _idx == Compile::AliasIdxBot;
  }
  int alias_idx() const {
    assert(_mem, "must call next 1st");
    return _idx;
  }

  const TypePtr* adr_type() const {
    return Compile::current()->get_adr_type(alias_idx());
  }

  const TypePtr* adr_type(Compile* C) const {
    return C->get_adr_type(alias_idx());
  }
  bool is_empty() const {
    assert(_mem, "must call next 1st");
    assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
    return _mem->is_top();
  }
  bool is_empty2() const {
    assert(_mem2, "must call next 1st");
    assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
    return _mem2->is_top();
  }
  Node* memory() const {
    assert(!is_empty(), "must not be empty");
    assert_synch();
    return _mem;
  }
  // get the current memory, regardless of empty or non-empty status
  Node* force_memory() const {
    assert(!is_empty() || !at_base_memory(), "");
    // Use _mm_base to defend against updates to _mem->base_memory().
    Node *mem = _mem->is_top() ? _mm_base : _mem;
    assert(mem == check_memory(), "");
    return mem;
  }
  Node* memory2() const {
    assert(_mem2 == check_memory2(), "");
    return _mem2;
  }
  void set_memory(Node* mem) {
    if (at_base_memory()) {
      // Note that this does not change the invariant _mm_base.
      _mm->set_base_memory(mem);
    } else {
      _mm->set_memory_at(_idx, mem);
    }
    _mem = mem;
    assert_synch();
  }

  // Recover from a side effect to the MergeMemNode.
  void set_memory() {
    _mem = _mm->in(_idx);
  }

  bool next()  { return next(false); }
  bool next2() { return next(true); }

  bool next_non_empty()  { return next_non_empty(false); }
  bool next_non_empty2() { return next_non_empty(true); }
  // next_non_empty2 can yield states where is_empty() is true

 private:
  // find the next item, which might be empty
  bool next(bool have_mm2) {
    assert((_mm2 != NULL) == have_mm2, "use other next");
    assert_synch();
    if (++_idx < _cnt) {
      // Note:  This iterator allows _mm to be non-sparse.
      // It behaves the same whether _mem is top or base_memory.
      _mem = _mm->in(_idx);
      if (have_mm2)
        _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
      return true;
    }
    return false;
  }

  // find the next non-empty item
  bool next_non_empty(bool have_mm2) {
    while (next(have_mm2)) {
      if (!is_empty()) {
        // make sure _mem2 is filled in sensibly
        if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
        return true;
      } else if (have_mm2 && !is_empty2()) {
        return true;   // is_empty() == true
      }
    }
    return false;
  }
};

//------------------------------Prefetch---------------------------------------

// Non-faulting prefetch load.  Prefetch for many reads.
class PrefetchReadNode : public Node {
public:
  PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const { return idx==2; }
  virtual const Type *bottom_type() const { return Type::ABIO; }
};

// Non-faulting prefetch load.  Prefetch for many reads & many writes.
class PrefetchWriteNode : public Node {
public:
  PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const { return idx==2; }
1259
  virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
D
duke 已提交
1260
};
1261 1262

#endif // SHARE_VM_OPTO_MEMNODE_HPP