heapRegionSeq.cpp 14.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/heapRegionSeq.hpp"
#include "memory/allocation.hpp"
29 30 31 32 33 34 35 36 37 38 39 40 41

// Local to this file.

static int orderRegions(HeapRegion** hr1p, HeapRegion** hr2p) {
  if ((*hr1p)->end() <= (*hr2p)->bottom()) return -1;
  else if ((*hr2p)->end() <= (*hr1p)->bottom()) return 1;
  else if (*hr1p == *hr2p) return 0;
  else {
    assert(false, "We should never compare distinct overlapping regions.");
  }
  return 0;
}

I
iveresov 已提交
42
HeapRegionSeq::HeapRegionSeq(const size_t max_size) :
43 44 45 46
  _alloc_search_start(0),
  // The line below is the worst bit of C++ hackery I've ever written
  // (Detlefs, 11/23).  You should think of it as equivalent to
  // "_regions(100, true)": initialize the growable array and inform it
47 48 49 50 51 52 53 54 55 56 57 58 59
  // that it should allocate its elem array(s) on the C heap.
  //
  // The first argument, however, is actually a comma expression
  // (set_allocation_type(this, C_HEAP), 100). The purpose of the
  // set_allocation_type() call is to replace the default allocation
  // type for embedded objects STACK_OR_EMBEDDED with C_HEAP. It will
  // allow to pass the assert in GenericGrowableArray() which checks
  // that a growable array object must be on C heap if elements are.
  //
  // Note: containing object is allocated on C heap since it is CHeapObj.
  //
  _regions((ResourceObj::set_allocation_type((address)&_regions,
                                             ResourceObj::C_HEAP),
I
iveresov 已提交
60
            (int)max_size),
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
           true),
  _next_rr_candidate(0),
  _seq_bottom(NULL)
{}

// Private methods.

HeapWord*
HeapRegionSeq::alloc_obj_from_region_index(int ind, size_t word_size) {
  assert(G1CollectedHeap::isHumongous(word_size),
         "Allocation size should be humongous");
  int cur = ind;
  int first = cur;
  size_t sumSizes = 0;
  while (cur < _regions.length() && sumSizes < word_size) {
    // Loop invariant:
    //  For all i in [first, cur):
    //       _regions.at(i)->is_empty()
    //    && _regions.at(i) is contiguous with its predecessor, if any
    //  && sumSizes is the sum of the sizes of the regions in the interval
    //       [first, cur)
    HeapRegion* curhr = _regions.at(cur);
    if (curhr->is_empty()
        && (first == cur
            || (_regions.at(cur-1)->end() ==
                curhr->bottom()))) {
      sumSizes += curhr->capacity() / HeapWordSize;
    } else {
      first = cur + 1;
      sumSizes = 0;
    }
    cur++;
  }
  if (sumSizes >= word_size) {
    _alloc_search_start = cur;
96 97 98 99 100 101 102 103 104 105 106 107

    // We need to initialize the region(s) we just discovered. This is
    // a bit tricky given that it can happen concurrently with
    // refinement threads refining cards on these regions and
    // potentially wanting to refine the BOT as they are scanning
    // those cards (this can happen shortly after a cleanup; see CR
    // 6991377). So we have to set up the region(s) carefully and in
    // a specific order.

    // Currently, allocs_are_zero_filled() returns false. The zero
    // filling infrastructure will be going away soon (see CR 6977804).
    // So no need to do anything else here.
108
    bool zf = G1CollectedHeap::heap()->allocs_are_zero_filled();
109 110 111
    assert(!zf, "not supported");

    // This will be the "starts humongous" region.
112
    HeapRegion* first_hr = _regions.at(first);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    {
      MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
      first_hr->set_zero_fill_allocated();
    }
    // The header of the new object will be placed at the bottom of
    // the first region.
    HeapWord* new_obj = first_hr->bottom();
    // This will be the new end of the first region in the series that
    // should also match the end of the last region in the seriers.
    // (Note: sumSizes = "region size" x "number of regions we found").
    HeapWord* new_end = new_obj + sumSizes;
    // This will be the new top of the first region that will reflect
    // this allocation.
    HeapWord* new_top = new_obj + word_size;

    // First, we need to zero the header of the space that we will be
    // allocating. When we update top further down, some refinement
    // threads might try to scan the region. By zeroing the header we
    // ensure that any thread that will try to scan the region will
    // come across the zero klass word and bail out.
    //
    // NOTE: It would not have been correct to have used
    // CollectedHeap::fill_with_object() and make the space look like
    // an int array. The thread that is doing the allocation will
    // later update the object header to a potentially different array
    // type and, for a very short period of time, the klass and length
    // fields will be inconsistent. This could cause a refinement
    // thread to calculate the object size incorrectly.
    Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

    // We will set up the first region as "starts humongous". This
    // will also update the BOT covering all the regions to reflect
    // that there is a single object that starts at the bottom of the
    // first region.
    first_hr->set_startsHumongous(new_end);

    // Then, if there are any, we will set up the "continues
    // humongous" regions.
    HeapRegion* hr = NULL;
    for (int i = first + 1; i < cur; ++i) {
      hr = _regions.at(i);
154 155 156 157
      {
        MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
        hr->set_zero_fill_allocated();
      }
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
      hr->set_continuesHumongous(first_hr);
    }
    // If we have "continues humongous" regions (hr != NULL), then the
    // end of the last one should match new_end.
    assert(hr == NULL || hr->end() == new_end, "sanity");

    // Up to this point no concurrent thread would have been able to
    // do any scanning on any region in this series. All the top
    // fields still point to bottom, so the intersection between
    // [bottom,top] and [card_start,card_end] will be empty. Before we
    // update the top fields, we'll do a storestore to make sure that
    // no thread sees the update to top before the zeroing of the
    // object header and the BOT initialization.
    OrderAccess::storestore();

    // Now that the BOT and the object header have been initialized,
    // we can update top of the "starts humongous" region.
    assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
           "new_top should be in this region");
    first_hr->set_top(new_top);

    // Now, we will update the top fields of the "continues humongous"
    // regions. The reason we need to do this is that, otherwise,
    // these regions would look empty and this will confuse parts of
    // G1. For example, the code that looks for a consecutive number
    // of empty regions will consider them empty and try to
    // re-allocate them. We can extend is_empty() to also include
    // !continuesHumongous(), but it is easier to just update the top
    // fields here.
    hr = NULL;
    for (int i = first + 1; i < cur; ++i) {
      hr = _regions.at(i);
      if ((i + 1) == cur) {
        // last continues humongous region
        assert(hr->bottom() < new_top && new_top <= hr->end(),
               "new_top should fall on this region");
        hr->set_top(new_top);
195
      } else {
196 197 198
        // not last one
        assert(new_top > hr->end(), "new_top should be above this region");
        hr->set_top(hr->end());
199 200
      }
    }
201 202 203 204 205 206 207
    // If we have continues humongous regions (hr != NULL), then the
    // end of the last one should match new_end and its top should
    // match new_top.
    assert(hr == NULL ||
           (hr->end() == new_end && hr->top() == new_top), "sanity");

    return new_obj;
208 209 210 211 212 213
  } else {
    // If we started from the beginning, we want to know why we can't alloc.
    return NULL;
  }
}

214
void HeapRegionSeq::print_empty_runs() {
215 216 217 218 219 220
  int empty_run = 0;
  int n_empty = 0;
  int empty_run_start;
  for (int i = 0; i < _regions.length(); i++) {
    HeapRegion* r = _regions.at(i);
    if (r->continuesHumongous()) continue;
221
    if (r->is_empty()) {
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      assert(!r->isHumongous(), "H regions should not be empty.");
      if (empty_run == 0) empty_run_start = i;
      empty_run++;
      n_empty++;
    } else {
      if (empty_run > 0) {
        gclog_or_tty->print("  %d:%d", empty_run_start, empty_run);
        empty_run = 0;
      }
    }
  }
  if (empty_run > 0) {
    gclog_or_tty->print(" %d:%d", empty_run_start, empty_run);
  }
  gclog_or_tty->print_cr(" [tot = %d]", n_empty);
}

int HeapRegionSeq::find(HeapRegion* hr) {
  // FIXME: optimized for adjacent regions of fixed size.
  int ind = hr->hrs_index();
  if (ind != -1) {
    assert(_regions.at(ind) == hr, "Mismatch");
  }
  return ind;
}


// Public methods.

void HeapRegionSeq::insert(HeapRegion* hr) {
I
iveresov 已提交
252
  assert(!_regions.is_full(), "Too many elements in HeapRegionSeq");
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  if (_regions.length() == 0
      || _regions.top()->end() <= hr->bottom()) {
    hr->set_hrs_index(_regions.length());
    _regions.append(hr);
  } else {
    _regions.append(hr);
    _regions.sort(orderRegions);
    for (int i = 0; i < _regions.length(); i++) {
      _regions.at(i)->set_hrs_index(i);
    }
  }
  char* bot = (char*)_regions.at(0)->bottom();
  if (_seq_bottom == NULL || bot < _seq_bottom) _seq_bottom = bot;
}

size_t HeapRegionSeq::length() {
  return _regions.length();
}

size_t HeapRegionSeq::free_suffix() {
  size_t res = 0;
  int first = _regions.length() - 1;
  int cur = first;
  while (cur >= 0 &&
         (_regions.at(cur)->is_empty()
          && (first == cur
              || (_regions.at(cur+1)->bottom() ==
                  _regions.at(cur)->end())))) {
      res++;
      cur--;
  }
  return res;
}

HeapWord* HeapRegionSeq::obj_allocate(size_t word_size) {
  int cur = _alloc_search_start;
  // Make sure "cur" is a valid index.
  assert(cur >= 0, "Invariant.");
  HeapWord* res = alloc_obj_from_region_index(cur, word_size);
  if (res == NULL)
    res = alloc_obj_from_region_index(0, word_size);
  return res;
}

void HeapRegionSeq::iterate(HeapRegionClosure* blk) {
  iterate_from((HeapRegion*)NULL, blk);
}

// The first argument r is the heap region at which iteration begins.
// This operation runs fastest when r is NULL, or the heap region for
// which a HeapRegionClosure most recently returned true, or the
// heap region immediately to its right in the sequence.  In all
// other cases a linear search is required to find the index of r.

void HeapRegionSeq::iterate_from(HeapRegion* r, HeapRegionClosure* blk) {

  // :::: FIXME ::::
  // Static cache value is bad, especially when we start doing parallel
  // remembered set update. For now just don't cache anything (the
  // code in the def'd out blocks).

#if 0
  static int cached_j = 0;
#endif
  int len = _regions.length();
  int j = 0;
  // Find the index of r.
  if (r != NULL) {
#if 0
    assert(cached_j >= 0, "Invariant.");
    if ((cached_j < len) && (r == _regions.at(cached_j))) {
      j = cached_j;
    } else if ((cached_j + 1 < len) && (r == _regions.at(cached_j + 1))) {
      j = cached_j + 1;
    } else {
      j = find(r);
#endif
      if (j < 0) {
        j = 0;
      }
#if 0
    }
#endif
  }
  int i;
  for (i = j; i < len; i += 1) {
    int res = blk->doHeapRegion(_regions.at(i));
    if (res) {
#if 0
      cached_j = i;
#endif
      blk->incomplete();
      return;
    }
  }
  for (i = 0; i < j; i += 1) {
    int res = blk->doHeapRegion(_regions.at(i));
    if (res) {
#if 0
      cached_j = i;
#endif
      blk->incomplete();
      return;
    }
  }
}

void HeapRegionSeq::iterate_from(int idx, HeapRegionClosure* blk) {
  int len = _regions.length();
  int i;
  for (i = idx; i < len; i++) {
    if (blk->doHeapRegion(_regions.at(i))) {
      blk->incomplete();
      return;
    }
  }
  for (i = 0; i < idx; i++) {
    if (blk->doHeapRegion(_regions.at(i))) {
      blk->incomplete();
      return;
    }
  }
}

MemRegion HeapRegionSeq::shrink_by(size_t shrink_bytes,
                                   size_t& num_regions_deleted) {
  assert(shrink_bytes % os::vm_page_size() == 0, "unaligned");
  assert(shrink_bytes % HeapRegion::GrainBytes == 0, "unaligned");

  if (_regions.length() == 0) {
    num_regions_deleted = 0;
    return MemRegion();
  }
  int j = _regions.length() - 1;
  HeapWord* end = _regions.at(j)->end();
  HeapWord* last_start = end;
  while (j >= 0 && shrink_bytes > 0) {
    HeapRegion* cur = _regions.at(j);
    // We have to leave humongous regions where they are,
    // and work around them.
    if (cur->isHumongous()) {
      return MemRegion(last_start, end);
    }
    assert(cur == _regions.top(), "Should be top");
    if (!cur->is_empty()) break;
398
    cur->reset_zero_fill();
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    shrink_bytes -= cur->capacity();
    num_regions_deleted++;
    _regions.pop();
    last_start = cur->bottom();
    // We need to delete these somehow, but can't currently do so here: if
    // we do, the ZF thread may still access the deleted region.  We'll
    // leave this here as a reminder that we have to do something about
    // this.
    // delete cur;
    j--;
  }
  return MemRegion(last_start, end);
}


class PrintHeapRegionClosure : public  HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    gclog_or_tty->print(PTR_FORMAT ":", r);
    r->print();
    return false;
  }
};

void HeapRegionSeq::print() {
  PrintHeapRegionClosure cl;
  iterate(&cl);
}