allocation.cpp 25.8 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
28 29
#include "memory/genCollectedHeap.hpp"
#include "memory/metaspaceShared.hpp"
30
#include "memory/resourceArea.hpp"
31
#include "memory/universe.hpp"
Z
zgu 已提交
32
#include "runtime/atomic.hpp"
33 34 35
#include "runtime/os.hpp"
#include "runtime/task.hpp"
#include "runtime/threadCritical.hpp"
Z
zgu 已提交
36
#include "services/memTracker.hpp"
37
#include "utilities/ostream.hpp"
Z
zgu 已提交
38

39 40 41 42 43 44 45 46 47
#ifdef TARGET_OS_FAMILY_linux
# include "os_linux.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_solaris
# include "os_solaris.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_windows
# include "os_windows.inline.hpp"
#endif
N
never 已提交
48 49 50
#ifdef TARGET_OS_FAMILY_bsd
# include "os_bsd.inline.hpp"
#endif
D
duke 已提交
51 52 53

void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
54 55
void* StackObj::operator new [](size_t size)  { ShouldNotCallThis(); return 0; };
void  StackObj::operator delete [](void* p)   { ShouldNotCallThis(); };
D
duke 已提交
56 57
void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
58 59
void* _ValueObj::operator new [](size_t size)  { ShouldNotCallThis(); return 0; };
void  _ValueObj::operator delete [](void* p)   { ShouldNotCallThis(); };
D
duke 已提交
60

61 62 63 64 65 66 67 68 69 70 71 72
void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
                                size_t word_size, bool read_only, TRAPS) {
  // Klass has it's own operator new
  return Metaspace::allocate(loader_data, word_size, read_only,
                             Metaspace::NonClassType, CHECK_NULL);
}

bool MetaspaceObj::is_shared() const {
  return MetaspaceShared::is_in_shared_space(this);
}

bool MetaspaceObj::is_metadata() const {
73 74 75 76
  // GC Verify checks use this in guarantees.
  // TODO: either replace them with is_metaspace_object() or remove them.
  // is_metaspace_object() is slower than this test.  This test doesn't
  // seem very useful for metaspace objects anymore though.
77 78 79
  return !Universe::heap()->is_in_reserved(this);
}

80 81 82 83
bool MetaspaceObj::is_metaspace_object() const {
  return Metaspace::contains((void*)this);
}

84 85 86 87
void MetaspaceObj::print_address_on(outputStream* st) const {
  st->print(" {"INTPTR_FORMAT"}", this);
}

Z
zgu 已提交
88
void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
D
duke 已提交
89 90 91
  address res;
  switch (type) {
   case C_HEAP:
Z
zgu 已提交
92
    res = (address)AllocateHeap(size, flags, CALLER_PC);
93
    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
D
duke 已提交
94 95
    break;
   case RESOURCE_AREA:
96
    // new(size) sets allocation type RESOURCE_AREA.
D
duke 已提交
97 98 99 100 101 102 103 104
    res = (address)operator new(size);
    break;
   default:
    ShouldNotReachHere();
  }
  return res;
}

105 106 107 108
void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) {
  return (address) operator new(size, type, flags);
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
    allocation_type type, MEMFLAGS flags) {
  //should only call this with std::nothrow, use other operator new() otherwise
  address res;
  switch (type) {
   case C_HEAP:
    res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
    DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
    break;
   case RESOURCE_AREA:
    // new(size) sets allocation type RESOURCE_AREA.
    res = (address)operator new(size, std::nothrow);
    break;
   default:
    ShouldNotReachHere();
  }
  return res;
}

128 129 130 131
void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
    allocation_type type, MEMFLAGS flags) {
  return (address)operator new(size, nothrow_constant, type, flags);
}
132

D
duke 已提交
133 134 135
void ResourceObj::operator delete(void* p) {
  assert(((ResourceObj *)p)->allocated_on_C_heap(),
         "delete only allowed for C_HEAP objects");
136
  DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
D
duke 已提交
137 138 139
  FreeHeap(p);
}

140 141 142 143
void ResourceObj::operator delete [](void* p) {
  operator delete(p);
}

144 145 146 147
#ifdef ASSERT
void ResourceObj::set_allocation_type(address res, allocation_type type) {
    // Set allocation type in the resource object
    uintptr_t allocation = (uintptr_t)res;
148
    assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
149
    assert(type <= allocation_mask, "incorrect allocation type");
150 151 152 153 154 155 156
    ResourceObj* resobj = (ResourceObj *)res;
    resobj->_allocation_t[0] = ~(allocation + type);
    if (type != STACK_OR_EMBEDDED) {
      // Called from operator new() and CollectionSetChooser(),
      // set verification value.
      resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
    }
157 158
}

159
ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
160 161 162 163 164 165 166 167
    assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
    return (allocation_type)((~_allocation_t[0]) & allocation_mask);
}

bool ResourceObj::is_type_set() const {
    allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
    return get_allocation_type()  == type &&
           (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
168 169
}

170
ResourceObj::ResourceObj() { // default constructor
171 172 173
    if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
      // Operator new() is not called for allocations
      // on stack and for embedded objects.
174
      set_allocation_type((address)this, STACK_OR_EMBEDDED);
175 176 177 178 179 180 181 182 183 184 185
    } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
      // For some reason we got a value which resembles
      // an embedded or stack object (operator new() does not
      // set such type). Keep it since it is valid value
      // (even if it was garbage).
      // Ignore garbage in other fields.
    } else if (is_type_set()) {
      // Operator new() was called and type was set.
      assert(!allocated_on_stack(),
             err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
                     this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
186
    } else {
187 188 189
      // Operator new() was not called.
      // Assume that it is embedded or stack object.
      set_allocation_type((address)this, STACK_OR_EMBEDDED);
190
    }
191
    _allocation_t[1] = 0; // Zap verification value
192 193
}

194
ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
195
    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
196 197 198 199
    // Note: garbage may resembles valid value.
    assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
           err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
200
    set_allocation_type((address)this, STACK_OR_EMBEDDED);
201
    _allocation_t[1] = 0; // Zap verification value
202 203 204 205
}

ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
206 207 208 209
    assert(allocated_on_stack(),
           err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
    // Keep current _allocation_t value;
210 211 212 213
    return *this;
}

ResourceObj::~ResourceObj() {
214
    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
215 216
    if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
      _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
217 218 219 220 221
    }
}
#endif // ASSERT


D
duke 已提交
222 223
void trace_heap_malloc(size_t size, const char* name, void* p) {
  // A lock is not needed here - tty uses a lock internally
224
  tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
D
duke 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
}


void trace_heap_free(void* p) {
  // A lock is not needed here - tty uses a lock internally
  tty->print_cr("Heap free   " INTPTR_FORMAT, p);
}

bool warn_new_operator = false; // see vm_main

//--------------------------------------------------------------------------------------
// ChunkPool implementation

// MT-safe pool of chunks to reduce malloc/free thrashing
// NB: not using Mutex because pools are used before Threads are initialized
Z
zgu 已提交
240
class ChunkPool: public CHeapObj<mtInternal> {
D
duke 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
  size_t       _num_chunks;   // number of unused chunks in pool
  size_t       _num_used;     // number of chunks currently checked out
  const size_t _size;         // size of each chunk (must be uniform)

  // Our three static pools
  static ChunkPool* _large_pool;
  static ChunkPool* _medium_pool;
  static ChunkPool* _small_pool;

  // return first element or null
  void* get_first() {
    Chunk* c = _first;
    if (_first) {
      _first = _first->next();
      _num_chunks--;
    }
    return c;
  }

 public:
  // All chunks in a ChunkPool has the same size
   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }

  // Allocate a new chunk from the pool (might expand the pool)
Z
zgu 已提交
266
  _NOINLINE_ void* allocate(size_t bytes) {
D
duke 已提交
267 268
    assert(bytes == _size, "bad size");
    void* p = NULL;
Z
zgu 已提交
269 270
    // No VM lock can be taken inside ThreadCritical lock, so os::malloc
    // should be done outside ThreadCritical lock due to NMT
D
duke 已提交
271 272 273 274
    { ThreadCritical tc;
      _num_used++;
      p = get_first();
    }
Z
zgu 已提交
275
    if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
D
duke 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    if (p == NULL)
      vm_exit_out_of_memory(bytes, "ChunkPool::allocate");

    return p;
  }

  // Return a chunk to the pool
  void free(Chunk* chunk) {
    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
    ThreadCritical tc;
    _num_used--;

    // Add chunk to list
    chunk->set_next(_first);
    _first = chunk;
    _num_chunks++;
  }

  // Prune the pool
  void free_all_but(size_t n) {
Z
zgu 已提交
296 297 298
    Chunk* cur = NULL;
    Chunk* next;
    {
D
duke 已提交
299 300 301 302
    // if we have more than n chunks, free all of them
    ThreadCritical tc;
    if (_num_chunks > n) {
      // free chunks at end of queue, for better locality
Z
zgu 已提交
303
        cur = _first;
D
duke 已提交
304 305 306
      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();

      if (cur != NULL) {
Z
zgu 已提交
307
          next = cur->next();
D
duke 已提交
308 309 310
        cur->set_next(NULL);
        cur = next;

Z
zgu 已提交
311 312 313 314 315 316 317
          _num_chunks = n;
        }
      }
    }

    // Free all remaining chunks, outside of ThreadCritical
    // to avoid deadlock with NMT
D
duke 已提交
318 319
        while(cur != NULL) {
          next = cur->next();
Z
zgu 已提交
320
      os::free(cur, mtChunk);
D
duke 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334
          cur = next;
        }
      }

  // Accessors to preallocated pool's
  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }

  static void initialize() {
    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
  }
335 336 337 338 339 340 341

  static void clean() {
    enum { BlocksToKeep = 5 };
     _small_pool->free_all_but(BlocksToKeep);
     _medium_pool->free_all_but(BlocksToKeep);
     _large_pool->free_all_but(BlocksToKeep);
  }
D
duke 已提交
342 343 344 345 346 347 348 349 350 351
};

ChunkPool* ChunkPool::_large_pool  = NULL;
ChunkPool* ChunkPool::_medium_pool = NULL;
ChunkPool* ChunkPool::_small_pool  = NULL;

void chunkpool_init() {
  ChunkPool::initialize();
}

352 353 354 355 356
void
Chunk::clean_chunk_pool() {
  ChunkPool::clean();
}

D
duke 已提交
357 358 359

//--------------------------------------------------------------------------------------
// ChunkPoolCleaner implementation
360
//
D
duke 已提交
361 362

class ChunkPoolCleaner : public PeriodicTask {
363
  enum { CleaningInterval = 5000 };      // cleaning interval in ms
D
duke 已提交
364 365 366 367

 public:
   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   void task() {
368
     ChunkPool::clean();
D
duke 已提交
369 370 371 372 373 374 375 376 377
   }
};

//--------------------------------------------------------------------------------------
// Chunk implementation

void* Chunk::operator new(size_t requested_size, size_t length) {
  // requested_size is equal to sizeof(Chunk) but in order for the arena
  // allocations to come out aligned as expected the size must be aligned
378
  // to expected arena alignment.
D
duke 已提交
379 380 381 382 383 384 385 386
  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
  size_t bytes = ARENA_ALIGN(requested_size) + length;
  switch (length) {
   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
   default: {
Z
zgu 已提交
387
     void *p =  os::malloc(bytes, mtChunk, CALLER_PC);
D
duke 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400
     if (p == NULL)
       vm_exit_out_of_memory(bytes, "Chunk::new");
     return p;
   }
  }
}

void Chunk::operator delete(void* p) {
  Chunk* c = (Chunk*)p;
  switch (c->length()) {
   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
Z
zgu 已提交
401
   default:                 os::free(c, mtChunk);
D
duke 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  }
}

Chunk::Chunk(size_t length) : _len(length) {
  _next = NULL;         // Chain on the linked list
}


void Chunk::chop() {
  Chunk *k = this;
  while( k ) {
    Chunk *tmp = k->next();
    // clear out this chunk (to detect allocation bugs)
    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
    delete k;                   // Free chunk (was malloc'd)
    k = tmp;
  }
}

void Chunk::next_chop() {
  _next->chop();
  _next = NULL;
}


void Chunk::start_chunk_pool_cleaner_task() {
#ifdef ASSERT
  static bool task_created = false;
  assert(!task_created, "should not start chuck pool cleaner twice");
  task_created = true;
#endif
  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
  cleaner->enroll();
}

//------------------------------Arena------------------------------------------
Z
zgu 已提交
438
NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
D
duke 已提交
439 440 441 442 443 444 445 446

Arena::Arena(size_t init_size) {
  size_t round_size = (sizeof (char *)) - 1;
  init_size = (init_size+round_size) & ~round_size;
  _first = _chunk = new (init_size) Chunk(init_size);
  _hwm = _chunk->bottom();      // Save the cached hwm, max
  _max = _chunk->top();
  set_size_in_bytes(init_size);
Z
zgu 已提交
447
  NOT_PRODUCT(Atomic::inc(&_instance_count);)
D
duke 已提交
448 449 450 451 452 453 454
}

Arena::Arena() {
  _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
  _hwm = _chunk->bottom();      // Save the cached hwm, max
  _max = _chunk->top();
  set_size_in_bytes(Chunk::init_size);
Z
zgu 已提交
455
  NOT_PRODUCT(Atomic::inc(&_instance_count);)
D
duke 已提交
456 457 458 459 460 461 462 463
}

Arena *Arena::move_contents(Arena *copy) {
  copy->destruct_contents();
  copy->_chunk = _chunk;
  copy->_hwm   = _hwm;
  copy->_max   = _max;
  copy->_first = _first;
464 465 466 467 468 469

  // workaround rare racing condition, which could double count
  // the arena size by native memory tracking
  size_t size = size_in_bytes();
  set_size_in_bytes(0);
  copy->set_size_in_bytes(size);
D
duke 已提交
470 471 472 473 474 475 476
  // Destroy original arena
  reset();
  return copy;            // Return Arena with contents
}

Arena::~Arena() {
  destruct_contents();
Z
zgu 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  NOT_PRODUCT(Atomic::dec(&_instance_count);)
}

void* Arena::operator new(size_t size) {
  assert(false, "Use dynamic memory type binding");
  return NULL;
}

void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
  assert(false, "Use dynamic memory type binding");
  return NULL;
}

  // dynamic memory type binding
void* Arena::operator new(size_t size, MEMFLAGS flags) {
#ifdef ASSERT
  void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
  return p;
#else
  return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
#endif
}

void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
#ifdef ASSERT
  void* p = os::malloc(size, flags|otArena, CALLER_PC);
  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
  return p;
#else
  return os::malloc(size, flags|otArena, CALLER_PC);
#endif
}

void Arena::operator delete(void* p) {
  FreeHeap(p);
D
duke 已提交
513 514 515 516 517 518 519 520
}

// Destroy this arenas contents and reset to empty
void Arena::destruct_contents() {
  if (UseMallocOnly && _first != NULL) {
    char* end = _first->next() ? _first->top() : _hwm;
    free_malloced_objects(_first, _first->bottom(), end, _hwm);
  }
521 522 523
  // reset size before chop to avoid a rare racing condition
  // that can have total arena memory exceed total chunk memory
  set_size_in_bytes(0);
D
duke 已提交
524 525 526 527
  _first->chop();
  reset();
}

Z
zgu 已提交
528 529 530 531 532 533 534 535
// This is high traffic method, but many calls actually don't
// change the size
void Arena::set_size_in_bytes(size_t size) {
  if (_size_in_bytes != size) {
    _size_in_bytes = size;
    MemTracker::record_arena_size((address)this, size);
  }
}
D
duke 已提交
536 537 538 539 540 541 542 543 544 545 546 547

// Total of all Chunks in arena
size_t Arena::used() const {
  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
  register Chunk *k = _first;
  while( k != _chunk) {         // Whilst have Chunks in a row
    sum += k->length();         // Total size of this Chunk
    k = k->next();              // Bump along to next Chunk
  }
  return sum;                   // Return total consumed space.
}

548 549 550
void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
  vm_exit_out_of_memory(sz, whence);
}
D
duke 已提交
551 552

// Grow a new Chunk
553
void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
D
duke 已提交
554 555 556 557 558 559
  // Get minimal required size.  Either real big, or even bigger for giant objs
  size_t len = MAX2(x, (size_t) Chunk::size);

  Chunk *k = _chunk;            // Get filled-up chunk address
  _chunk = new (len) Chunk(len);

560
  if (_chunk == NULL) {
561 562 563 564
    if (alloc_failmode == AllocFailStrategy::EXIT_OOM) {
      signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
    }
    return NULL;
565
  }
D
duke 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578
  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
  else _first = _chunk;
  _hwm  = _chunk->bottom();     // Save the cached hwm, max
  _max =  _chunk->top();
  set_size_in_bytes(size_in_bytes() + len);
  void* result = _hwm;
  _hwm += x;
  return result;
}



// Reallocate storage in Arena.
579
void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
D
duke 已提交
580 581 582 583 584
  assert(new_size >= 0, "bad size");
  if (new_size == 0) return NULL;
#ifdef ASSERT
  if (UseMallocOnly) {
    // always allocate a new object  (otherwise we'll free this one twice)
585 586 587 588
    char* copy = (char*)Amalloc(new_size, alloc_failmode);
    if (copy == NULL) {
      return NULL;
    }
D
duke 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    size_t n = MIN2(old_size, new_size);
    if (n > 0) memcpy(copy, old_ptr, n);
    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
    return copy;
  }
#endif
  char *c_old = (char*)old_ptr; // Handy name
  // Stupid fast special case
  if( new_size <= old_size ) {  // Shrink in-place
    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
      _hwm = c_old+new_size;    // Adjust hwm
    return c_old;
  }

  // make sure that new_size is legal
  size_t corrected_new_size = ARENA_ALIGN(new_size);

  // See if we can resize in-place
  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
    _hwm = c_old+corrected_new_size;      // Adjust hwm
    return c_old;               // Return old pointer
  }

  // Oops, got to relocate guts
614 615 616 617
  void *new_ptr = Amalloc(new_size, alloc_failmode);
  if (new_ptr == NULL) {
    return NULL;
  }
D
duke 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  memcpy( new_ptr, c_old, old_size );
  Afree(c_old,old_size);        // Mostly done to keep stats accurate
  return new_ptr;
}


// Determine if pointer belongs to this Arena or not.
bool Arena::contains( const void *ptr ) const {
#ifdef ASSERT
  if (UseMallocOnly) {
    // really slow, but not easy to make fast
    if (_chunk == NULL) return false;
    char** bottom = (char**)_chunk->bottom();
    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
      if (*p == ptr) return true;
    }
    for (Chunk *c = _first; c != NULL; c = c->next()) {
      if (c == _chunk) continue;  // current chunk has been processed
      char** bottom = (char**)c->bottom();
      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
        if (*p == ptr) return true;
      }
    }
    return false;
  }
#endif
  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
    return true;                // Check for in this chunk
  for (Chunk *c = _first; c; c = c->next()) {
    if (c == _chunk) continue;  // current chunk has been processed
    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
      return true;              // Check for every chunk in Arena
    }
  }
  return false;                 // Not in any Chunk, so not in Arena
}


#ifdef ASSERT
void* Arena::malloc(size_t size) {
  assert(UseMallocOnly, "shouldn't call");
  // use malloc, but save pointer in res. area for later freeing
  char** save = (char**)internal_malloc_4(sizeof(char*));
Z
zgu 已提交
661
  return (*save = (char*)os::malloc(size, mtChunk));
D
duke 已提交
662 663 664 665 666
}

// for debugging with UseMallocOnly
void* Arena::internal_malloc_4(size_t x) {
  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
667
  check_for_overflow(x, "Arena::internal_malloc_4");
D
duke 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  if (_hwm + x > _max) {
    return grow(x);
  } else {
    char *old = _hwm;
    _hwm += x;
    return old;
  }
}
#endif


//--------------------------------------------------------------------------------------
// Non-product code

#ifndef PRODUCT
// The global operator new should never be called since it will usually indicate
// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
// that they're allocated on the C heap.
// Commented out in product version to avoid conflicts with third-party C++ native code.
void* operator new(size_t size){
688 689 690 691 692 693 694 695 696 697 698 699 700
  ShouldNotReachHere(); return 0;
}

void* operator new [](size_t size){
  ShouldNotReachHere(); return 0;
}

void* operator new(size_t size, const std::nothrow_t&  nothrow_constant){
  ShouldNotReachHere(); return 0;
}

void* operator new [](size_t size, std::nothrow_t&  nothrow_constant){
  ShouldNotReachHere(); return 0;
D
duke 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713
}

void AllocatedObj::print() const       { print_on(tty); }
void AllocatedObj::print_value() const { print_value_on(tty); }

void AllocatedObj::print_on(outputStream* st) const {
  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
}

void AllocatedObj::print_value_on(outputStream* st) const {
  st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
}

714 715 716
julong Arena::_bytes_allocated = 0;

void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
D
duke 已提交
717 718

AllocStats::AllocStats() {
719 720
  start_mallocs      = os::num_mallocs;
  start_frees        = os::num_frees;
D
duke 已提交
721
  start_malloc_bytes = os::alloc_bytes;
722 723
  start_mfree_bytes  = os::free_bytes;
  start_res_bytes    = Arena::_bytes_allocated;
D
duke 已提交
724 725
}

726 727 728 729 730
julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
D
duke 已提交
731
void    AllocStats::print() {
732 733 734
  tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
                UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
                num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
D
duke 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
}


// debugging code
inline void Arena::free_all(char** start, char** end) {
  for (char** p = start; p < end; p++) if (*p) os::free(*p);
}

void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
  assert(UseMallocOnly, "should not call");
  // free all objects malloced since resource mark was created; resource area
  // contains their addresses
  if (chunk->next()) {
    // this chunk is full, and some others too
    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
      char* top = c->top();
      if (c->next() == NULL) {
        top = hwm2;     // last junk is only used up to hwm2
        assert(c->contains(hwm2), "bad hwm2");
      }
      free_all((char**)c->bottom(), (char**)top);
    }
    assert(chunk->contains(hwm), "bad hwm");
    assert(chunk->contains(max), "bad max");
    free_all((char**)hwm, (char**)max);
  } else {
    // this chunk was partially used
    assert(chunk->contains(hwm), "bad hwm");
    assert(chunk->contains(hwm2), "bad hwm2");
    free_all((char**)hwm, (char**)hwm2);
  }
}


ReallocMark::ReallocMark() {
#ifdef ASSERT
  Thread *thread = ThreadLocalStorage::get_thread_slow();
  _nesting = thread->resource_area()->nesting();
#endif
}

void ReallocMark::check() {
#ifdef ASSERT
  if (_nesting != Thread::current()->resource_area()->nesting()) {
    fatal("allocation bug: array could grow within nested ResourceMark");
  }
#endif
}

#endif // Non-product