frame_sparc.cpp 21.8 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_frame_sparc.cpp.incl"

void RegisterMap::pd_clear() {
  if (_thread->has_last_Java_frame()) {
    frame fr = _thread->last_frame();
    _window = fr.sp();
  } else {
    _window = NULL;
  }
  _younger_window = NULL;
}


// Unified register numbering scheme: each 32-bits counts as a register
// number, so all the V9 registers take 2 slots.
const static int R_L_nums[] = {0+040,2+040,4+040,6+040,8+040,10+040,12+040,14+040};
const static int R_I_nums[] = {0+060,2+060,4+060,6+060,8+060,10+060,12+060,14+060};
const static int R_O_nums[] = {0+020,2+020,4+020,6+020,8+020,10+020,12+020,14+020};
const static int R_G_nums[] = {0+000,2+000,4+000,6+000,8+000,10+000,12+000,14+000};
static RegisterMap::LocationValidType bad_mask = 0;
static RegisterMap::LocationValidType R_LIO_mask = 0;
static bool register_map_inited = false;

static void register_map_init() {
  if (!register_map_inited) {
    register_map_inited = true;
    int i;
    for (i = 0; i < 8; i++) {
      assert(R_L_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
      assert(R_I_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
      assert(R_O_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
      assert(R_G_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    }

    bad_mask |= (1LL << R_O_nums[6]); // SP
    bad_mask |= (1LL << R_O_nums[7]); // cPC
    bad_mask |= (1LL << R_I_nums[6]); // FP
    bad_mask |= (1LL << R_I_nums[7]); // rPC
    bad_mask |= (1LL << R_G_nums[2]); // TLS
    bad_mask |= (1LL << R_G_nums[7]); // reserved by libthread

    for (i = 0; i < 8; i++) {
      R_LIO_mask |= (1LL << R_L_nums[i]);
      R_LIO_mask |= (1LL << R_I_nums[i]);
      R_LIO_mask |= (1LL << R_O_nums[i]);
    }
  }
}


address RegisterMap::pd_location(VMReg regname) const {
  register_map_init();

  assert(regname->is_reg(), "sanity check");
  // Only the GPRs get handled this way
  if( !regname->is_Register())
    return NULL;

  // don't talk about bad registers
  if ((bad_mask & ((LocationValidType)1 << regname->value())) != 0) {
    return NULL;
  }

  // Convert to a GPR
  Register reg;
  int second_word = 0;
  // 32-bit registers for in, out and local
  if (!regname->is_concrete()) {
    // HMM ought to return NULL for any non-concrete (odd) vmreg
    // this all tied up in the fact we put out double oopMaps for
    // register locations. When that is fixed we'd will return NULL
    // (or assert here).
    reg = regname->prev()->as_Register();
#ifdef _LP64
    second_word = sizeof(jint);
#else
    return NULL;
#endif // _LP64
  } else {
    reg = regname->as_Register();
  }
  if (reg->is_out()) {
    assert(_younger_window != NULL, "Younger window should be available");
    return second_word + (address)&_younger_window[reg->after_save()->sp_offset_in_saved_window()];
  }
  if (reg->is_local() || reg->is_in()) {
    assert(_window != NULL, "Window should be available");
    return second_word + (address)&_window[reg->sp_offset_in_saved_window()];
  }
  // Only the window'd GPRs get handled this way; not the globals.
  return NULL;
}


#ifdef ASSERT
void RegisterMap::check_location_valid() {
  register_map_init();
  assert((_location_valid[0] & bad_mask) == 0, "cannot have special locations for SP,FP,TLS,etc.");
}
#endif

// We are shifting windows.  That means we are moving all %i to %o,
// getting rid of all current %l, and keeping all %g.  This is only
// complicated if any of the location pointers for these are valid.
// The normal case is that everything is in its standard register window
// home, and _location_valid[0] is zero.  In that case, this routine
// does exactly nothing.
void RegisterMap::shift_individual_registers() {
  if (!update_map())  return;  // this only applies to maps with locations
  register_map_init();
  check_location_valid();

  LocationValidType lv = _location_valid[0];
  LocationValidType lv0 = lv;

  lv &= ~R_LIO_mask;  // clear %l, %o, %i regs

  // if we cleared some non-%g locations, we may have to do some shifting
  if (lv != lv0) {
    // copy %i0-%i5 to %o0-%o5, if they have special locations
    // This can happen in within stubs which spill argument registers
    // around a dynamic link operation, such as resolve_opt_virtual_call.
    for (int i = 0; i < 8; i++) {
      if (lv0 & (1LL << R_I_nums[i])) {
        _location[R_O_nums[i]] = _location[R_I_nums[i]];
        lv |=  (1LL << R_O_nums[i]);
      }
    }
  }

  _location_valid[0] = lv;
  check_location_valid();
}


bool frame::safe_for_sender(JavaThread *thread) {
  address   sp = (address)_sp;
  if (sp != NULL &&
      (sp <= thread->stack_base() && sp >= thread->stack_base() - thread->stack_size())) {
      // Unfortunately we can only check frame complete for runtime stubs and nmethod
      // other generic buffer blobs are more problematic so we just assume they are
      // ok. adapter blobs never have a frame complete and are never ok.
      if (_cb != NULL && !_cb->is_frame_complete_at(_pc)) {
        if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
          return false;
        }
      }
      return true;
  }
  return false;
}

// constructors

// Construct an unpatchable, deficient frame
frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
#ifdef _LP64
  assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp");
#endif
  _sp = sp;
  _younger_sp = NULL;
  _pc = pc;
  _cb = cb;
  _sp_adjustment_by_callee = 0;
  assert(pc == NULL && cb == NULL || pc != NULL, "can't have a cb and no pc!");
  if (_cb == NULL && _pc != NULL ) {
    _cb = CodeCache::find_blob(_pc);
  }
  _deopt_state = unknown;
#ifdef ASSERT
  if ( _cb != NULL && _cb->is_nmethod()) {
    // Without a valid unextended_sp() we can't convert the pc to "original"
    assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant broken");
  }
#endif // ASSERT
}

frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_adjusted_stack) {
  _sp = sp;
  _younger_sp = younger_sp;
  if (younger_sp == NULL) {
    // make a deficient frame which doesn't know where its PC is
    _pc = NULL;
    _cb = NULL;
  } else {
    _pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
    assert( (intptr_t*)younger_sp[FP->sp_offset_in_saved_window()] == (intptr_t*)((intptr_t)sp - STACK_BIAS), "younger_sp must be valid");
    // Any frame we ever build should always "safe" therefore we should not have to call
    // find_blob_unsafe
    // In case of native stubs, the pc retrieved here might be
    // wrong.  (the _last_native_pc will have the right value)
    // So do not put add any asserts on the _pc here.
  }
  if (younger_frame_adjusted_stack) {
    // compute adjustment to this frame's SP made by its interpreted callee
    _sp_adjustment_by_callee = (intptr_t*)((intptr_t)younger_sp[I5_savedSP->sp_offset_in_saved_window()] +
                                             STACK_BIAS) - sp;
  } else {
    _sp_adjustment_by_callee = 0;
  }

  _deopt_state = unknown;

  // It is important that frame be fully construct when we do this lookup
  // as get_original_pc() needs correct value for unextended_sp()
  if (_pc != NULL) {
    _cb = CodeCache::find_blob(_pc);
    if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
      _pc = ((nmethod*)_cb)->get_original_pc(this);
      _deopt_state = is_deoptimized;
    } else {
      _deopt_state = not_deoptimized;
    }
  }
}

bool frame::is_interpreted_frame() const  {
  return Interpreter::contains(pc());
}

// sender_sp

intptr_t* frame::interpreter_frame_sender_sp() const {
  assert(is_interpreted_frame(), "interpreted frame expected");
  return fp();
}

#ifndef CC_INTERP
void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
  assert(is_interpreted_frame(), "interpreted frame expected");
  Unimplemented();
}
#endif // CC_INTERP


#ifdef ASSERT
// Debugging aid
static frame nth_sender(int n) {
  frame f = JavaThread::current()->last_frame();

  for(int i = 0; i < n; ++i)
    f = f.sender((RegisterMap*)NULL);

  printf("first frame %d\n",          f.is_first_frame()       ? 1 : 0);
  printf("interpreted frame %d\n",    f.is_interpreted_frame() ? 1 : 0);
  printf("java frame %d\n",           f.is_java_frame()        ? 1 : 0);
  printf("entry frame %d\n",          f.is_entry_frame()       ? 1 : 0);
  printf("native frame %d\n",         f.is_native_frame()      ? 1 : 0);
  if (f.is_compiled_frame()) {
    if (f.is_deoptimized_frame())
      printf("deoptimized frame 1\n");
    else
      printf("compiled frame 1\n");
  }

  return f;
}
#endif


frame frame::sender_for_entry_frame(RegisterMap *map) const {
  assert(map != NULL, "map must be set");
  // Java frame called from C; skip all C frames and return top C
  // frame of that chunk as the sender
  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
  assert(!entry_frame_is_first(), "next Java fp must be non zero");
  assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack");
  intptr_t* last_Java_sp = jfa->last_Java_sp();
  // Since we are walking the stack now this nested anchor is obviously walkable
  // even if it wasn't when it was stacked.
  if (!jfa->walkable()) {
    // Capture _last_Java_pc (if needed) and mark anchor walkable.
    jfa->capture_last_Java_pc(_sp);
  }
  assert(jfa->last_Java_pc() != NULL, "No captured pc!");
  map->clear();
  map->make_integer_regs_unsaved();
  map->shift_window(last_Java_sp, NULL);
  assert(map->include_argument_oops(), "should be set by clear");
  return frame(last_Java_sp, frame::unpatchable, jfa->last_Java_pc());
}

frame frame::sender_for_interpreter_frame(RegisterMap *map) const {
  ShouldNotCallThis();
  return sender(map);
}

frame frame::sender_for_compiled_frame(RegisterMap *map) const {
  ShouldNotCallThis();
  return sender(map);
}

frame frame::sender(RegisterMap* map) const {
  assert(map != NULL, "map must be set");

  assert(CodeCache::find_blob_unsafe(_pc) == _cb, "inconsistent");

  // Default is not to follow arguments; update it accordingly below
  map->set_include_argument_oops(false);

  if (is_entry_frame()) return sender_for_entry_frame(map);

  intptr_t* younger_sp     = sp();
  intptr_t* sp             = sender_sp();
  bool      adjusted_stack = false;

  // Note:  The version of this operation on any platform with callee-save
  //        registers must update the register map (if not null).
  //        In order to do this correctly, the various subtypes of
  //        of frame (interpreted, compiled, glue, native),
  //        must be distinguished.  There is no need on SPARC for
  //        such distinctions, because all callee-save registers are
  //        preserved for all frames via SPARC-specific mechanisms.
  //
  //        *** HOWEVER, *** if and when we make any floating-point
  //        registers callee-saved, then we will have to copy over
  //        the RegisterMap update logic from the Intel code.

  // The constructor of the sender must know whether this frame is interpreted so it can set the
  // sender's _sp_adjustment_by_callee field.  An osr adapter frame was originally
  // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
  // explicitly recognized.

  adjusted_stack = is_interpreted_frame();
  if (adjusted_stack) {
    map->make_integer_regs_unsaved();
    map->shift_window(sp, younger_sp);
  } else if (_cb != NULL) {
    // Update the locations of implicitly saved registers to be their
    // addresses in the register save area.
    // For %o registers, the addresses of %i registers in the next younger
    // frame are used.
    map->shift_window(sp, younger_sp);
    if (map->update_map()) {
      // Tell GC to use argument oopmaps for some runtime stubs that need it.
      // For C1, the runtime stub might not have oop maps, so set this flag
      // outside of update_register_map.
      map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
      if (_cb->oop_maps() != NULL) {
        OopMapSet::update_register_map(this, map);
      }
    }
  }
  return frame(sp, younger_sp, adjusted_stack);
}


void frame::patch_pc(Thread* thread, address pc) {
  if(thread == Thread::current()) {
   StubRoutines::Sparc::flush_callers_register_windows_func()();
  }
  if (TracePcPatching) {
    // QQQ this assert is invalid (or too strong anyway) sice _pc could
    // be original pc and frame could have the deopt pc.
    // assert(_pc == *O7_addr() + pc_return_offset, "frame has wrong pc");
    tty->print_cr("patch_pc at address  0x%x [0x%x -> 0x%x] ", O7_addr(), _pc, pc);
  }
  _cb = CodeCache::find_blob(pc);
  *O7_addr() = pc - pc_return_offset;
  _cb = CodeCache::find_blob(_pc);
  if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
    address orig = ((nmethod*)_cb)->get_original_pc(this);
    assert(orig == _pc, "expected original to be stored before patching");
    _deopt_state = is_deoptimized;
  } else {
    _deopt_state = not_deoptimized;
  }
}


static bool sp_is_valid(intptr_t* old_sp, intptr_t* young_sp, intptr_t* sp) {
  return (((intptr_t)sp & (2*wordSize-1)) == 0 &&
          sp <= old_sp &&
          sp >= young_sp);
}


/*
  Find the (biased) sp that is just younger than old_sp starting at sp.
  If not found return NULL. Register windows are assumed to be flushed.
*/
intptr_t* frame::next_younger_sp_or_null(intptr_t* old_sp, intptr_t* sp) {

  intptr_t* previous_sp = NULL;
  intptr_t* orig_sp = sp;

  int max_frames = (old_sp - sp) / 16; // Minimum frame size is 16
  int max_frame2 = max_frames;
  while(sp != old_sp && sp_is_valid(old_sp, orig_sp, sp)) {
    if (max_frames-- <= 0)
      // too many frames have gone by; invalid parameters given to this function
      break;
    previous_sp = sp;
    sp = (intptr_t*)sp[FP->sp_offset_in_saved_window()];
    sp = (intptr_t*)((intptr_t)sp + STACK_BIAS);
  }

  return (sp == old_sp ? previous_sp : NULL);
}

/*
  Determine if "sp" is a valid stack pointer. "sp" is assumed to be younger than
  "valid_sp". So if "sp" is valid itself then it should be possible to walk frames
  from "sp" to "valid_sp". The assumption is that the registers windows for the
  thread stack in question are flushed.
*/
bool frame::is_valid_stack_pointer(intptr_t* valid_sp, intptr_t* sp) {
  return next_younger_sp_or_null(valid_sp, sp) != NULL;
}


bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
  assert(is_interpreted_frame(), "must be interpreter frame");
  return this->fp() == fp;
}


void frame::pd_gc_epilog() {
  if (is_interpreted_frame()) {
    // set constant pool cache entry for interpreter
    methodOop m = interpreter_frame_method();

    *interpreter_frame_cpoolcache_addr() = m->constants()->cache();
  }
}


bool frame::is_interpreted_frame_valid() const {
#ifdef CC_INTERP
  // Is there anything to do?
#else
  assert(is_interpreted_frame(), "Not an interpreted frame");
  // These are reasonable sanity checks
  if (fp() == 0 || (intptr_t(fp()) & (2*wordSize-1)) != 0) {
    return false;
  }
  if (sp() == 0 || (intptr_t(sp()) & (2*wordSize-1)) != 0) {
    return false;
  }
  const intptr_t interpreter_frame_initial_sp_offset = interpreter_frame_vm_local_words;
  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
    return false;
  }
  // These are hacks to keep us out of trouble.
  // The problem with these is that they mask other problems
  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
    return false;
  }
  if (fp() - sp() > 4096) {  // stack frames shouldn't be large.
    return false;
  }
#endif /* CC_INTERP */
  return true;
}


// Windows have been flushed on entry (but not marked). Capture the pc that
// is the return address to the frame that contains "sp" as its stack pointer.
// This pc resides in the called of the frame corresponding to "sp".
// As a side effect we mark this JavaFrameAnchor as having flushed the windows.
// This side effect lets us mark stacked JavaFrameAnchors (stacked in the
// call_helper) as flushed when we have flushed the windows for the most
// recent (i.e. current) JavaFrameAnchor. This saves useless flushing calls
// and lets us find the pc just once rather than multiple times as it did
// in the bad old _post_Java_state days.
//
void JavaFrameAnchor::capture_last_Java_pc(intptr_t* sp) {
  if (last_Java_sp() != NULL && last_Java_pc() == NULL) {
    // try and find the sp just younger than _last_Java_sp
    intptr_t* _post_Java_sp = frame::next_younger_sp_or_null(last_Java_sp(), sp);
    // Really this should never fail otherwise VM call must have non-standard
    // frame linkage (bad) or stack is not properly flushed (worse).
    guarantee(_post_Java_sp != NULL, "bad stack!");
    _last_Java_pc = (address) _post_Java_sp[ I7->sp_offset_in_saved_window()] + frame::pc_return_offset;

  }
  set_window_flushed();
}

void JavaFrameAnchor::make_walkable(JavaThread* thread) {
  if (walkable()) return;
  // Eventually make an assert
  guarantee(Thread::current() == (Thread*)thread, "only current thread can flush its registers");
  // We always flush in case the profiler wants it but we won't mark
  // the windows as flushed unless we have a last_Java_frame
  intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
  if (last_Java_sp() != NULL ) {
    capture_last_Java_pc(sp);
  }
}

intptr_t* frame::entry_frame_argument_at(int offset) const {
  // convert offset to index to deal with tsi
  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);

  intptr_t* LSP = (intptr_t*) sp()[Lentry_args->sp_offset_in_saved_window()];
  return &LSP[index+1];
}


BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
  assert(is_interpreted_frame(), "interpreted frame expected");
  methodOop method = interpreter_frame_method();
  BasicType type = method->result_type();

  if (method->is_native()) {
    // Prior to notifying the runtime of the method_exit the possible result
    // value is saved to l_scratch and d_scratch.

#ifdef CC_INTERP
    interpreterState istate = get_interpreterState();
    intptr_t* l_scratch = (intptr_t*) &istate->_native_lresult;
    intptr_t* d_scratch = (intptr_t*) &istate->_native_fresult;
#else /* CC_INTERP */
    intptr_t* l_scratch = fp() + interpreter_frame_l_scratch_fp_offset;
    intptr_t* d_scratch = fp() + interpreter_frame_d_scratch_fp_offset;
#endif /* CC_INTERP */

    address l_addr = (address)l_scratch;
#ifdef _LP64
    // On 64-bit the result for 1/8/16/32-bit result types is in the other
    // word half
    l_addr += wordSize/2;
#endif

    switch (type) {
      case T_OBJECT:
      case T_ARRAY: {
#ifdef CC_INTERP
        *oop_result = istate->_oop_temp;
#else
        oop obj = (oop) at(interpreter_frame_oop_temp_offset);
        assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
        *oop_result = obj;
#endif // CC_INTERP
        break;
      }

      case T_BOOLEAN : { jint* p = (jint*)l_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
      case T_BYTE    : { jint* p = (jint*)l_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
      case T_CHAR    : { jint* p = (jint*)l_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
      case T_SHORT   : { jint* p = (jint*)l_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
      case T_INT     : value_result->i = *(jint*)l_addr; break;
      case T_LONG    : value_result->j = *(jlong*)l_scratch; break;
      case T_FLOAT   : value_result->f = *(jfloat*)d_scratch; break;
      case T_DOUBLE  : value_result->d = *(jdouble*)d_scratch; break;
      case T_VOID    : /* Nothing to do */ break;
      default        : ShouldNotReachHere();
    }
  } else {
    intptr_t* tos_addr = interpreter_frame_tos_address();

    switch(type) {
      case T_OBJECT:
      case T_ARRAY: {
        oop obj = (oop)*tos_addr;
        assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
        *oop_result = obj;
        break;
      }
      case T_BOOLEAN : { jint* p = (jint*)tos_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
      case T_BYTE    : { jint* p = (jint*)tos_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
      case T_CHAR    : { jint* p = (jint*)tos_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
      case T_SHORT   : { jint* p = (jint*)tos_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
      case T_INT     : value_result->i = *(jint*)tos_addr; break;
      case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
      case T_FLOAT   : value_result->f = *(jfloat*)tos_addr; break;
      case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
      case T_VOID    : /* Nothing to do */ break;
      default        : ShouldNotReachHere();
    }
  };

  return type;
}

// Lesp pointer is one word lower than the top item on the stack.
intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize) - 1;
  return &interpreter_frame_tos_address()[index];
}